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Wave Propagation in Functionally Graded
Piezoelectric-piezomagnetic Rectangular Rings
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Abstract: The ring ultrasonic transducers are widely used in the ocean engi-
neering and medical fields. This paper proposes a double orthogonal polynomial
series approach to solve the wave propagation problem in a functionally graded
piezoelectric-piezomagnetic (FGPP) ring with a rectangular cross-section. Through
numerical comparison with the available reference results for a pure elastic homo-
geneous rectangular bar, the validity of the proposed approach is illustrated. The
dispersion curves and displacement distributions of various FGPP rectangular bars
are calculated to reveal their wave characteristics. The results can be used for the
design and optimization of the ring FGPP transducers.
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1 Introduction

With the increasing usage in various applications including sensors, actuators and
storage devices piezoelectric-piezomagnetic composites (PPC) have received con-
siderable research effort in the past ten years [Achenbach (2000); Sladek, Sladek,
Solek and Atluri (2008); Bishay, Sladek, Sladek and Atluri (2012)]. For the pur-
pose of design and optimization of PPC transducers, wave propagation in various
PPC attracted many researchers.

Cao [Cao, Shi and Jin (2012)] investigated Lamb waves propagating in the func-
tionally graded piezoelectric-piezomagnetic material plate by employing the power
series technique. Wei [Wei and Su (2006)] studied the axisymmetric flexural wave
in PPC cylinders by using ‘bar model’. By virture of propagator matrix and state-
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vector approaches, Chen [Chen, Pan and Chen (2007)] presented an analytical treat-
ment for the propagation of harmonic waves in PPC multilayered plates. Wu [Wu,
Yu and He (2008)] used the orthogonal polynomial approach to investigate the
wave propagating characteristics in the non-homogeneous magneto-electro-elastic
plates. The polynomial approach was also applied to calculate the guided wave in
imhomogeneous magneto-electro-elastic cylindrical plates [Yu and Wu (2009)] and
spherical plates [Yu and Ma (2010); Xue, Pan and Zhang (2011)] proposed a sim-
ple nonlinear model to investigate the solitary waves in a magneto-electro-elastic
circular bar based on the the Jacobi elliptic function expansion method. Using a
self-adjoint method, the wave propagation in a magneto-electro-elastic square col-
umn was studied by Wei [Wei and Su (2008)].

Wave propagation in piezoelectric-piezomagnetic periodically layered structures
received attentions [Liu, Wei and Fang (2010); Pang, Wang, Liu and Fang (2010);
Zhao, Zhong and Pan (2012)] for analyzing the band gaps The penetration depth of
the BleusteinGulyaev waves in a functionally graded transversely isotropic electro-
magneto-elastic half-space was discussed by Li [Li Jin and Qian (2013)]. Sun
[Sun, Ju, Pan and Li (2011)]and Nie [Nie, Liu, Fang and An (2012)] investigated
the effects of the imperfect interface on the SH waves propagating in piezoelectric-
piezomagnetic layered structures. The reflection and transmission of plane waves
at an imperfectly bonded interface between piezoelectric-piezomagnetic media was
discussed by Pang [Pang and Liu (2011)] By using Legendre and Laguerre polyno-
mial approach, Matar [Matar, Gasmi, Zhou, Goueygou and Talbi (2013)] computed
propagation constants and mode shapes of elastic waves in layered piezoelectric-
piezomagnetic composites. The propagation of SH wave in the layered function-
ally gradient piezoelectric-piezomagnetic structure was studied by Singh [Singh
and Rokne (2013)].

As a common structure, the ring ultrasonic transducer has been widely used in
ocean engineering and medical fields. But few investigations on the wave propa-
gation in ring transducers have been reported. This paper proposed a double or-
thogonal polynomial series approach to solve the wave propagation problem in
a functionally graded piezoelectric-piezomagnetic (FGPP) ring with a rectangular
cross section. Two material gradient directions (radial direction and axial direction)
are respectively considered. The dispersion curves and the displacement profiles of
various FGPP rectangular rings are presented and discussed. The investigating re-
sults can be used to direct the design and optimization of the ring FGPP transducers.
In this paper, traction free and open circuit boundary conditions are assumed.
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2 Mathematics and formulation of the problem

Considering an orthotropic ring with a rectangular cross-section in cylindrical co-
ordinate (rθ , z), as shown in Figure.1. h is height in z direction and d is thickness
in r direction, and a,b denote the inner and outer radius respectively. The radius
to thickness ratio is defined as η=b/(b− a) and the width to height ratio isd/h. Its
polarization direction is in the r direction.

