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Exact Solutions of Finite Deformation for Everted
Compressible Hyperelastic Cylindrical Tubes

W. Zhao1,2, X.G. Yuan1,2,3 and H.W. Zhang1

Abstract: The eversion problem for a class of compressible hyperelastic thin-
walled cylindrical tubes is examined. The mathematical model is formulated as a
second-order nonlinear ordinary differential equation based on the theory of non-
linear elasticity. The exact solution that describes the mechanism of the finite defor-
mation of the everted cylindrical tube is obtained. Using numerical simulations, it
is shown that the initial thickness of the tube plays a significant role in the eversion.
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1 Introduction

It is well known that rubber and rubber-like materials, the typical representations
of hyperelastic materials, are widely used in petrochemical, aerospace and many
other fields of real life. The inflation, bending, torsion and eversion of hyperelastic
solids are important research topics in nonlinear continuum mechanics, which may
be seen in Beatty (1987), Fu (2001), Attard (2003) et al. Recently, Yuan et al. (2005
2006) researched the static and dynamic problem of the cavity formation, growth
and motion in a hyperelastic sphere under a tensile load. The authors (2008) also
examined the dynamic inflation problem for a cylindrical tube composed of a class
of incompressible Ogden materials. Ren (2008) considered the instability for the
inflation and deflation of a thin-walled spherical rubber balloon.

This paper mainly focuses on the eversion problem of a special compressible hyper-
elastic cylindrical tube. Significantly, this problem can be formulated as boundary
value problem of a nonlinear differential equation. For incompressible materials,
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Rivlin (1949) and Chadwick et al (1972) originally investigated a series of incom-
pressible hyperelastic everted cylindrical tubes, and the authors mainly discussed
the existence and uniqueness of the cylindrical everted solutions. Haughton and
Orr (1995) considered the eversion of incompressible cylindrical tubes composed
of Ogden materials, the authors investigated the stability of the eversion problem
with the initial thickness ratio as a parameter. Lin (2006) used the WKB method
to analyse the buckling of an everted incompressible Varga spherical shell. Zhao
et al. (2012) examined the finite deformation problem for an everted cylindrical
tube composed of a class of neo-Hookean materials, the authors found that the ef-
fect of the initial thickness was essential. Note that the exact solutions of these
problems always can be obtained by the incompressibility constraint. However, for
compressible materials, the exact solutions do not always exist, they depend on the
forms of the strain-energy functions strictly. Carroll and Horgan (1990) obtained
an exact solution of the equilibrium equation described the eversion in the case
of Blatz-Ko materials, but neither boundary conditions nor end conditions were
considered. Then Haughton and Orr (1997) considered the eversion problems of
several isotropic compressible hyperelastic cylindrical tubes, and found that some
qualitative results were similar to those for incompressible materials. Moreover,
the authors (2003) applied the WKB method to the bifurcation analysis of everted
cylindrical and spherical shells composed of Varga materials. Erdemir and Carroll
(2007) obtained the solutions for radial inflationcompaction and radial oscillation
for the everted hollow spheres of harmonic and compressible Varga materials.

Carroll (1988) examined several deformation fields for a class of universal har-
monic materials solids, such as spherical or cylindrical expansion and compaction,
bending of a rectangular block, eversion of a spherical or cylindrical sector. The
author applied the semi-inverse method and obtained the closed form solutions for
the corresponding problems. In recent decades for this kind of materials, inter-
est was revived by Murphy (1993, 2011), Carroll (2005). In this paper, a special
case of the harmonic materials proposed by Carroll (2005) are considered. The
aim of this paper is to investigate the finite deformation for the everted cylindrical
tubes. Firstly, in the context of nonlinear elasticity, the mathematical model that
describes radially symmetric deformation of the everted cylindrical tube is formu-
lated as a second-order nonlinear ordinary differential equation. Then, the exact
solution describing the finite deformation of the tube is obtained. Finally, numeri-
cal simulations show the effects of the initial thickness and the material parameter
on the finite deformation.
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2 Formulation and Solution

Here we are concerned with the exact solution describing the finite deformation of
an everted cylindrical tube composed of a special case of the harmonic materials.

Assume that the initial and the everted tubes occupy the following regions

0 < A≤ R≤ B, 0≤Θ≤ 2π, 0≤ Z ≤ L, (1)

0 < a≤ r ≤ b, 0≤ θ ≤ 2π, −l ≤ z≤ 0, (2)

where l > 0. Interestingly, r(A) = b and r(B) = a.

Under the assumption of axially symmetric deformation, the deformed configura-
tion is given by

r = r(R), θ = Θ, z =−λZ, (3)

where λ > 0 is a constant to be determined. In this case, the principal stretches and
the principal Cauchy stresses are as follows

λ1 =−
dr
dR

, λ2 =
r
R
, λ3 = λ , (4)

Jσii = λiWi, Wi = ∂W
/

∂λi, i = 1,2,3 no sum, (5)

where W = W (λ1,λ2,λ3) is the strain-energy function associated with a certain
compressible hyperelastic material. In addition, for compressible hyperelastic ma-
terials, λ1λ2λ3 > 0, this means that r′(R) = dr

/
dR < 0.

