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Magneto-Mechanical Finite Element Analysis of Single
Crystalline Ni2MnGa Ferromagnetic Shape Memory Alloy
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Abstract: Based on an existing micromechanical constitutive model for Ni2MnGa
ferromagnetic shape memory alloy single crystals, a three-dimensional quasi-static
isothermal incremental constitutive model that is suitable for finite element anal-
ysis is derived by using Hamilton’s variational principle. This equation sets up
the coupling relation between the magnetic vector potential and the mechanical
displacement. By using the incremental equation and ANSYS software, the me-
chanical behaviors of martensitic variant reorientation for Ni2MnGa single crystals
are analyzed under magneto-mechanical coupling action. And the finite element
results agree well with the experimental data. The methods used in the paper can
well describe the mechanical behaviors of the material in complex fields.
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1 Introduction

Shape memory alloy is a kind of important intelligent materials [Kanca and Eskil
(2009)]. Ferromagnetic shape memory alloys (FSMAs), represented by Ni2MnGa,
have been intensively researched since 1996. FSMAs may generate strain under
magnetic field, temperature or stress. The magnetic field-induced strain of single
crystalline Ni2MnGa has evolved from initially reported 0.2% [Ullakko and Huang
(1996)] to 10% [Karaca, Karaman, Basaran and Lagoudas (2007)], which makes it
possible to the use in intelligent structure.

Single crystalline Ni2MnGa has abundant microstructures. Shape memory effect
and super-elastic properties of FSMAs have to do with microstructure of the ma-
terial.In order to deeply investigate its mechanical behaviors, many people have
developed lots of constitutive models [Kieer and Lagoudas (2005); Pei and Fang
(2007); Wang, Li and Hu (2012); Zhu and Yu (2013); Zhu, Shi and Wang (2013)].
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Due to its anisotropic mechanical behaviors and nonlinear constitutive relation, it
is difficult to obtain the analytical solution of its constitutive equation. Moreover,
only simple magneto-mechanical coupling experiments can be achieved, which has
limited further researches of this material.

Finite element analysis (FEA) is widely used in the analysis of the traditional shape
memory alloy [Casciati, et al. (2011); Chen, et al. (2012)], and has been used to
analyze the mechanical behaviors of single crystalline FSMAs. Kiang and Tong
[Kiang and Tong (2007); Kiang and Tong (2009)] derived a two-dimensional con-
stitutive model for FEA, and verified the relation between the magnetic field and
the strain under constant stresses. However, this constitutive model fails to re-
flect the effect of the shape of martensitic variants and the material properties on
the macroscopic material properties. Wang and Steinmann[Wang and Steinmann
(2013)] proposed a new constitutive model for FEA, gave an iterative method to
solve the constitutive equation, and described the magnetization distribution, vol-
ume fractions of variants and stress-strain curves. Lagoudas et al. [Lagoudas,
Kiefer and Haldar (2008)] employed the COMSOL software to analyze the effect
of non-uniformly distributed magnetic force on stress distribution. As we all know,
single crystalline Ni2MnGa has rich microstructures, which may affect mechani-
cal behavires of FSMA. However, most above FSMAs constitutive models fail to
reflect the characteristics very well.

Based on micromechanics and thermodynamics, Zhu and Dui [Zhu and Dui (2008)]
established a three-dimensional constitutive model for single crystalline FSMAs,
the model reflects the effect of the microscopic evolution on the macroscopic prop-
erties.

Based on the micromechanical model in Reference [Zhu and Dui (2008)] and
Hamilton’s variational principle, we will derive a discretized incremental model
suitable for FEA, namely, a three-dimensional quasi-static isothermal incremental
finite element formula for martensitic variant reorientation. The formula establishes
the coupling relation between the magnetic vector potential and the mechanical dis-
placement. Employing the FEA software ANSYS, the programming language For-
tran, and the above incremental equations, and writing a finite element subroutine
for the custom material, we analyze the mechanical behaviors during martensitic
variant reorientation of Ni2MnGa single crystals under magneto-mechanical cou-
pling action.
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2 Hamilton’s variational principle

According to Hamilton’s variational principle, the dynamic equation in variational
form is [Chari and Salon (2005); Honig (1999); O’Handley (2000)]

δ

∫
t
(L+W )dt =

∫
t
(δK−δP+δW )dt = 0 (1)

where L is the Lagrangian, W is the external work, P is the internal energy, K is the
kinetic energy, and t represents the time domain.