Figure 1: Schematic diagram of a ring with rectangular cross section.

For the wave propagation considered in this paper, the body forces and electric
charges and current densities are assumed to be zero. Thus, the dynamic equation
for the ring is governed by
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where Ti j, ui, Di and Bi are the stress, elastic displacement, electric displacement
and magnetic induction components, respectively and ρ is the density of the mate-
rial. In this study, quasi-magneto-electro-static assumptioin is made.
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The relationships between the general strain and general displacement components
can be expressed as
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where εi j, Ei and Hiare the strain components, the electric field and the magnetic
field; φ and ψ are the electric potential and the magnetic potential components,
respectively.

We introduce the function I(r,z)

I(r,z) = π(r)π(z) =
{

1, a≤ r ≤ b and 0≤ z≤ h
0, elsewhere

(3)

where π(r) and π(z)are rectangular window functions (the subtraction of two Heav-

iside function), π(r) =
{

1, a≤ r ≤ b
0, elsewhere

and π(z) =
{

1, 0≤ z≤ h
0, elsewhere

. The

derivatives along r and z of I(r,z) are delta (r) and delta (z). By introducing
the function I(r,z), the traction-free and open-circuit boundary conditions, i.e.,
Trr = Trθ = Trz = Tθz = Tzz = Dr = Dz = Hr = Hz = 0 at the four boundaries,
are automatically incorporated in the constitutive relations of the ring [Datta and
Hunsinger (1978)]:

Tθθ =C11εθθ +C12εzz +C13εrr− e31Er−q31Br

Tzz = (C12εθθ +C22εzz +C23εrr− e32Er−q32Br) I(r,z)

Trr = (C13εθθ +C23εzz +C33εrr− e33Er−q33Br)I(r,z)

Trz = (2C44εrz− e24Ez−q24Bz) I(r,z)

Trθ = (2C55εrθ − e15Eθ −q15Bθ ) I(r,z)

Tθz = 2C66εθzI(r,z)

(4a)

Dθ = 2e15εrθ+ ∈11 Eθ +g11Bθ

Dz = (2e24εrz+ ∈22 Ez +g22Bz) I(r,z)

Dr = (e31εθθ + e32εzz + e33εrr+ ∈33 Er +g33Br) I(r,z)

(4b)
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Hθ = 2q15εrθ +g11Eθ +µ11Bθ

Hz = (2q24εrz +g22Ez +µ22Bz) I(r,z)

Hr = (q31εθθ +q32εzz +q33εrr +g33Er +µ33Br) I(r,z)

(4c)

where Ci j, ei j and qi j are the elastic, piezoelectric, and piezomagnetic coefficients
respectively; ∈i j, gi j, and µi j are the dielectric, magneto-electric, and magnetic
permeability coefficients, respectively.

In this paper, we consider two different material gradient directions, namely, the
radial direction and the axial direction. For FGPP rings that material properties
vary in radial direction, we denote them by r-directional FGPP rings. For rings that
t material properties vary in axial direction, we denote them by a-directional FGPP
rings. For a r-directional FGPP ring, the elastic parameter is dependent on r, and
can be fitted into the polynomial series of the radius
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With implicit summation over repeated indices, Ci j(r) can be written compactly as
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And other material parameters can be treated in the same way,
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For an a-directional FGPP ring, the material parameters are dependent on z and can
be expressed as
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(6)

For a free harmonic wave propagating in the circumferential direction of a ring, we
assume the displacement, electric potential and the magnetic potential components
to be of the form

ur(r,θ ,z, t) = exp(ikbθ − iωt)U(r,z) (7a)
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uθ (r,θ ,z, t) = exp(ikbθ − iωt)V (r,z) (7b)

uz(r,θ ,z, t) = exp(ikbθ − iωt)W (r,z) (7c)

ϕ(r,θ ,z, t) = exp(ikbθ − iωt)X(r,z) (7d)

ψ(r,θ ,z, t) = exp(ikbθ − iωt)Y (r,z) (7e)

where U(r,z), V (r,z) and W (r,z) represent the amplitude of vibration in the r, θ , z
directions respectively; X(r,z) and Y (r,z) represent respectively the amplitudes of
electric potential and magnetic potential. k is the magnitude of the wave vector in
the propagation direction, and ω is the angular frequency.

