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Sensitivity of Dynamic Response of a Simply Supported
Functionally Graded Magneto-electro-elastic Plate to its

Elastic Parameters
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Abstract: Dynamic response sensitivity of a simply supported functionally
graded magneto- electro-elastic plates have been studied by combining analytical
method with finite element method. The functionally graded material parameters
are assumed to obey exponential law in the thickness direction. A series solution
of double trigonometric function agreed with the simply supported boundary con-
dition is adopted in the plane of the plate and finite element method is used across
the thickness of the plate. The finite element model is established based on en-
ergy variational principle. The coupled electromagnetic dynamic characteristics of
a simply supported functionally graded magneto- electro-elastic plate are decided
by its dynamics differential equation into which displacement components, electric
potential and magnetic potential as nodal degree of freedom are incorporated. Dy-
namic response sensitivity is defined as a partial differential of dynamic response
with respect to material parameter. Sensitivity of dynamic response of a simply
supported functionally graded magneto-electro-elastic plate to its elastic parame-
ters has been studied. The influence of the different exponential factor on dynamic
response sensitivity has also been investigated.

Keywords: Dynamic response sensitivity, simply supported functionally graded
magneto-electro- elastic plate, elastic parameters, finite element method, double
trigonometric function.

1 Introduction

Many scholars have increasingly focused on the properties of magneto-electro-
elastic structures employed as these smart or intelligent materials have ability of
converting energy from one form to the other (among magnetic, electric and me-
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chanical energy) [Nan (1994); Harshe et al. (1993)]. Applied in ultrasonic imaging
devices, sensors, actuators, transducers and many other emerging components, it
is a strong necessity for these smart or intelligent materials and structure to study
dynamic and static characteristics of theses by theories or techniques. Static and
dynamic behavior of plates as well as infinite cylinder has been studied in the liter-
ature. Pan (2001) obtained an exact closed-form solution for the simply supported
and multilayered plate composed of anisotropic piezoelectric and piezomagnetic
materials under a static mechanical load. Pan and Heyliger (2002) solved the cor-
responding dynamic problem. Static behavior of a functionally graded magneto-
electro-elastic hollow sphere subjected to hydrothermal loading in the spherically
symmetric state was studied by M. Saadatfar and M. Aghaie-Khafri (2014). The
dynamic response of a rotating radically polarized functionally graded piezoelectric
hollow cylinder was investigated by A. H. Akbarzadeh and Z. T. Chen (2012). Cou-
pling effect of electric and magnetic fields was found in piezoelectric and piezo-
magnetic composites. Jianguo Wang and Xuefeng Li (2008) derived analytical
solutions for the magneto-electric effect of multilayered magneto-electro-elastic
media by using the transfer matrix method. M R Sedighi and M. Shakeri (2009)
obtained a three-dimensional elasticity solution of functionally graded piezoelec-
tric cylindrical panels. Bishay, Sladek, Sladek and Atluri (2012) used hybrid/mixed
finite elements and node-wise material properties to analyze functionally graded
magneto-electro-elastic composites Buchanan (2004) used finite element method
to study the behavior of layered versus multiphase magneto-electro-elastic infinite
long plate composites Wang et al. (2003) had carried out analysis of multilayered
magnetoelectro-elastic plates for mechanical and electrical loading by the state vec-
tor approach. Free vibration of a magneto-electro-elastic plate resting on a Paster-
nak foundation was investigated by Yansong Li and Jingjun Zhang (2014) based on
Mindlin theory Rajesh K. Bhangale and N. Ganesan (2006) derived semi-analytical
finite element method to static analysis of simply supported functionally graded
and layered magneto-electro-elastic plates In the present study, a series solution in
conjunction with finite element approach is extended to dynamic response sensi-
tivity analysis of a functionally graded magneto-electro-elastic plates The studies
on dynamic sensitivity analysis of the functionally graded magnetoelectro-elastic
structure to material parameters is less in the literature, Dynamic response sensi-
tivity analysis is essential to optimization design and inverse technique of smart
material.
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2 Basic equations

The coupled physic equations for anisotropic and linear magneto-electro-elastic
solids are given by:

σσσ = Cεεε− eT E−qT H
D = eεεε +gE+αααT H
B = qεεε +αE+µµµHHH

 (1)

Where σσσ =
[

σx σy σz σyz σzx σxy
]T denotes stress vector, ε =[

εx εy εz εyz εzx εxy
]T denotes strain vector, D is the electric displacement

vector and B is the magnetic induction vector C, g and µµµ are the elastic, dielectric
and magnetic permeability coefficient matrices q, e and ααα are piezoelectric, piezo-
magnetic and magnetoelectric material coefficient matrices.

