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Statistical Second-order Two-scale Method for
Nonstationary Coupled Conduction-Radiation Heat

Transfer Problem of Random Porous Materials

Zhiqiang Yang1, Yufeng Nie2, Yatao Wu2, Zihao Yang2 and Yi Sun1

Abstract: This paper develops a novel statistical second-order two-scale (SSOTS)
method to predict the heat transfer performances of three-dimensional (3D) porous
materials with random distribution. Firstly, the mesoscopic configuration for the
structure with random distribution is briefly characterized Secondly, the SSOTS
formulas for calculating effective thermal conductivity parameters, temperature
field and heat flux densities are derived by means of construction way. Then, the
algorithm procedure based on the SSOTS method is described in details. Finally,
numerical results for porous materials with varying probability distribution models
are calculated by SSOTS algorithm, and compared with the data by finite element
method (FEM) in a very fine mesh and theoretical methods. They show that the
SSOTS method is not only valid, but also accurate to predict the coupled heat
transfer performances of random porous materials and demonstrate its potential
applications in thermal engineering.

Keywords: SSOTS method, Coupled conduction-radiation heat transfer, Heat
flux densities, Random porous materials.

1 Introduction

Porous materials are widely used in high technology engineering as well as or-
dinary industrial products owing to their high temperature resistance, high radia-
tion attenuation coefficient and light weight. Especially, with rapid development
of space aircraft, porous materials have attracted tremendous attention and wide
research interests in thermal engineering. Therefore, the accurate determination of
thermal properties of porous materials has been an important issue. Some scientists
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and engineers investigated the physical properties of porous materials by physical
tests, various empirical and semi-empirical numerical methods [Zhou, Qi and Shao
(2006); Glicksman, Schuetz and Sinofsky (1987); Liang and Qu (1999); Contento,
Oliviero, Bianco and Naso (2014)]. Later, Dong et al. proposed a novel method
" Computational Grains ", which enables a direct numerical simulation of a large
number of heterogeneous materials [Dong, Gamal and Atluri (2013); Dong and
Atluri (2012a); Dong and Atluri (2012b)]. The literatures mentioned above have
just predicted effective macroscopic properties of thermal conduction and thermal
radiation, respectively, and can not be employed to calculate the temperature and
heat flux fields at mesoscopic level. Meanwhile, other researchers were interested
in the modeling of the heat transfer at high temperatures, taking into account both
conductive and radiative contributions [Zhao, Lu and Hodson (2004); Zhao, Tassou
and Lu (2008); Loretz, Coquard, Baillis and Maire (2008); Coquard, Rochais and
Baillis (2009); Coquard, Rochais and Baillis (2012)]. It can be seen that the liter-
ature on experimental and theoretical models of radiation or conduction in porous
materials are abundant, but the number of numerical studies remain relatively lim-
ited. Moreover, these experimental investigations generally concern the radiation
or the conduction alone, requiring expensive equipments, especially for measure-
ments at high temperatures [Coquard, Rochais and Baillis (2009)]. Actually, in
many practical thermal engineering problems, coupled conduction and radiation
problem should be considered in order to give more accurate results. Moreover,
the random porous materials have better physical properties and agree with the real
working environment of materials more. Thus it is significant and meaningful to
study the coupled conduction-radiation heat transfer problem of porous materials
with random distribution.

The ways of heat transfer in porous materials contains conduction, convection and
radiation. Convection occurs by flow, and can be neglected at low pressures or in
closed-cell porous materials [Liu and Zhang (2006); Daryabeigi (1999)]. Radiation
is a way of heat transmission and sometimes plays an important role in heat transfer
at high temperature. Considering the surface radiation of porous materials, some
interesting works were reported in recent years. Liu and Zhang (2006) predicted the
effective macroscopic properties of heat conduction-radiation problem. Bakhvalov
(1981) obtained the formal expansions for the solution of those problems, but had
no theoretical justification. On this basis, Allaire and El Ganaoui (2009) studied
a linear heat conduction equation with ε−1-order radiation boundary conditions by
two-scale asymptotic expansion. Yang [Yang, Cui, Nie and Ma (2012); Yang, Cui
and Li (2013)] proposed a second-order two-scale method to solve the coupled
conduction and radiation equation with a classical radiation model in physics. In
addition, for the optically thick materials at high temperature with high porosity,
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scientists considered the radiation problem approximated by Rosseland equation
in the fields of experimental and theoretical studies [Coquard, Rochais and Baillis
(2009); Daryabeigi (1999); Doermann and Sacadura (1996); Yan (2006)]. Experi-
mental studies and theoretical prediction models can be just applied to the predict-
ing of the macroscopic effective properties of porous materials, and no model has
taken into account random porous materials with all random parameters together,
including the shape, orientation, spatial location, volume fraction and so on. So
this paper will lay a strong emphasis on the investigation of the Rosseland problem
for the porous materials with random distribution.