Substituting Eqs. (2), (3), (4), (5)/(6) and (7) into Eq. (1), the governing differential
equations in terms of the displacement, electric potential and magnetic potential
components can be obtained. Here, the case of the r-directional FGPP ring is given:
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where a subscript comma indicates partial derivative.

To solve the coupled wave equations, U(r,z), V (r,z), W (r,z), X(r,z) and Y (r,z) are
expanded into products of two Legendre orthogonal polynomial series as
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with Pm and Pj being the mth and the jth Legendre polynomial. Theoretically, m
and j run from 0 to∞. However, in practice the summation over the polynomials in
Eq. (9) can be truncated at some finite values m = M and j = J, when the effects
of higher order terms become negligible.

Multiplying each equation by Qn(r) ·Qp(z) ·e− jωt with n and p running respectively
from zero to Mand zero to J, and integrating over z from zero to h and r from a to
b and taking advantage of the orthonormality of the polynomials Qm(r) and Q j(z),
Eq. (8) can be reorganized into a form of the system problem:
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where lAn,p,m, j
αβ

(α,β = 1,2,3,4,5) and lMn,p,m, j are the elements of the non-symmetric
matrices A and M, which can be obtained by using Eq. (8).

Eq. (11e) can be written as:

p5
m, j =−

(
lAn,p,m, j

55

)−1(
lAn,p,m, j

51 p1
m, j +

lAn,p,m, j
52 p2

m, j +
lAn,p,m, j

53 p3
m, j +

lAn,p,m, j
54 p4

m, j

)
(12)



Functionally Graded Piezoelectric-piezomagnetic Rectangular Rings 161

Substituting Eq. (12) into Eq. (11d),
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Substituting Eq. (13) into Eq. (12),
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lĀn,p,m, j
12
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21

lĀn,p,m, j
22

lĀn,p,m, j
22

lĀn,p,m, j
31

lĀn,p,m, j
32

lĀn,p,m, j
33




p1
m, j

p2
m, j

p3
m, j

=−ω
2lMn,p,m, j

 1 0 0
0 1 0
0 0 1


p1

m, j
p2

m, j
p3

m, j


(15)

where lĀn,p,m, j
αβ

(α,β = 1,2) and Mn,p,m, j are the elements of a non-symmetric ma-
trix. They can be obtained according to Eqs. (11)-(14) and are given in the Ap-
pendix.

So, Eq. (15) forms the eigenvalue problem to be solved. The eigenvalue ω2

gives the angular frequency of the guided wave, and the eigenvectors pi
m, j(i =

1, 2, 3, 4, 5) allow the displacement components to be calculated, and p4
m, j, p5

m, j
which can be obtained thanks to Eqs. (13) and (14), determine the electric potential
and magnetic potential distributions. By using the relation V ph = ω/k, the phase
velocity can be obtained.

3 Numerical results and discussions

In order to calculate the effective parameters of the FGPP ring, the Voigt-type
model is used in this study. For the a-directional FGPP rectangular ring, it can
be expressed as

C(z) =C1V1(z)+C2V2(z) (16a)



162 Copyright © 2014 Tech Science Press CMC, vol.43, no.3, pp.153-173, 2014

for the r-directional FGPP rectangular ring

C(r) =C1V1(r)+C2V2(r), (16b)

where Vi(z)/Vi(r) and Ci denote the volume fraction of the ith material and the
corresponding physical property of the ith material, respectively, and ∑Vi(z) =
1/∑Vi(r) = 1. So, the properties of the FGPP can be expressed as

C(z) =C2 +(C1−C2)V1(z), (17a)

C(r) =C2 +(C1−C2)V1(r) (17b)

According to Eq. (5) and (6), the gradient profile of the material volume fraction
can be expressed as a power series expansion. The coefficients of the power series
can be determined using the Mathematica function ‘Fit’.

Based on the above mathematical formulation, computer programs in terms of the
proposed polynomial method have been written using Mathematica to calculate the
dispersion curves and the displacement distributions for various FGPP rectangular
rings.

3.1 Comparison with the available solution from transfer matrix method

Because no reference results for the guided waves in FGPP or FG rectangular rings
can be found in literature, we consider a homogeneous square steel ring with a
very large radius to thickness ratio η=1000 to make a comparison with known
results of a straight steel square bar from the semi-analytical finite element method
[Hayashi, Song and Rose (2003)]. For the steel square bar, CL =5.85 km/s, CT

=3.23 km/s and h = d=5.08mm. Here, CL and CT are respectively the longitudinal
and the transverse wave velocities. Figure 2 shows the corresponding dispersion
curves, where dotted lines are from Hayashi [Hayashi, Song and Rose (2003)] and
dashed lines are obtained from the present approach. As can be seen, the results
from the polynomial approach agree well with the reference data, which verifies
the correctness and the accuracy of the present method.