The strain–displacement relations are

εεε = LdU (2)

Where

UT =
{

u v w
}

(3)

The operator Ld is

Ld =


∂

∂x 0 0 0 ∂

∂ z
∂

∂y
0 ∂

∂y 0 ∂

∂ z 0 ∂

∂x
0 0 ∂

∂ z
∂

∂y
∂

∂x 0


T

(4)

In Eq. (3),u, v, w are elastic displacement component in coordinate directions x, y
and z, respectively

The electric field vector E is related to the electric potential ϕ as follows:

E =−Lϕϕ (5)

The relations between magnetic field and magnetic potential are given by:

H =−Lϕψ (6)

In Eq. (5) and Eq. (6), Lϕ is an operator as shown below:

Lϕ =

(
∂

∂x
,

∂

∂y
,

∂

∂ z

)T

(7)
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3 Dynamics differential equation

The functionally graded material parameters are assumed to obey exponential law
in the thickness direction. The plate is divided into 3 nodal surfaces namely upper,
middle and lower nodal surfaces in the thickness z direction. The following shape
functions are adopted

Nd (z) = [N1I,N2I,N3I]
Nϕ (z) = [N1,N2,N3]

}
(8)

Where N1 =
(
1−3z̄+2z̄2

)
, N2 = 4

(
z̄− z̄2

)
, N3 =

(
2z̄2− z̄

)
, z̄ = zi− zi−1/h, I is a

3×3 identity matrix, h is the thickness of the plate.

The displacement U and the electrostatic potential ϕ and the static magnetic po-
tential ψ are approximated by the shape functions and the degrees of freedom of 3
nodal surfaces.

U(x,y,z, t) = Nd (z)d(x,y, t)
ϕ (x,y,z, t) = Nϕ (z)ϕϕϕ (x,y, t)
ψ (x,y,z, t) = Nϕ (z)ψψψ (x,y, t)

(9)

Where
dT =

{
dT

l dT
m dT

u
}
,dT

i =
{

ui vi wi
}

ϕϕϕT =
{

ϕl ϕm ϕu
}

ψψψT =
{

ψl ψm ψu
} (10)

Where i = l,m,u, l denotes lower nodal surface, m middle nodal surface and u
upper nodal surface.

In the present work a set of finite series solution agreed with the boundary con-
ditions for the simply supported rectangular plates (a× b) has been adopted. The
generalized displacement functions are as follows:

u(x,y, t) =
M
∑

m=1

N
∑

n=1
Umn (t)cos mπx

a sin nπy
b

v(x,y, t) =
M
∑

m=1

N
∑

n=1
Vmn (t)sin mπx

a cos nπy
b

w(x,y, t) =
M
∑

m=1

N
∑

n=1
Wmn (t)sin mπx

a sin nπy
b

ϕ (x,y, t) =
M
∑

m=1

N
∑

n=1
ϕmn (t)sin mπx

a sin nπy
b

ψ (x,y, t) =
M
∑

m=1

N
∑

n=1
Ψmn (t)sin mπx

a sin nπy
b

(11)
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Where n and m are two positive integers, N and M are the term number of the series
to be accounted for the general excitation.