For a general magneto-mechanically coupled material, the internal energy is [8,9]

δ

∫
t

∫
v
Pdvdt =

∫
t

∫
v
{σ}T {δε}dvdt +

∫
t

∫
v
{H}T {δB}dvdt (2)

where {σ} is the stress, {δε} is the strain variation, {H} is the magnetic field
intensity, {δB} is the magnetic induction variation, and v denotes volume. And the
external work is

δ

∫
t

∫
v
Wdvdt =

∫
t

∫
v
{δu}T {Fv}dvdt +

∫
t

∫
v
{δA}T {J}dvdt

+
∫

t

∫
s
{δu}T {Fs}dsdt +

∫
t
{δu}

T
{Fp}dt

(3)

where {δu} is the displacement variation, {Fp} is the point force, {Fs} is the surface
force, {Fv} is the body force, {δA} is the magnetic vector potential variation, {J}
is the current density, and s denotes area.

Neglect the kinetic energy and gravity. Substituting Eqs. (2) and (3) into (1) yields

−δ

∫
t

∫
v
Pdvdt +δ

∫
t

∫
v
Wdvdt =

∫
t

∫
v
{δA}

T
{J}dvdt+∫

t
{δu}T {Fp}dt−

∫
t

∫
v
{σ}T {δε}dvdt−

∫
t

∫
v
{H}

T
{δB}dvdt = 0

(4)

The incremental expression of (4) is

∫
t
{δu}T {∆Fp}dt +

∫
t

∫
v
{δA}

T
{∆J}dvdt−

∫
t

∫
v
{δε}

T
{∆σ}dvdt

−
∫

t

∫
v
{δB}

T
{∆H}dvdt = 0

(5)
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where

{δu}=
(

δux δuy δuz
)T
, {∆Fp}=

(
∆Fx ∆Fy ∆Fz

)T
,

{δA}=
(

δAx δAy δAz
)T
, {∆J}=

(
∆Jx ∆Jy ∆Jz

)T
,

{δε}=
(

δεx δεy δεz δγyz δγxz δγxy
)T
,

{∆σ}=
(

∆σx ∆σy ∆σz ∆τyz ∆τxz ∆τxy
)T
,

{δB}=
(

δBx 0 δBy 0 δBz 0
)T
,

{∆H}=
(

∆Hx 0 ∆Hy 0 ∆Hz 0
)T

3 The constitutive model in incremental format

This paper is based on the constitutive model of literature [Zhu and Dui (2008)],
the constitutive model is explained as follow.

According to Reference [Zhu and Dui (2008)], assume a single crystalline Ni2MnGa
is completely martensitic variant 1 initially. An external field H leads to martensitic
variant reorientation, generating variant 2, see Fig.1.

Figure 1: Schematic of a Ni2MnGa single-crystal sample under field and stress
[Kieer and Lagoudas (2005); Zhu and Dui (2008)].

For convenience, assume that these two martensitic variants share the same elastic
modulus matrix [L0]. Then the macroscopic strain is [Zhu and Dui (2008)]

{ε}= [L0]
−1 {σ}+ξ {εr} (6)

where ξ is the volume fraction of variant 2, {εr} is the reorientation strain. ξ is
decided by thermodynamics. Assume that the entropy is constant during marten-
sitic variant reorientation, and the Gibbs free energy only includes the mechanical
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potential energy. Other free energy are neglected. When the direction of the mag-
netic field is perpendicular to the stress, the kinetic equation of martensitic variants
reorientation is [Zhu and Dui (2008)]

1
2
(1−2ξ ) [L0] ([S]− [I]){ε r}{ε r}+{σ} · {ε r}+µ0MsatH̄ = 2γs

/
t +hξ (7)

where γs is the surface energy density,t is the thickness of the martensite plate,
Msat is the saturation magnetization decided by experiment, h is an undetermined
constant, [S] is the Eshelby tensor, and [I] is the identity tensor of 4-order. In order
to make calculation easier, the dissipated energy in Reference [Zhu and Dui (2008)]
is simplified as linear, which used in many literatures on shape mempry alloy [Kieer
and Lagoudas (2005)].

The incremental form of Eq.(6) is

{∆ε}= [L0]
−1 {∆σ}+{εr}∆ξ (8)

From Eq. (7)

∆ξ =
∂ξ

∂ σ̄
∆σ̄ +

∂ξ

∂ H̄
∆H̄ (9)

where ∆σ̄ and ∆H̄ denote the incremental stress and the magnetic field intensity
respectively.

∂ξ

∂ σ̄
= εr/

h+[L0] ([S]− [I]){εr}{εr} (10)

∂ξ

∂ H̄
= µ0Msat/

h+[L0] ([S]− [I]){εr}{εr} (11)

The incremental constitutive model for single crystalline Ni2MnGa derived from
Eq. (8) and Eq. (9) is

{∆σ}i+1 = [L]−1
i {∆ε}i+1− [C]i {∆H}i+1 (12)

where

[L] = [L0]
−1 +[εr]

∂ξ

∂ σ̄
, [C] = [L]−1[εr]

∂ξ

∂ H̄
, {∆H}i+1 = [P0]{∆B}i+1 (13)

where µ0 is the permeability of free space, and [P0] is given in the Appendix.

