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Abstract: This paper deals with the development of models for prediction of fac-
ture parameters, namely, fracture energy and ultimate load of high strength and
ultra high strength concrete based on Minimax Probability Machine Regression
(MPMR) and Extreme Learning Machine (ELM). MPMR is developed based on
Minimax Probability Machine Classification (MPMC). ELM is the modified ver-
sion of Single Hidden Layer Feed Foreword Network (SLFN). MPMR and ELM
has been used as regression techniques. Mathematical models have been developed
in the form of relation between several input variables such as beam dimensions,
water cement ratio, compressive strength, split tensile strength, notch depth, and
modulus of elasticity and output is fracture energy and ultimate load A total of 87
data sets (input-output pairs) are used, 61 of which are used to train the model and
26 are used to test the models. The data-sets used in this study are derived from
experimental results. A comparative study has been presented between the devel-
oped MPMR and ELM models. The results showed that the developed models give
reasonable performance for prediction of fracture energy and ultimate load.
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1 Introduction

A highly developed infrastructure is an important part of any country’s growth and
prosperity. It is important to study Reinforced Concrete Structures (RCS) to ana-
lyze and develop better methods and materials which are more resilient and durable.
These Reinforced Concrete Structures have suffered many failures due to the com-
bined effect of de-icing, alternate expansion and contraction, freeze-thaw cycles,
creep and shrinkage failures, heavy live load impacts and harsh, aggressive envi-
ronments. Consequently civil engineers today are facing immense problems when
it comes to preserving, maintaining and retrofitting these structures. Traditionally
normal strength concrete (NSC) was used for building structures. Thus to build
complicated infrastructure edifices such as high rise buildings and long span cable
stayed bridges, among other humungous development projects, it became neces-
sary to develop High Strength Concrete (HSC) with compressive strength of 50
MPa or higher. The easiest way to achieve such high compressive strength was to
decrease the water-cement ratio. The use of appropriate additives and admixtures
was encouraged to develop such high strengths along with other characteristics.
Thus HSC is considered as green high performance concrete (GHPC). Nowadays
ultra-high strength concrete (UHSC) is also used, with axial compression of above
140 MPa. Ultra-High Performance Concrete (UHPC) is a high-strength, ductile
material formulated by combining Portland Cement, silica fume, quartz flour, fine
silica sand, high-range water reducer, water, and steel or organic fibers. The mate-
rial provides compressive strengths up to 29,000 pounds per square inch (psi) and
flexural strengths up to 7,000 psiThis was successfully developed by Richard and
Cheyrezy (1994, 1995), Mingzhe et al. (2010).

Concrete being a quasi-brittle materials exhibit a nonlinear region before the peak
of the stress–strain relationship and substantial post-peak strain softening. Linear
elastic fracture mechanics cannot be applied directly to the quasi-brittle materials
[Bazant, 2000]. Due to high heterogeneity nature in concrete, cracks follow the
weakest matrix links in the material. They lead their way through the weak bonds,
voids, mortar and get arrested on encountering a hard aggregate, forming crack
face bridges. Micro cracking, crack bridging and aggregate interlocking are a few
of many specific mechanisms that absorb energy during fracture process. These
mechanisms contribute to the tendency of the main crack to follow a tortuous path
[Bazant (2000); Barenblatt (1959); Dugdale (1960)]. This tortuous nature of the
crack causes difficulty in computing the fracture energy. Therefore, modeling the
exact nature of the fracture surface poses a new challenge to the researchers. In
these days, most theoretical works in fracture mechanics are based on the funda-
mental assumption that cracks have smooth surfaces. This assumption is helpful to
use analytical models in the field of fracture mechanics.
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Over the past few years, researchers have used different statistical modelling meth-
ods such as Artificial Neural Network, Support Vector Regression, Multivariate
Adaptive Regression Splines and Relevance Vector Machine for prediction of frac-
ture characteristics of concrete. Yuvarajet al. (2013) used Support vector regression
(2013), Artificial Neural Network (2012) and Multivariate Adaptive Regression
Splines (2013) to predict the fracture characteristics of concrete beams. Though
the performance of ANN is acceptable, its results are hard to interpret. Support
vector machines do not directly provide probability estimates and in the case of
MARS, parameter confidence intervals and other checks on the model cannot be
calculated directly, unlike linear regression models.

This article examines the applicability of Minimax Probability Machine Regression
(MPMR) and Extreme Learning Machine (ELM) for prediction of fracture energy
and ultimate load. MPMR is a new model based on Minimax Probability Machine
Classification (MPMC). There are several applications of MPMR in different do-
mains [Utkin et al. (2012); Takeda et al. (2013); Yang and Ju (2014)]. ELM is
developed based on the concept of single hidden layer forward network [Huang
et al. (2006)]. Researchers have successfully applied ELM for solving different
problems in engineering [Jiang et al. (2012); Li et al. (2013); Du et al. (2014)].