Coupled equations of a finite layer element are given by:

MeV̈e +KeVe = Te (12)

Where

VT
e =

{
ΘΘΘ

T ,ϕϕϕT ,ΨΨΨT} (13)

TT
e =

∫ a

0

∫ b

0

{
FT ,DT

z ,B
T
z
}

dxdy (14)

Me =

 Ms 0 0
0 0 0
0 0 0

 (15)

Ke =

 Kdd Kdϕ Kdψ

KT
dϕ
−Kϕϕ −Kϕψ

KT
dψ
−KT

ϕψ −Kψψ

 (16)

In Eq. (13)
ΘΘΘ

T =
{

ΘΘΘ
l

ΘΘΘ
m

ΘΘΘ
u } ,ΘΘΘi =

{
U i

mn V i
mn W i

mn
}

ϕT =
{

ϕ l
mn ϕm

mn ϕu
mn
}

ΨΨΨ
T =

{
Ψl

mn Ψm
mn Ψu

mn
} (17)

In Eq. (14)
FT =

{
Fl Fm Fu

}
,Fi =

{
Fx Fy Fz

}i

DT
z =

{
(DZ)

l (DZ)
m (DZ)

u
}

BT
z =

{
(BZ)

l (BZ)
m (BZ)

u
} (18)

Where F is the external traction vector applied on the nodal surface.

In Eq. (15)

Ms = c
∫ h

0
ρNT (z)N(z)dz (19)

In Eq. (16)

Kdd = c
∫ hn

0 B̃T
d CB̃ddz, Kdϕ = c

∫ hn
0 B̃T

d eT B̃ϕdz
Kdψ = c

∫ hn
0 B̃T

d qT B̃ψdz, Kϕϕ = c
∫ hn

0 B̃T
ϕgB̃ϕdz

Kϕψ = c
∫ hn

0 B̃T
d αT B̃ψdz, Kψψ = c

∫ hn
0 B̃T

ψ µB̃ψdz

 (20)
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Where c = ab/4

B̃d =
[

B1 B2 B3
]
, B̃ϕ =

[
Bϕ1 Bϕ2 Bϕ3

]
, B̃ψ =

[
Bϕ1 Bϕ2 Bϕ3

]
(21)

Where

BT
1 =

 −mπ

a N1 0 0 0 ∂N1
∂ z

nπ

b N1

0 −nπ

b N1 0 ∂N1
∂ z 0 mπ

a N1

0 0 ∂N1
∂ z

nπ

b N1
mπ

a N1 0

 (22)

BT
2 =

 −mπ

a N2 0 0 0 ∂N2
∂ z

nπ

b N2

0 −nπ

b N2 0 ∂N2
∂ z 0 mπ

a N2

0 0 ∂N2
∂ z

nπ

b N2
mπ

a N2 0

 (23)

BT
3 =

 −mπ

a N3 0 0 0 ∂N3
∂ z

nπ

b N3

0 −nπ

b N3 0 ∂N3
∂ z 0 mπ

a N3

0 0 ∂N3
∂ z

nπ

b N3
mπ

a N3 0

 (24)

Bϕ1 =
[

mπ

a N1
nπ

b N1
∂N1
∂ z

]T
(25)

Bϕ2 =
[

mπ

a N2
nπ

b N2
∂N2
∂ z

]T
(26)

Bϕ3 =
[

mπ

a N3
nπ

b N3
∂N3
∂ z

]T
(27)

Assembling matrices of all the elements, we obtain the entire dynamic differential
equation of the functionally graded magneto-electro-elastic plate:

MT V̈T +KT VT = TT (28)

In the present work we only consider sensitivity of dynamic response to material
elastic parameters, and take no account of sensitivity of dynamic response to mate-
rial density mass and dimension sizes.

If a harmonic mechanical traction vector Ft = {A}t sin(ωt) is applied on the top
surface of the plate, and in Eq. (11) m = n=1 is adopted, the solution corresponding
to Eq. (28) has the form:

u(x,y,z, t) =U11 sin(ωt)cos mπx
a sin nπy

b
v(x,y,z, t) =V11 sin(ωt)sin mπx

a cos nπy
b

w(x,y,z, t) =W11 sin(ωt)sin mπx
a sin nπy

b
ϕ (x,y,z, t) = ϕ11 sin(ωt)sin mπx

a sin nπy
b

ψ (x,y,z, t) = Ψ11 sin(ωt)sin mπx
a sin nπy

b

(29)
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Substituting Eq. (29) into Eq. (28), we have