In the absence of body force, the equilibrium equations reduce to the following
single equation

dσ11

dr
+

1
r
(σ11−σ22) = 0. (6)

In terms of Eqs. (4) and (5), Eq.(6) can be rewritten as the following second-order
nonlinear ordinary differential equation,

Rr′′W11 +(λ1 +λ2)W12−W1−W2 = 0, (7)

where r′′ = d2r
/

dR2, Wi j = ∂ 2W
/

∂λi∂λ j(i, j = 1,2, i 6= j).

It is known that the strain energy function for a hyperelastic solid may be repre-
sented as a function of the principal invariants of stretch tensor, namely

W =W (i1, i2, i3), (8)
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in which

i1 = λ1 +λ2 +λ3, i2 = λ1λ2 +λ2λ3 +λ1λ3, i3 = λ1λ2λ3. (9)

Carroll (1988) proposed three classes of strain energy functions based on the sepa-
ration form of i1, i2, i3, the form is as follows

W =W (i1, i2, i3) = f (i1)+g(i2)+h(i3), (10)

where f , g and h are twice continuously differentiable functions. For each class,
two of the functions are linear functions and the third is an arbitrary function. To
investigate the implications of Shield’s inverse deformation theorem for compress-
ible finite elasticity, Carroll (2005) introduced two new classes of strain energy
functions, including the following harmonic strain energy function

W (i1, i2, i3) = 2µ { f (i1−3)−ζ (i2−3)− (1−ζ )(i3−1)} , (11)

where µ is the shear modulus for infinitesimal deformation, ζ is a non-dimensional
parameter.

According to the linear constraint conditions for the above compressible material,
it is easy to obtain

W (3,3,1) = f (0)−ζ (3−3)− (1−ζ )(1−1) = 0,

W1(3,3,1) = 2µ
{

f ′(0)−2ζ − (1−ζ )
}
= 0,

W11(3,3,1) = 2µ f ′′(0) = µ
2(1−υ)

1−2υ
, (12)

where υ is the Poisson’s ratio for infinitesimal deformation, f ′denotes the deriva-
tive with respect to i1.

It leads

f (0) = 0, f ′(0) = 1+ζ , f ′′(0) =
1−υ

1−2υ
. (13)

In terms of Eq. (13), here we take f (i1− 3) = a1(i1− 3) + a2(i1− 3)2. So we
assume that the strain energy function has the form

W (i1, i2, i3) = 2µ
{

a1(i1−3)+a2(i1−3)2−ζ (i2−3)− (1−ζ )(i3−1)
}
, (14)

in which a1 = 1+ζ , a2 =
1−υ

1−2υ
.

Substituting Eq. (14) into the equilibrium equation (7), we obtain

r′′+
r′

R
− r

R2 =
1
R

(
a1
/

a2 +
(
2−ζ

/
a2
)

λ −6
)
. (15)
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Integrating twice produces the general solution

r(R) =
(
a1
/

a2 +
(
2−ζ

/
a2
)

λ −6
)(

lnR− 1
2

)
R
2
+

D1

2
R+

D2

R
. (16)

Since the inner and outer surfaces of the tube are traction-free, we get the following
equations by using Eq. (16)

B
2
(−ζ +(ζ −1)λ )D1 +(4a2−ζ +(ζ −1)λ )

D2

B
+

1
4
(ζ +(1−ζ )λ )G(λ )B+

1
2
(−ζ +(ζ −1)λ )G(λ )B lnB = 0,

(17)

A
2
(−ζ +(ζ −1)λ )D1 +(4a2−ζ +(ζ −1)λ )

D2

A
+

1
4
(ζ +(1−ζ )λ )G(λ )A+

1
2
(−ζ +(ζ −1)λ )G(λ )A lnA = 0.

(18)

Then we determine the integral constants D1 and D2, i.e.

D1 = G(λ )

(
1
2
+

A2 lnA−B2 lnB
B2−A2

)
, D2 =

1
2

M(λ )G(λ )
A2B2 ln(B

/
A)

B2−A2 . (19)

where

G(λ ) = a1
/

a2 +
(
2−ζ

/
a2
)

λ −6

and

M(λ ) = (−ζ +(ζ −1)λ )
/
(4a2−ζ +(ζ −1)λ ).

So the exact solution describing the finite deformation of the tube is given by

r(R) =
G(λ )

2

(
R ln(R

/
B)+R

A2 ln
(
A
/

B
)

B2−A2 −M(λ )

R
A2B2 ln

(
A
/

B
)

B2−A2

)
, (20)

where λ is to be determined.