2 Minimax Probability Machine Regression

This section will serve the details of MPMR. It is developed by constructing di-
chotomy classifier [Strohmann and Grudic (2002)]. The relation between input(x)
and output(y) is given below.

y =
N

∑
i=1

βiK (xi,x)+b (1)

Where N is the number of datasets, K(xi,x) is kernel function, βi and b is the output
of MPMR. In this, beam dimensions, fck, split tensile strength, notch depth and
Young’s modulus have been used as inputs of the MPMR. The output of MPMR is
fracture energy (GF ) and ultimate load (Pmax).

The total datasets will be divided into the following two classes.

ui = (yi + ε,xi1,xi2, ...,xin) (2)

vi = (yi − ε,xi1,xi2, ....,xin) (3)

The classification boundary between ui and vi is regression surface.

For developing MPMR, the dataset have been divided into the following two groups:



76 Copyright © 2014 Tech Science Press CMC, vol.44, no.2, pp.73-84, 2014

Training Dataset: This is adopted to develop the MPMR model. This article uses
61 dataset as training dataset.

Testing Dataset: This is used to verify the developed MPMR. The remaining 26
dataset has been used as testing dataset.

The dataset is normalized between 0 and 1. Radial basis function has been adopted
as kernel function. The program of MPMR has been constructed by using MAT-
LAB.

3 Extreme Learning Machine

The basic concept of ELM has been taken from single hidden layer forward net-
work (SLFN) [Huang et al. (2012)]. In SLFN, the relation between input(x) and
output(y) is given below:

L

∑
i=1

βigi (x j) =
L

∑
i=1

βiG(ai,bi,x j) = y j (4)

Where L is the number of hidden layers, g denotes the non-linear activation func-
tion and βi is weight.

The above equation (4) can be written in the following way.

Hβ = T (5)

Where

H =

 G(a1,b1,x1) · · · G(aL,bL,x1)
...

. . .
...

G(a1,b1,xN) · · · G(aL,bL,xN)


N×L

,

β =

 β T
1
...

β T
L

andT =

 yT
1
...

yT
N


N×m

.

The value of β is determined from the following equation

β = H−1T (6)

where H−1 is the Moore–Penrose generalized inverse of hidden layer output matrix.

ELM employs the same training dataset, testing dataset and normalization tech-
nique as used by the MPMR model. Radial basis function has been used as ac-
tivation function for developing the ELM model. The program of ELM has been
constructed by using MATLAB.
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4 Development of MPMR & ELM Models

Out of the 87 data sets which are available, 61 datasets (Table 1) are used to train
the models and 26 datasets (Table 2) are used to test the accuracy of the models.
Tables1 and 2show the training and testing data-sets respectively. The data was
normalized between 0 and 1 before being used in the model as following:

Dnorm =
D−Dmin

Dmax −Dmin
(7)

The assessment of the model is done on the basis of coefficient of regression value
R which is calculated using the formula:

R =
∑

n
i=1 (Eai − Ēa)(Epi −Ep)√

∑
n
i=1 (Eai − Ēa)

√
∑

n
i=1 (Epi − Ēp)

(8)

where Eai and Epi are the actual and predicted values, respectively, Ēa and Ēp are
mean of actual and predicted E values. For an effective and good model the R
value should be close to one. Also while comparing the models the values of R is
compared and the model with R value closer to one and higher than the other is
considered better and used.

5 Results and discussion

The present study uses Coefficient of Correlation(R) to asses the performance of
the developed MPMR & ELM. For a good model, the value of R should be close
to one. For developing MPMR, the design values of σ and ε have been determined
by trial and error approach. The developed MPMR gives best performance at P1
= 0.15 and ε= 0.07 for prediction of Pmax. Figure 1 depicts the performance of
MPMR for prediction of Pmax. It is observed from figure 1 and Table 3 that the
value of R is close to 1 for training as well as testing datasets. For prediction of GF ,
the design values of P1 and ε are 0.07& 0.05 respectively. Figure 2 illustrates the
performance of MPMR for prediction of GF . As shown in figure 2 and Table 3, the
value of R is close to one for training as well as testing datasets. So, the developed
proves his ability for prediction of Pmax and GF .