−ω
2 [Ms]t {ℜ}t +[Kdd ]t {ℜ}t +

[
Kdϕ

]
t {ϕ}t +

[
Kdψ

]
t {Ψ}t = {A}t[

Kdϕ

]T
t {ℜ}t −

[
Kϕϕ

]
t {ϕ}t −

[
Kϕψ

]
t {Ψ}t = {Dz}t[

Kdψ

]T
t {ℜ}t −

[
Kϕψ

]T
t {ϕ}t −

[
Kψψ

]
t {Ψ}t = {Bz}t

(30)

Where

{ℜ}T
t = [U11,V11,W11]t ,{ϕ}

T
t = [ϕ11]t ,{Ψ}

T
t = [Ψ11]t (31)

If material elastic parameters are taken as the design variables ‘θ ’, applying a par-
tial differential on Eq. (30) with respect toθ , we have

−ω
2 [Ms]t

∂ {ℜ}t
∂θ

+[Kdd ]t
∂ {ℜ}t

∂θ
+

∂ [Kdd ]t
∂θ

{ℜ}t

+
[
Kdϕ

]
t

∂ {ϕ}t
∂θ

+
[
Kdψ

]
t

∂ {Ψ}t
∂θ

= {0}[
Kdϕ

]T
t

∂ {ℜ}t
∂θ

−
[
Kϕϕ

]
t

∂ {ϕ}t
∂θ

−
[
Kϕψ

]
t

∂ {Ψ}t
∂θ

= {0}[
Kdψ

]T
t

∂ {ℜ}t
∂θ

−
[
Kϕψ

]T
t

∂ {ϕ}t
∂θ

−
[
Kψψ

]
t

∂ {Ψ}t
∂θ

= {0}

(32)

4 Numerical example

For all the subsequent numerical examples, the functionally graded magneto-
electro-elastic plate are taken with the material parameters are given in Appendix
A Consider a FGM magneto- electro-elastic plate having horizontal dimensions a
=0.5m and b=0.5m and thickness h = 0.04m, The mechanic model of the FGM
magneto-electro-elastic plate is shown in Fig.1.

The following dimensional parameters are adopted:

x̄ = x/h, z̄ = z/h, ū = u/u0, v̄ = v/u0, w̄ = w/u0

u0 = hq0/c66, ϕ̄ = ϕ/ϕ0, ϕ0 = eshq0/(gsc66) , ψ̄ = ψ/ψ0, ψ0 = qshq0/(µsc66)

Where c66 = 1GPa. es = 1C/m2gs = 10−10As/Vm, qs = 1Vs/m2, µs =
10−6Vs/Am2. For the mechanical loads, q0 = 1N/m2 and for the electrode excita-
tion, q0 = es p0/h, p0 is a constant expressing the value of the electrostatic potential,
and for the magnetic pole excitation, q0 = es p0/h, p0 is a constant expressing the
value of the static magnetic potential. A normal harmonic mechanical excitation
F̄T

t = {0,0,0,0,0,0,0,0,1}sin(2πt) is applied on the top surface of plate.
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Figure 1: Mechanic model of FGM magneto-electro-elastic plate.

Eq. (32) can be written as:

−(2π)2[Ms]t
∂{ℜ}t

∂θ
+[[Kdd ]t +[Γ]t +[ϒ]]

∂{ℜ}t
∂θ

+
∂ [Kdd ]t

∂θ
{ℜ}t = {0}

[Γ]t=
[
Kdϕ

]
t

[[
Kϕψ

]−1
t

[
Kϕϕ

]
t−
[
Kψψ

]−1
t

[
Kϕψ

]T
t

]−1[[
Kϕψ

]−1
t

[
Kdϕ

]T
t −
[
Kψψ

]−1
t

[
Kdψ

]T
t

]
[ϒ]t=

[
Kdψ

]
t

[[
Kϕψ

]−T
t

[
Kψψ

]
t−
[
Kϕϕ

]−1
t

[
Kϕψ

]
t

]−1[[
Kϕψ

]−T
t

[
Kdψ

]T
t −
[
Kϕϕ

]−1
t

[
Kdϕ

]T
t

]
(33)