Supposed that resultant load on the ends is zero, we have the following end condi-
tion proposed by Rivlin (1949)

N = 2π

∫ b

a
rσ33dr = 0. (21)

For convenience, we introduce the following notations

δ =
A
B
, m =

R
B
. (22)
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Applying the variable transformation, the end condition is rewritten as∫
δ

1
κσ33r′dm = 0, (23)

where

κ =
r(R)

B
=

G(λ )

2

(
m lnm+

(
m−M(λ )

m

)
δ 2 lnδ

1−δ 2

)
,

r′(R) =
G(λ )

2

(
lnm+1+

(
1+

M(λ )

m2

)
δ 2 lnδ

1−δ 2

)
,

σ33 =
1

λ1λ2
W3 = 2µ

(
(2a2(λ −3)+1+ζ )m

−r′κ
+(2a2−ζ )

(
m
κ
− 1

r′

)
−1+ζ

)
,

Using Eq. (20), we can have

a
B
=

r(B)
B

=
G(λ )

2
(1−M(λ ))

δ 2 lnδ

1−δ 2 , (24)

b
B
=

r(A)
B

=
G(λ )

2

(
δ lnδ +

(
δ −M(λ )

δ

)
δ 2 lnδ

1−δ 2

)
. (25)

Then it leads
a
b
= δ . (26)

That is to say, the thickness of the cylindrical tube is maintained after eversion.

From Eq. (23), we can get the relation between λ and δ . Substituting λ and δ into
Eq. (20), we have the relations among the axial stretch rate, the initial thickness,
and the inner (outer) radius.

Since the initial configuration of the tube is natural, the corresponding total energy
is zero. It is necessary to compare the total potential energy of the tube after ever-
sion. So we now carry out an energy analysis. For the compressible hyperelastic
material (13), the total potential energy of the everted tube is given by

E = 2πL
∫ B

A
WRdR

= 4πµLB2
∫ 1

δ

{
a1(−r′+

κ

m
+λ −3)+a2(−r′+

κ

m
+λ −3)2

+ζ (r′
κ

m
+ r′λ − κ

m
λ +3)+(1−ζ )(r′

κ

m
λ +1)

}
mdm.

(27)

From Eq. (27) combining Eq. (23), we can get the relation between E and δ .
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3 Numerical simulations

Figs.1-6 show the effects of the initial thickness δ , the material parameter ζ and
the Possion’s ratio υ on the finite deformation of the everted cylindrical tube.

Figure 1: Curves of λ vs δ for various values of ζ .

Figure 2: Curves of a/B vs δ for different values of ζ .
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Figure 3: Curves of λ vs υ for different values of ζ .

Figure 4: Curves of a/B vs υ for different values of ζ .
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Figure 5: The stress distributions for various values of υ .

Figure 6: The total potential energy for various values of δ .
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For the given value of υ , as shown in Figs.1, 2, if the material parameter ζ > 0, the
axial stretch rate λ decreases with the initial thickness δ , and λ > 1, if ζ < 0, the
axial stretch rate λ increases with the initial thickness δ , and λ < 1 if ζ = 0 the
axial stretch rate λ is maintained. The inner radius of the everted cylindrical tube
increases with the initial thickness δ . In Figs.3, 4, for the given values of δ and ζ ,
it is shown that the Possion’s ratio υ do not influence the inner radius and the axial
stretch rate essentially.

Fig.5 shows the stress distributions. It is easy to see that σ11 ≤ 0 throughout the ev-
erted tube and is zero at the surfaces of the tube which coincides with the boundary
conditions. σ22 and σ33 decrease with the increasing initial thickness δ . The be-
haviors of the stresses are similar to those for the compressible materials obtained
by Haughton and Orr (1997). Fig.6 shows the total potential energy corresponding
to deformed equilibrium configuration of the tube. It can be seen that the eversion
is an absorbing energy process, and the total energy decreases with the increasing
initial thickness δ . Moreover, by the numerical results in Figs. 5, 6, it is also shown
that the influences of the Possion’s ratio υ on the everted stresses are significant,
however, the influences of the material parameter ζ on the everted stresses and the
total potential energy are not obvious.

4 Conclusions

In this work, the finite deformation of an everted thin-walled cylindrical tube com-
posed of a class of compressible hyperelastic materials is examined. The results
reveal that

1. The thickness of the cylindrical tube is maintained after eversion.

2. The influence of the material parameter ζ on the axial stretch is obvious,
i.e. if ζ > 0, the thinner the initial cylindrical tube is, the smaller the axial
expansion is. If ζ < 0, the thinner the initial cylindrical tube is, the smaller
the axial compaction is. If ζ = 0, the axial stretch is sustained.

3. The influence of the Possion’s ratio υ on the everted thickness is not obvious,
however, on the stress distributions is significant.

4. The initial inner portion of the tube is subjected to an axial tension and the
initial outer portion to an axial compression.

5. The thicker the initial cylindrical tube is, the more the total absorbing energy
is.
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In particular, the results by numerical simulations are qualitatively similar to those
for incompressible materials.
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