In FEA, a displacement interpolation for a K-node element is

{u}= [N]{ue} (14)
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where {u} is the displacement vector of a point, {ue} is the nodal displacement
vector of the element, and [N] is the shape function matrix (see the Appendix).A
strain interpolation for a K-node element is

{ε}= [Z]u {ue} (15)

where {ε} is the strain vector of a point, [Z]u is the strain matrix (see the Appendix).

Similarly, interpolations of {A} and {B} are

{A}= [N]{Ae}
{B}= [Z]A {Ae}

(16)

where [Z]A is in the Appendix.

Substituting Eqs. (8)∼ (16) into Eq. (5), results in the FEA formula in incremental
format∫ ( {δue}T

i+1 [Kuu]i {∆ue}i+1−{δue}T
i+1 [KuA]i {∆Ae}i+1

+{δAe}T
i+1 [KAu]i {∆ue}i+1 +{δAe}T

i+1 [KAA]i {∆Ae}i+1

)
dt

=
∫
{δue}T

i+1 {∆Fe}i+1 dt +{δAe}T
i+1

∫
[N]T {∆J}i+1 dt

(17)

where

[Kuu]i =

{ ∫
[Z]Tu [L0] [Z]u dv (linear)∫
[Z]Tu [L]

−1 [Z]u dv (nonlinear)
(18)

[KuA]i =

{
0 (linear)∫
[Z]Tu [C] [P]0 [Z]A dv (nonlinear)

(19)

[KAu]i =

{
0 (linear)
0 (nonlinear)

(20)

[KAA]i =

{ ∫
[Z]TA [P]0 [Z]A dv (linear)∫
[Z]TA [P]0 [Z]A dv (nonlinear)

(21)

Rearrange Eq. (17) into(
[Kuu] [KuA]
0 [KAA]

)
i

(
∆ue

∆Ae

)
i+1

=

(
{∆Fe}
{∆Ie}

)
i+1

(22)

where

Ie =
∫

[N]T {J}dv (23)
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4 Numerical calculations

As the ANSYS core program is in the Fortran language, we write a finite element
subroutine in Fortran 90 for the derived three-dimensional quasi-static isothermal
finite element formula (22), then compares the simulation results to the experimen-
tal data. The single crystalline Ni2MnGa sample adopted in this paper is 10×5
mm2. And according to the characteristics of the structure, the SOLID62 Magneto-
Structural 8-node hexahedron element is chosen.

4.1 The FEA results under constant stresses

This section adopts Ni51.3Mn24.0Ga24.0, whose material constants are in Table 1
[Kieer and Lagoudas (2005); Tickle (2000)]. In the table, Hs(1,2) (H f (1,2)) denotes
the threshold magnetic field for the start and finish reorientation from variant 1 to
variant 2, Hs(2,1) (H f (2,1)) denotes the threshold magnetic field for the start and
finish of the reverse reorientation from variant 2 to variant 1 under -1MPa, and εr

denotes the maximum reorientation strain under different stress.

Table 1: Material constants for a Ni51.3Mn24.0Ga24.0 specimen [Kieer and Lagoudas
(2005); Tickle (2000)].

Quantity Value (unit) Quantity Value (unit)
µ0 1.256 µNA−2 Hs(1,2)(-1 MPa) 232 kA/m

Msat 622 kA/m H f (1,2)(-1 MPa) 1250 kA/m
εr (-1 MPa) 0.02148 Hs(2,1)(-1 MPa) 580 kA/m
εr(-3 MPa) 0.0133 H f (2,1)(-1 MPa) 0
εr(-5 MPa) 0.0034

Fig. 2 compares results of FEA with experiment data under different constant com-
pressive stresses. The curve of -1 MPa is simulated, in order to decide material
constants, whereas curves of -3 MPa and -5 MPa are predicted. Dot curves are from
experiment [Tickle (2000)] while solid curves are from FEA. Fig. 2 shows that the
smaller the compressive stress, the greater the reorientation strain. The FEA results
match Reference [Tickle (2000)] well, and the hysteresis of macroscopic response
is well reflected.