∂{ϕ}t
∂θ

and ∂{Ψ}t
∂θ

can be obtained from the last two equations of Eq. (32)
∂{Φ}t

∂θ
=

{[[
Kϕψ

]−1
t

[
Kϕϕ

]
t−
[
Kψψ

]−1
t

[
Kϕψ

]T
t

]−1[[
Kϕψ

]−1
t

[
Kdϕ

]T
t−
[
Kψψ

]−1
t

[
Kdψ

]T
t

]}
∂{ℜ}t

∂θ

∂{Ψ}t
∂θ

=

{[[
Kϕψ

]−T
t

[
Kψψ

]
t−
[
Kϕϕ

]−1
t

[
Kϕψ

]
t

]−1[[
Kϕψ

]−T
t

[
Kdψ

]T
t−
[
Kϕϕ

]−1
t

[
Kdϕ

]T
t

]}
∂{ℜ}t

∂θ

(34)

∂w
∂v is defined as sensitivity of a variable ‘w’ to a parameter ‘v’. ∂w

∂v has the physical
meaning as shown below:

∆w =
∂w
∂v

∆v (35)
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For
∂w
∂v

> 0 and ∆v > 0, ∆w > 0. (36)

For
∂w
∂v

< 0 and ∆v > 0, ∆w < 0 (37)

We first obtain {ℜ}t from the solution of Eq. (30), and then obtain ∂{ℜ}t
∂θ

by substi-
tuting {ℜ}t into Eq. (33) and solving Eq. (33). The numerical results are obtained
by MATLAB program, and the figures are plotted by Origin 8.

Fig. 2 shows the sensitivity distributions of the dimensionless deflection amplitude
of the plate to elastic parameters Cl (i, j) across the thickness for η = 1. It is ob-
served from Fig. 2 that dimensionless deflection amplitudes of both the surfaces
z̄ = 0.1 and z̄ = 0.87 is hardly sensitive to all the elastic parameters The dimension-
less deflection amplitude is the most sensitive to the two parameters Cl (1,2) and
Cl (2,2), however, Cl (1,2) and Cl (2,2) have opposite effects on vibration control.
In other words, the parameter Cl (2,2), when increase, can suppress the vibration,
but Cl (1,2) when increase, can cause the more strong vibration The dimensionless
deflection amplitude is insensitive to elastic parameter Cl (5,5). Sensitivities of the
dimensionless deflection amplitudes between z̄ = 0.1 and z̄ = 0.87 to Cl (1,2) and
Cl (1,3) are positive; to Cl (1,1)Cl (2,2), Cl (6,6) and Cl (4,4) are negative. A pos-
itive sensitivity means that the amplitude increases with the increase of parameters,
while a negative sensitivity instead.

Fig. 3 shows the sensitivity distributions of the dimensionless deflection amplitude
of the plate to elastic parameters Cl (i, j) across the thickness for η = 3 and η = 10,
respectively. It is seen from Fig. 3 that deflection amplitude is the most sensitive
to elastic parameter Cl (6,6), the dimensionless deflection amplitudes of both the
surfaces z̄ = 0.85 for η = 3 and z̄ = 0.78 for η = 10 are hardly sensitive to all
the elastic parameters. In Fig, 2 it is medium, but in Fig. 3 the absolute value of
sensitivity of the dimensionless deflection amplitude of the plate to Cl (6,6) is the
largest namely, the relative sensitivity of the dimensionless deflection amplitude of
the plate to Cl (6,6) will increase with the increase of exponent factor ‘η’.

In Fig. 4 the first two digital in Ci jkl namely i j denotes Cl (i, j), and the next k
or kl denotes the value of η , such as C1110 denotes the elastic constant Cl (1,1)
and η = 10. It is seen from Fig. 4 that as the exponent factor ‘η’ increases the
magnitude of sensitivity of the dimensionless deflection amplitude of the plate to
the elastic parameters decreases.