Based on the asymptotic expansion homogenization approach [Bensoussan, Lions
and Papanicolaou (1978); Oleinik, Shamaev and Yosifian (1992)], Cui proposed a
multi-scale analysis method for different types of composites [Yang, Cui, Nie and
Ma (2012); Yang, Cui and Li (2013); Cui, Shin and Wang (1999); He and Cui
(2006); Li and Cui (2005); Yu, Cui and Han (2008); Yang, Cui, Nie, Wu, Yang
and Wu (2013); Yu, Cui and Han (2009)]. They established a second-order two-
scale analysis method to predict physical and mechanical properties of composites
with periodic configuration [Yang, Cui, Nie and Ma (2012); Cui, Shin and Wang
(1999); He and Cui (2006)]. Meanwhile, for the physics field problems of random
composites, Jikov, Kozlov and Oleinik (1994) proved the existences of the homog-
enized coefficients and the homogenized solution. On the basis of the Monte Carlo
method, Cui [Yang, Cui and Li (2013); Li and Cui (2005); Yu, Cui and Han (2008);
Yang, Cui, Nie, Wu, Yang and Wu (2013); Yu, Cui and Han (2009)] established a
statistical second-order two-scale analysis method by introducing a random sam-
ple model to predict physical and mechanical properties of the composite structure
with random distribution. This method is able not only to show the macro charac-
teristic of composite material with random configurations, but also greatly decrease
the computation time required for numerical simulations.

However, the previous second-order two-scale asymptotic expansion cannot be em-
ployed to the coupled conduction-radiation heat transfer problem because of the
nonlinearity of the coupled problem. In this paper, we introduce higher-order cor-
rection terms into the asymptotic expansion of the temperature field, and derive a
family of cell problems. A new SSOTS method is developed by a constructive way
to predict heat transfer properties, and calculate temperature and heat flux fields at
mesoscopic level of random porous materials.

The remainder of this paper is outlined as follows. In the following section, the
mesoscopic configurations for porous materials with random distribution are rep-
resented. Section 3 is devoted to the formulations of the SSOTS method and the
algorithm procedure for the maximum heat flux density. Finally, numerical re-
sults for the performance analysis of coupled conduction-radiation heat transfer are
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shown, which strongly support our method.

Throughout the paper the Einstein summation convention on repeated indices is
adopted.

2 Representation of porous materials with random distribution

Referring to Ref. [Li and Cui (2005); Yu, Cui and Han (2008)], we suppose that
all the pores in the geometry are considered as ellipsoids, which are randomly dis-
tributed in the matrix. In this paper, all of the ellipsoid pores are also considered as
“same scale”, which means all of their long axes satisfy r1 < a < r2, where r1 and
r2 are given upper and lower bounds. Then, the microstructures of random porous
materials are represented as follows:

1) In the investigated structure Ωε , there exists a constant ε satisfying 0 < ε << L,
where L denotes the macro scale of Ωε . Thus, Ωε is composed of all the cells of
size ε , as shown in Figure 1(a).

2) Each ellipsoid in the three-dimensional space is denoted by nine random pa-
rameters, describing the shape, size, orientation and spatial distribution of ellipsoid
pores: a1,a2,a3,β1,β2,β3,x01,x02,x03, where a1, a2 and a3 denote length of three
axes; β1, β2 and β3 three Euler angles of the rotations; x01, x02 and x03 the coordi-
nates of the center. Let the random vector ξ = (a1,a2,a3,β1,β2,β3,x01,x02,x03), it
includes all the information of an ellipsoid.