3.2 Dispersion curves for FGPP rectangular rings

In this section, we take the Ba2TiO3CoFe2O4 FGPP rectangular rings as examples
to discuss the wave characteristics. The bottom surface for the a-directional FGPP
rectangular ring and the inner surface for the r-directional FGPP rectangular ring
are pure Ba2TiO3. The material parameters of the two materials with polarization
in the thickness direction are given in Table 1.

Firstly, we consider four linely FGPP square rings (d/h=1): (a) a-directional FGPP
ring with η=10; (b) r-directional FGPP ring with η=10; (c) a-directional FGPP
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Figure 2: Phase velocity dispersion curves of the square steel rod; dotted lines:
Hayashi’s results, dashed lines: authors’ results.

Table 1: The material properties of the two materials (Ci j(109N/m2), ∈i j

(10−10F/m2), ei j (C/m), qi j (N/Am), µi j(10−6Ns2/C2),ρ(103kg/m3)).

Property C11 C12 C13 C22 C23 C33 C44 C55 C66

Ba2TiO3 166 77 78 166 78 162 43 43 44.6
CoFe2O4 286 173 170.5 286 170.5 269.5 45.3 45.3 56.5

e15 e24 e31 e32 e33 ∈11 ∈22 ∈33 ρ

Ba2TiO3 11.6 11.6 -4.4 -4.4 18.6 112 112 126 5.8
CoFe2O4 0 0 0 0 0 0.8 0.8 0.93 5.3

q15 q24 q31 q32 q33 µ11 µ22 µ33

Ba2TiO3 0 0 0 0 0 5 5 10
CoFe2O4 550 550 580.3 580.3 699.7 -590 -590 157

ring with η=2; (d) r-directional FGPP ring with η=2. Their phase velocity dis-
persion curves are shown in Figure 3. It can be seen that the first two wave modes
have no cut-off frequencies. This feature is different from that for an infinite FGPP
flat plate, in which the first mode has no cut-off frequencies. In a flat plate, only
the thickness direction is a finite dimension, but there are two finite dimensions in
a rectangular ring. Furthermore, the radius to thickness ratio has a significant effect
on the dispersion curves. With the radius to thickness ratio increasing, the differ-
ence between the first mode and the second mode of the FGPP square ring becomes
small at the low frequency. The reason is that the ring is more and more close to the
square bar with the radius to thickness ratio increasing, and for the square bar, the
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first two modes is very similar due to the symmetry of the geometry and material
distribution. For the FGPP ring with small radius to thickness ratio, the difference
between the dispersion curves of the a-directional FGPP ring and the ones of the
r-directional FGPP ring is more significant, which results from two reasons: (1)
the piezomagnetic effect and piezoelectric effect are different for the FGPP rings
with different polarization directions. (2) For the linely r-directional FGPP ring,
the volume fraction of the outside material (CoFe2O4) is higher than that of the
inside material (Ba2TiO3), and the difference between the two volume fractions
become larger with the radius to thickness ratio decreasing, so that the difference
of the strength of the piezomagnetic effect and piezoelectric effect is more notable.
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(a)                                                               (b) 

 Figure 3: Phase velocity dispersion curves for the FGPP square rings (black lines,
a-directional FGPP ring; red lines, r-directional FGPP ring): (a) η=10, (b) η=2.

The cross section of the above four FGPP rings is square. Next, two linely FGPP
rectangular rings with η=10 are considered: (e) r-directional FGPP ring withd/h=0.5;
(f) a-directional FGPP ring withd/h=2 Figure 4 shows the corresponding phase ve-
locity dispersion curves. We can see that the width to height ratio can also influence
the dispersion curves significantly.

Figure 5 shows the phase velocity dispersion curves for a-directional FGPP square
rings with different radius to thickness ratios (η=10, η=5, η=3.5, η=2). We can
find the effect of the radius to thickness ratio on the dispersion curves is very signif-
icant, and the phase velocity decreases with the radius to thickness ratio increasing.