Fig. 5 shows the sensitivity distributions of the dimensionless electric potential am-
plitudes of the plate to elastic parameter Cl (i, j) across the thickness (η = 1). It is
seen from the Fig. 5 that the dimensionless electric potential amplitudes of the plate
are the most sensitive to the two elastic parameters Cl (1,2) and Cl (1,1). However,
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Figure 2: Sensitivity distributions of the dimensionless deflection amplitude of the
plate to elastic parameters Cl (i, j) across the thickness (η = 1).

Figure 3: Sensitivity distributions of the dimensionless deflection amplitude of the
plate to elastic parameters Cl (i, j) across the thickness (η = 3 and η = 10).
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Cl (1,2) and Cl (1,1) have opposite effects on vibration control namely, Cl (1,1),
when increase, can suppress the vibration of electric potential, but Cl (1,2), when
increase, can lead to the more strong vibration of electric potential The dimen-
sionless electric potential amplitudes is hardly sensitive to these elastic parameters
Cl (3,3), Cl (4,4) and Cl (5,5). Sensitivity curves of the electric potential amplitude
to these elastic parameters Cl (1,1), Cl (1,2) and Cl (2,2) are parabola The dimen-
sionless electric potential amplitude of the top surface of the plate is hardly sensi-
tive to all the elastic parameters. Sensitivity of the dimensionless electric potential
amplitude of the plate to the elastic parameters Cl (1,2), Cl (1,3) and Cl (6,6) are
positive; to the elastic parameters Cl (1,1), Cl (2,2) and Cl (2,3) are negative.

Figure 4: Sensitivity distributions of dimensionless deflection amplitude of the
plate to elastic parameters Cl (i, j) across the thickness (η = 1η = 3, η = 10).
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Figure 5: Sensitivity distributions of the dimensionless electric potential amplitudes
of the plate to elastic parameter Cl (i, j) across the thickness (η = 1).

Figure 6: Sensitivity distributions of the dimensionless electric potential amplitudes
of the plate to elastic parameter Cl (i, j) across the thickness (η = 3).

The sensitivity distributions of the dimensionless electric potential amplitudes of
the plate to elastic parameter Cl (i, j) across the thickness (η = 3) is shown in Fig. 6.
It can be seen from Fig. 6 that magnitude of sensitivity of the dimensionless electric
potential amplitudes of the plate to elastic parameter Cl (i, j) gradually reduce from
the bottom surface (z̄ = 0) to the top surface of the plate (z̄ = 1) The dimensionless
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electric potential amplitudes of the plate is hardly sensitive to elastic parameter
Cl (4,4) regardless of η = 1 or η = 3. It has been noticed from Fig. 5 that for
η = 1, ∂ ϕ̄

∂Cl(1,3) > 0, ∂ ϕ̄

∂Cl(1,2) > 0, ∂ ϕ̄

∂Cl(2,2) < 0. Nevertheless, in Fig. 6 for η = 3,
∂ ϕ̄

∂Cl(1,3) < 0, ∂ ϕ̄

∂Cl(1,2) < 0, ∂ ϕ̄

∂Cl(2,2) > 0. The physical meaning is that for η = 1,

Cl (1,2) and Cl (1,3), when increase, can cause the more strong vibration of electric
potential, and Cl (2,2), when increase, can suppress vibration of electric potential,
however, For η = 3, Cl (1,2), Cl (1,3) and Cl (2,2) have the opposite effects on
vibration as compared with for η = 1.

Fig. 7 shows the sensitivity distributions of the dimensionless electric potential
amplitudes of the plate to elastic parameter Cl (i, j) across the thickness for η = 1,
η = 3, η = 10, respectively. It is also seen from the comparison of the sensitive
curves for η = 1, η = 3 and η = 10 in Fig. 7 that as the exponent ‘η’ increases the
magnitudes of sensitivity of the dimensionless electric potential amplitudes of the
plate to the elastic parameters decrease.