The performance of ELM depends on the number of hidden nodes. The design
number of hidden nodes is determined by trail and error approach. For prediction
of Pmax, the developed ELM gives best performance for 10 hidden nodes. Figure 3
depicts the performance of ELM for prediction of Pmax. The developed ELM gives
best performance at 9 hidden nodes For prediction of GF . Figure 4 illustrates the
performance of ELM for prediction of GF . As shown in figures 3 and 4 and Table
3, the value of R is close to one.
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Table 1: Training data-sets.

S.
No

L
(mm)

A
(cm2)

a0
(mm)

w/c fck
(MPa)

σt

(MPa)
E

(GPa)
Pmax

(KN)
GF

(N/m)
1 250 25 5 0.45 57.14 3.96 35.78 2.71 115.84
2 250 25 4 0.45 57.14 3.96 35.78 2.62 123.31
3 250 25 10 0.45 57.14 3.96 35.78 1.98 91.12
4 250 25 9 0.45 57.14 3.96 35.78 1.98 86.65
5 250 25 10 0.45 57.14 3.96 35.78 1.84 74.32
6 250 25 16 0.45 57.14 3.96 35.78 1.14 55.18
7 250 25 15 0.45 57.14 3.96 35.78 1.42 68.61
8 500 50 9 0.45 57.14 3.96 35.78 4.53 144.02
9 500 50 10 0.45 57.14 3.96 35.78 4.10 130.26
10 500 50 18 0.45 57.14 3.96 35.78 3.79 92.72
11 500 50 19 0.45 57.14 3.96 35.78 3.63 115.42
12 500 50 28 0.45 57.14 3.96 35.78 2.58 89.12
13 1000 100 19 0.45 57.14 3.96 35.78 7.27 165.25
14 1000 100 19 0.45 57.14 3.96 35.78 7.32 146.28
15 1000 100 19 0.45 57.14 3.96 35.78 6.99 148.25
16 1000 100 39 0.45 57.14 3.96 35.78 6.01 135.85
17 1000 100 39 0.45 57.14 3.96 35.78 6.32 140.56
18 1000 100 58 0.45 57.14 3.96 35.78 4.54 115.12
19 1000 100 60 0.45 57.14 3.96 35.78 4.70 104.22
20 250 25 5 0.33 87.71 15.38 37.89 4.20 4157.28
21 250 25 5 0.33 87.71 15.38 37.89 4.15 4102.2
22 250 25 10 0.33 87.71 15.38 37.89 3.37 3464.6
23 250 25 10 0.33 87.71 15.38 37.89 3.26 3880.1
24 250 25 15 0.33 87.71 15.38 37.89 2.79 3301.2
25 250 25 15 0.33 87.71 15.38 37.89 2.88 3410
26 250 25 20 0.33 87.71 15.38 37.89 1.98 2892.06
27 250 25 20 0.33 87.71 15.38 37.89 2.05 2988.52
28 500 50 10 0.33 87.71 15.38 37.89 8.35 4811
29 500 50 10 0.33 87.71 15.38 37.89 8.20 4200.1
30 500 50 20 0.33 87.71 15.38 37.89 5.10 4516.1
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S.
No

L
(mm)

A
(cm2)

a0
(mm)

w/c fck
(MPa)

σt

(MPa)
E

(GPa)
Pmax

(KN)
GF

(N/m)
31 500 50 20 0.33 87.71 15.38 37.89 4.99 4266.5
32 500 50 20 0.33 87.71 15.38 37.89 5.07 3828.57
33 500 50 30 0.33 87.71 15.38 37.89 3.80 3579.89
34 500 50 30 0.33 87.71 15.38 37.89 3.79 3865.2
35 500 50 40 0.33 87.71 15.38 37.89 2.99 3970.95
36 500 50 40 0.33 87.71 15.38 37.89 3.08 3406.67
37 250 25 4 0.23 122.52 20.65 42.987 9.99 10349.24
38 250 25 5 0.23 122.52 20.65 42.987 10.01 10376.22
39 250 25 10 0.23 122.52 20.65 42.987 7.81 8308.49
40 250 25 9 0.23 122.52 20.65 42.987 7.43 7900
41 250 25 15 0.23 122.52 20.65 42.987 6.20 6925.54
42 250 25 15 0.23 122.52 20.65 42.987 5.99 6694.51
43 250 25 20 0.23 122.52 20.65 42.987 4.07 4386.6
44 250 25 19 0.23 122.52 20.65 42.987 3.99 4306.29
45 250 25 20 0.23 122.52 20.65 42.987 4.18 4511.36
46 400 40 9 0.23 122.52 20.65 42.987 14.23 11557.07
47 400 40 8 0.23 122.52 20.65 42.987 13.98 11354.02
48 400 40 16 0.23 122.52 20.65 42.987 10.85 8888.75
49 400 40 15 0.23 122.52 20.65 42.987 10.62 8700.84
50 400 40 25 0.23 122.52 20.65 42.987 7.58 7145.19
51 400 40 24 0.23 122.52 20.65 42.987 7.61 7171.63
52 400 40 32 0.23 122.52 20.65 42.987 5.56 5021.25
53 400 40 31 0.23 122.52 20.65 42.987 5.60 5058.14
54 650 65 13 0.23 122.52 20.65 42.987 19.49 12052.38
55 650 65 12 0.23 122.52 20.65 42.987 19.31 11944.13
56 650 65 25 0.23 122.52 20.65 42.987 13.37 8076
57 650 65 25 0.23 122.52 20.65 42.987 13.51 8892.69
58 650 65 39 0.23 122.52 20.65 42.987 10.12 6965.9
59 650 65 39 0.23 122.52 20.65 42.987 10.30 7085.13
60 650 65 52 0.23 122.52 20.65 42.987 7.46 5919.23
61 650 65 52 0.23 122.52 20.65 42.987 7.69 6109.05
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Table 2: Testing data-sets.