Then, we consider three kinds of different gradient variations, V1(r) =
( r−a

h

)t
, t =

1,2,3, namely, linearly gradient variation, squarely gradient variation and cubi-
cally gradient variation. Figure 6 shows the phase velocity dispersion curves of the
first four order modes for a-directional FGPP square rings (η=10) with different
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Figure 4: Phase velocity dispersion curves for FGPP rectangular rings: (a) r-
directional FGPP ring with d/h=0.5, (b) a-directional FGPP ring with d/h=2.
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Figure 5: Phase velocity dispersion curves for a-directional FGPP square rings with
different radius to thickness ratios: red lines, η=10; green lines, η=5; blue lines,
η=3.5; black lines, η=2.
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gradient variations. The results indicate that the FGPP rings with different gradi-
ent variations have different dispersion characteristics. The reason for this is that
different gradient variation results in the different material volume fraction. The
phase velocity decreases with the power exponent (t) increasing. This is due to the
factor that the volume fraction of Ba2TiO3 increases with the power exponent (t)
increasing, and the body wave speed of Ba2TiO3 is lower than that of CoFe2O4.
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Figure 6: Phase velocity dispersion curves for a-directional FGPP square rings
with different gradient variations with η=10 (red lines, linearly gradient variation;
blue lines, squarely gradient variation; black lines, cubically gradient variation):
(a) mode 1-3; (b) mode 4.

The above three gradient fields are monotonic. Next, a cosinusoidally FGPP ring
and a sinusoidally FGPP ring with η=10 and d/h=1 are considered. The corre-
sponding phase velocity dispersion curves are given in Figure 7. We can see that
the dispersion characteristics are different for the two FGPP square rings with dif-
ferent gradient fields.

3.3 Displacement shapes

In this section, we discuss the wave characteristics through the mechanical dis-
placement profiles. Figures. 8 and 9 illustrate the displacement shapes of the sec-
ond and fifth modes for a linearlya-directional FGPP square ring at kd=180. We
can see that most displacements distribute near the bottom edge, namely, the side
with more Ba2TiO3. The reason lies in that the body wave speed of Ba2TiO3 is
lower than that of CoFe2O4. Figures. 10 and 11 show the case for a cosinusoidally
a-directional FGPP square ring. We can see that that the displacement mostly dis-
tribute around the bottom and top sides. That means they mostly distribute around
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Figure 7: Phase velocity dispersion curves for a-directional FGPP square rings with
different gradient variations with η=10 (red lines, cosinusoidally gradient variation;
black lines, sinusoidally gradient variation).
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FGPP square ring at kd=180.
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Figure 11: Displacement profiles of the fifth mode for the cosinusoidallya-
directional FGPP square ring at kd=180.

z=0 and z=1, where the volume fraction of Ba2TiO3 is higher. This phenomenon
shows the high frequency wave always propagate on the side with more materials
of high wave speed. So, through changing the gradient variation of the FGPP ring,
we can to obtain any field distributions that we want. Furthermore, in figures 10
and 11, the displacement w is symmetric and displacement u and v are antisymmet-
ric with respect to the z-axis, which results from the material volume fraction are
symmetrically distributed on the z-axis.

4 Conclusions

In this paper, wave propagation analysis of a 2-D FGPP rectangular ring is solved
by a double orthogonal polynomial series approach. The dispersion curves and
displacement distributions of various FGPP rectangular rings are presented and dis-
cussed. According to the numerical results, we can draw the following conclusions:

(a) Numerical comparison of the dispersion curves with reference solutions shows
that the double orthogonal polynomial method is appropriate to solve the guided
wave propagation problem in 2-D FGPP structures.
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(b) The radius to thickness ratio and the width to height ratio and the gradient field
all have significant influences on the guided wave charateristics.

(c) High frequency waves propagate predominantly around the side with more ma-
terial having lower wave speed.

So, through changing the radius to thickness ratio, the width to height ratio and the
gradient variation of the FGPP ring, we can obtain the ring transducers with the
dispersion features and field distributions that we want.
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Appendix

The elements of the matrices in Eq. (15) are given by
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lĀn,p,m, j
33 = lAn,p,m, j

33 − lAn,p,m, j
35

(
lAn,p,m, j

55

)−1
· lAn,p,m, j

53 +(
lAn,p,m, j

34 − lAn,p,m, j
35

(
lAn,p,m, j

55

)−1
· lAn,p,m, j

54

)
· lIAn,p,m, j

(
lAn,p,m, j

43 − lAAn,p,m, j · lAn,p,m, j
53

)