Fig. 8 shows the sensitivity distribution of the dimensionless magnetic potential
amplitude of the plate to the elastic parameter Cl (i, j) across the thickness (η = 1).
It has been noticed that sensitivity curves of the magnetic potential amplitude to
these elastic parameters Cl (1,1), Cl (1,2), Cl (1,3), Cl (2,2), Cl (2,3) are parabola.
Further it is seen from Fig. 8 that the dimensionless magnetic potential ampli-
tudes of the plate are the most sensitive to the two elastic parameters Cl (1,2) and
Cl (1,1). However, Cl (1,2) and Cl (1,1) have opposite effects on vibration con-
trol. Cl (1,1), when increase, can suppress vibration of magnetic potential, but
Cl (1,2), when increase, can cause the more strong vibration of magnetic potential
The values of sensitivity of magnetic potential to these elastic parameters Cl (1,2),
Cl (1,3), Cl (2,3) and Cl (6,6) are positive; to these elastic parameters Cl (1,1) and
Cl (2,2) are negative. The dimensionless magnetic potential amplitude of the plate
is hardly sensitive to Cl (3,3), Cl (4,4) and Cl (5,5).

The sensitivity distributions of the dimensionless magnetic potential amplitudes of
the plate to elastic parameter Cl (i, j) across the thickness (η = 3) is shown in Fig.
9. It can be seen from Fig. 9 that magnitude of sensitivity to elastic parameter
Cl (i, j) gradually reduce from the bottom surface (z̄ = 0) to the top surface (z̄ =
1) of the plate. The dimensionless magnetic potential amplitude of the plate is
hardly sensitive to the elastic parameter Cl (4,4). In Fig.8 it is very small, but
in Fig. 9 magnitude of sensitivity of magnetic potential amplitude to the elastic
parameter Cl (6,6) is larger than that to the other parameters except for Cl (1,2).
In other words, as the exponent factor ‘η’ increases the relative sensitivity of the
dimensionless magnetic potential amplitude of the plate to the elastic parameter
Cl (6,6) increases.



136 Copyright © 2014 Tech Science Press CMC, vol.44, no.2, pp.123-140, 2014

Figure 7: Sensitivity distributions of the dimensionless electric potential amplitudes
of the plate to elastic parameter Cl (i, j) across the thickness (η = 1η = 3„η = 10).

Figure 8: Sensitivity distribution of the dimensionless magnetic potential amplitude
of the plate to the elastic parameter Cl (i, j) across the thickness (η = 1).
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Figure 9: Sensitivity distribution of the dimensionless magnetic potential amplitude
of the plate to the elastic parameter Cl (i, j) across the thickness (η = 3).

Figure 10: Sensitivity distribution of the dimensionless magnetic potential ampli-
tude of the plate to the elastic parameter Cl (i, j) across the thickness (η = 1η =
3„η = 10).
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Fig. 10 shows the sensitivity distribution of the dimensionless magnetic potential
amplitude of the plate to the elastic parameter Cl (i, j) across the thickness, for
η = 1η = 3, η = 10, respectively. It is seen from the comparison of the sensitive
curves for η = 1, η = 3, η = 10 that magnitude of sensitivity of the dimensionless
magnetic potential amplitude of the plate to the elastic parameters decreases as the
exponent factor ‘η’ increases.

5 Conclusion

We can obtain the following conclusions from the numerical example:

1. For η = 1 the sensitivity curves of the dimensionless amplitude of the elec-
tric and magnetic potentials of the plate to these elastic parameters Cl (1,1),
Cl (1,2) and Cl (2,2) are parabola. But for η = 3 the parabola disappears
as the exponent factor ‘η’ increases magnitude of the sensitivity to elastic
parameter Cl (i, j) reduce from the bottom (z̄ = 0) to the top surface (z̄ = 1)
of the plate.

2. There is a surface within the plate. Deflection amplitude of the surface is
hardly sensitive to all the elastic parameters.

3. The dimensionless electric and magnetic potential amplitudes of the top sur-
face of the plate is hardly sensitive for all the elastic parameters no matter
how much the exponent factor ‘η’ is.

4. The dimensionless amplitudes of electric potential, magnetic potential and
elastic deflection are all insensitive to the elastic parameter Cl (4,4).

5. The relative sensitivities of the dimensionless deflection, electric and mag-
netic potentials amplitude of the plate to Cl (6,6) increase as the exponent
factor ‘η’ increases.

6. As the exponent factor ‘η’ increases the sensitivity of dynamic response of
the FGM plate to its elastic parameters decreases.