S.
No

L
(mm)

A
(cm2)

a0
(mm)

w/c fck
(MPa)

σt

(MPa)
E

(GPa)
Pmax

(kN)
GF

(N/m)
1 250 25 4 0.45 57.14 3.96 35.78 2.412 114.9
2 250 25 17 0.45 57.14 3.96 35.78 1.321 47.4
3 500 50 29 0.45 57.14 3.96 35.78 2.575 96.2
4 500 50 28 0.45 57.14 3.96 35.78 2.321 100.3
5 500 50 10 0.33 87.71 15.38 37.89 8.102 4142.2
6 1000 100 40 0.45 57.14 3.96 35.78 6.278 110.2
7 500 50 10 0.45 57.14 3.96 35.78 4.312 137.0
8 250 25 10 0.33 87.71 15.38 37.89 3.121 3763.1
9 650 65 51 0.23 122.52 20.65 42.987 7.312 5806.5
10 500 50 30 0.33 87.71 15.38 37.89 3.991 4623.5
11 250 25 9 0.23 122.52 20.65 42.987 7.667 8155.0
12 250 25 14 0.23 122.52 20.65 42.987 6.128 6844.0
13 400 40 8 0.23 122.52 20.65 42.987 14.08 11435.2
14 400 40 16 0.23 122.52 20.65 42.987 10.514 8613.2
15 650 65 24 0.23 122.52 20.65 42.987 13.498 8155.1
16 650 65 13 0.23 122.52 20.65 42.987 19.126 11829.1
17 650 65 39 0.23 122.52 20.65 42.987 10.013 6889.1
18 250 25 5 0.23 122.52 20.65 42.987 10.136 10504.7
19 250 25 20 0.33 87.71 15.38 37.89 2.102 2894.0
20 400 40 31 0.23 122.52 20.65 42.987 5.312 4797.2
21 250 25 5 0.33 87.71 15.38 37.89 4.101 4056.4
22 500 50 40 0.33 87.71 15.38 37.89 3.194 2897.9
23 1000 100 58 0.45 57.14 3.96 35.78 4.412 111.9
24 400 40 25 0.23 122.52 20.65 42.987 7.31 6887.1
25 500 50 18 0.45 57.14 3.96 35.78 3.87 105.3
26 250 25 15 0.33 87.71 15.38 37.89 2.841 3685.1

Note: L-length, A-c/s area, a0-Notch depth, w/c-Water-cementations mate-
rial ratio, fck-compressive strength, σt-Split tensile strength, E-modulus of
elasticity, Pmax-Ultimate load, GF -Fracture energy.



Prediction of Fracture Parameters 81

Table 3: Values of R for training and testing.

MPMR ELM
Pmax GF Pmax GF

Rtrain 0.9993 0.99929 0.938 0.983
Rtest 0.9988 0.9953 0.932 0.983

Figure 1: Comparison of predicted ultimate load - MPMR.

Figure 2: Comparison of predicted fracture energy – MPMR.
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Figure 3: Comparison of predicted ultimate load - EML.

Figure 4: Comparison of predicted fracture energy - EML.



Prediction of Fracture Parameters 83

6 Conclusions

This study describes two alternative methods based of MPMR and ELM for predic-
tion of facture energy and ultimate load. The methodology of MPMR and ELM has
been described. Two types of dataset have been utilized to construct the MPMR and
ELM models. The performance of MPMR and ELM is encouraging. Researchers
can use the developed models as quick tools for prediction of facture energy and
ultimate load. The developed models can be employed to solve different problems
in structural engineering.
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