4.2 The FEA results under constant magnetic fields

This section adopts Ni49.7Mn29.1Ga21.2, whose material constants are in Table 2
[Straka and Heczko (2003)], where σ s(1,2) (σ f (1,2)) denotes the threshold stress
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Figure 2: Comparison of finite element results and experimental data under differ-
ent constant stress.

for the start and finish of reorientation from variant 1 to variant 2, σ s(2,1) (σ f (2,1))
denotes the threshold stress for the start and finish of reverse reorientation from
variant 2 to variant 1, and εr denotes the reorientation strain under 0.6 T.

Table 2: Material constants for a Ni49.7Mn29.1Ga21.2 specimen [Straka and Heczko
(2003)].

Quantity Value (unit) Quantity Value (unit)
µ0 1.256 µNA−2 σ f (1,2)(0.6 T) 5.4 MPa

Msat 570 kA/m σ s(2,1)(0.6 T) 1.7 MPa
εr 0.0576 σ f (2,1)(0.6 T) 0 MPa

σ s(1,2)(0.6 T) 2.3 MPa

Compare the FEA results with the experimental data under different constant mag-
netic fields, as shown in Fig. 3. The curve of 0.6 T is simulated, in order to decide
material constants. Dot curves are from experiment [Straka and Heczko (2003)],
while solid curves are from FEA. Fig. 3(a) gives the stress-strain curves under
greater constant magnetic fields 0.6 T and 0.9 T, while Fig. 3(b) gives the stress-
strain curves under smaller constant magnetic fields 0 T, 0.2 T and 0.3 T. As seen
in Fig.3, the nonlinear and hysteretic strain response of FSMAs can be investigated
well for stress-induced reorientation under constant magnetic field. Fig. 3 shows
that the greater the magnetic field intensity the greater the threshold stress and the
smaller the residual strain. From Fig.3, it is evident that the FEA results is in good
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agreement with the experimental data. The results of Fig. 2 and Fig.3 show the
feasibility of the present method.

(a) For greater magnetic fields

(b) For zero and smaller magnetic fields

Figure 3: Comparison of finite element results with experiment under different
constant magnetic fields.

5 Conclusions

Based on an existing micromechanical constitutive model and Hamilton’s varia-
tional principle, we develop a three-dimensional quasi-static isothermal incremen-
tal finite element formula of FSMAs during martensitic variant reorientation. Em-
ploying the FEA software ANSYS, the programming language Fortran, and the
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derived incremental equation, we analyze the strain vs. magnetic field under differ-
ent constant compressive stresses and stress-strain curves under different constant
magnetic fields. And compares the FEA results with the experimental data. The
FEA results agree well with the experimental data. The present method can well
describe the nonlinear and hysteresis macroscopic response, which proves the fea-
sibility of the FEA programming. Furthermore, we may use the present method to
investigate the mechanical properties of FSMAs material under complex fiedls.
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Appendix

[P0] =



1
µ0

0 0 0 0 0
0 1 0 0 0 0
0 0 1

µ0
0 0 0

0 0 0 1 0 0
0 0 0 0 1

µ0
0

0 0 0 0 0 1


[N] =

 N1 N2 N3 · · · NK

N1 N2 N3 · · · NK

N1 N2 N3 · · · NK
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[Z]u =



∂N1
∂x 0 0 ∂N2

∂x 0 0 · · · ∂NK
∂x 0 0

0 ∂N1
∂y 0 0 ∂N2

∂y 0 · · · 0 ∂NK
∂y 0

0 0 ∂N1
∂ z 0 0 ∂N2

∂ z · · · 0 0 ∂NK
∂ z

0 ∂N1
∂ z

∂N1
∂y 0 ∂N2

∂ z
∂N2
∂y · · · 0 ∂NK

∂ z
∂NK
∂y

∂N1
∂ z 0 ∂N1

∂x
∂N2
∂ z 0 ∂N2

∂x · · · ∂NK
∂ z 0 ∂NK

∂x
∂N1
∂y

∂N1
∂x 0 ∂N2

∂y
∂N2
∂x 0 · · · ∂NK

∂y
∂NK
∂x 0



[Z]A =



0 0 · · · 0 − ∂N1
∂z −

∂N2
∂z · · · −

∂Nk
∂z

∂N1
∂y

∂N2
∂y · · · ∂Nk

∂y
0 0 · · · 0 0 0 · · · 0 0 0 · · · 0
∂N1
∂z

∂N2
∂z · · · ∂Nk

∂z 0 0 · · · 0 − ∂N1
∂x −

∂N2
∂x · · · −

∂Nk
∂x

0 0 · · · 0 0 0 · · · 0 0 0 · · · 0
− ∂N1

∂y −
∂N2
∂y · · · −

∂Nk
∂y

∂N1
∂x

∂N2
∂x · · · ∂Nk

∂x 0 0 · · · 0
0 0 · · · 0 0 0 · · · 0 0 0 · · · 0