Acknowledgement: This work is supported by Foundation of China under the
Grant Number 11372109.

References

Akbarzadeh, A. H.; Chen, Z. T. (2011): Magnetoelectroelastic behavior of rotat-
ing cylinders resting on an elastic foundation under hygrothermal loading. Smart
Mater. Struct., vol. 20, no. 6, pp. 0964-1724



Sensitivity of Dynamic Response 139

Bishay, P. L.; Sladek, J.; Sladek, V.; Atluri, S. N. (2012): Analysis of Function-
ally Graded Magneto-Electro-Elastic Composites Using Hybrid/Mixed Finite Ele-
ments and Node-Wise Material Properties. CMC: Computers, Materials & Con-
tinua, vol. 29, no. 3, pp. 213-262.

Buchanan, G. R. (2004): Layered verses multiphase magneto-electro-elastic com-
posites. Composites B (Engg) vol. 35, no. 5, pp. 413–420.

Harshe, G.; Dougherty, J. P.; Newnham, R. E. (1993): Theoretical modeling of
multilayered magneto- electric composites. Int. J. Appl. Electromag. Mater., no.
4, pp. 145–159.

Li, Y.; Zhang, J. (2014): Free vibration analysis of magneto-electro-elastic plate
resting on a Pasternak foundation. Smart Mater. Struct., vol. 23, no. 2, pp. 0964-
1726.

Pan, E. (2001): Exact solution for simply supported and multilayered magneto-
electro-elastic plates. J. Appl. Mech., ASME, vol. 68, pp. 608–618.

Pan, E.; Heyliger, P. R. (2002): Free vibrations of simply supported and multilay-
ered magneto-electro -elastic plates. J. Sound Vib., vol. 252, no. 3, pp. 429–442.

Rajesh, K. Bhangale; Ganesan, N. (2006): Static analysis of simply supported
functionally graded and layered magneto-electro -elastic plates. Int. J. Solids
Struct., vol. 43 no. 10, pp. 3230–3253.

Sedighi, M. R.; Shakeri, M. (2009): A three-dimensional elasticity solution of
functionally graded piezoelectric cylindrical panels. Smart. Mater. Struct., vol. 18,
no. 5, pp. 0964-1726.

Saadatfar, M.; Aghaie-Khafri, M. (2014): Hygrotherm-magneto-electro-elastic
analysis of a functionally graded magneto-electro-elastic hollow sphere resting on
an elastic foundation. Smart Mater. Struct., vol. 23, no. 3, pp. 0964-1726.

Wang, J.; Chen, L.; Fang, S. (2003): State vector approach to analysis of multi-
layered magneto- electro-elastic plates. Int. J. Solids Struct., vol. 40, no. 7, pp.
1669–1680.

Wang, J.; Li, X. (2008): Analytical solutions for the magnetoelectric effect of
multilayered magneto-electro-elastic media. Smart Mater. Struct., vol.17, no.4, pp.
0964-1726.

Appendix A

The magnetic and electric parameters are given by:
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Cl =



79.7 35.8 35.8 0 0 0
35.8 79.7 35.8 0 0 0
35.8 35.8 66.8 0 0 0

0 0 0 17.2 0 0
0 0 0 0 14.4 0
0 0 0 0 0 14.4

GPa, C = Cleηz

µµµ
l =

 5.4 0 0
0 5.4 0
0 0 5.4

×10−6Vs.(Am)−1, µµµ = µµµ
leηz,

gl =

 3.8 0 0
0 3.8 0
0 0 3.8

×10−10As · (Vm)−1, g = gleηz,

el =

 0 0 0 0 0 10.5
0 0 0 0 10.5 0
−5.9 −5.9 15.2 0 0 0

c/m2, e = eleηz

qu =

 0 0 0 0 0 108.3
0 0 0 0 108.3 0

−60.9 −60.9 156.8 0 0 0

Vs/m2,

q = qleηz, ρ
l = 7454kg/m2, ρ = ρ

leηz, ααα = [0]3×3 .

Where the superscripts ‘l’ denotes the lower layer, ‘η’ is the exponential factor
governing the degree of the material gradient in the z-direction.