3) Based on the above random parameters defining the ellipsoid in a cell εY s, let

K denote the maximum number of ellipsoids located inside the cell, Y srepresents
a normalized cell, and its random sample is defined as ωs, where s = 1,2,3... de-
note the index of samples. Then we can define a sample ωs of ellipsoidal pores
distribution in a normalized statistic screen as follows:

ω
s = (ξ s

1 ,ξ
s
2 ,ξ

s
3 · · · ,ξ s

K−1,ξ
s
K),

for sample ωs shown in Figure 1(b). Therefore, the investigated structure Ωε is
logically composed of ε-size cells subjected to identical probability distribution
model P, part of which is shown in Figure 1(a).

In this work, the following material parameters of porous materials with random
distribution can be considered

{
Bε

i j(x,ω
s)
}
=


B1

i j, i f x ∈ εY s−
K⋃

i=1
ei,

B2
i j, i f x ∈

K⋃
i=1

ei,
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where ei denotes the ith ellipsoid inside εY s, and B1
i j and B2

i j are material coef-

ficients of matrix and pores, respectively, and satisfy that max
{∣∣∣B1

i j

∣∣∣ , ∣∣∣B2
i j

∣∣∣} <

M̃, where M̃ is positive constant.

3 Statistical second-order two-scale method

3.1 Statistical second-order two-scale formulation

In this section, a novel SSOTS formulation is derived by using a constructive way
for calculating the thermal properties of the heat transfer problem, including effec-
tive thermal conductivity parameters, temperature field and heat flux densities.

When the optical thickness of porous materials is sufficiently large, the local ra-
diation heat transfer is mainly controlled by the gradient of the fourth power of
the temperature. Under such conditions, one can define a radiation-based thermal
conductivity bε

i j(x,ω) by the Rosseland equation [Daryabeigi (1999); Doermann
and Sacadura (1996); Yan (2006); Modest (2003); Zhang and Cui (2012); Zhang
(2012); Yang, Cui and Zhang (2013)]. Then, we consider the coupled conduction-
radiation heat transfer problem for a given structure as follows:

ρε(x,ω)cε(x,ω) ∂Tε (x,ω,t)
∂ t − ∂

∂xi
(kε

i j(x,ω) ∂Tε (x,ω,t)
∂x j

+bε
i j(x,ω) ∂ (Tε (x,ω,t))4

∂x j
) = f (x, t), (x, t) ∈Ωε × (0,t∗),

Tε(x,ω, t) = T̄ (x, t), (x, t) ∈ ∂Ω× (0,t∗),
Tε(x,ω,0) = Tin(x), x ∈Ωε ,

(1)

where Tε(x,ω, t) denotes the temperature, kε
i j(x,ω) and bε

i j(x,ω) are the coeffi-
cients of the thermal conductivity and thermal radiation, respectively. ρε(x,ω)
and cε(x,ω) denote, respectively, the densities and the specific heat of porous
materials, and ε > 0 is a small parameter which represents the relative size of a
cell. T̄ (x, t) is the temperature on the boundary ∂Ω, and f (x, t) is the internal heat
source. ω = {ωs ,x ∈ εY s ⊂Ωε}.
In order to avoid the arguments on the mathematical properties of investigated func-
tions below, we suppose that:

(i) If {k (ω)} is a bounded random variable, then there exists an expectation value.

(ii) Assume that the coefficients of
{
ρ( x

ε
,ω)
}
,
{
c( x

ε
,ω)
}
,
{
ki j
( x

ε
,ω
)}

and {bi j
( x

ε
,ω
)
}

are bounded and symmetric.

(iii) Bi j
( x

ε
,ω
)
∈ C1(Ω), if Bi j

( x
ε
,ω
)
∈ L2(Ω), one can construct a smooth oper-

ator δ :Bi j
( x

ε
,ω
)
→ δBi j

( x
ε
,ω
)
∈C1(Ω)satisfying

∥∥δBi j (•,ω)−Bi j (•,ω)
∥∥→ 0

as δ → 0.
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(a)                                   (b) 

      (a) The whole structure              (b) Unit cell sY  

 Figure 1: Porous materials with random distribution of pores[Li and Cui (2005)].

By supposition (ii) and (iii), for any fixed given sample ω , Zhang [Zhang and Cui
(2012); Zhang (2012)] proved the existence and uniqueness of Eq.(1).

It is well known that the temperature increments of porous material with random
distribution depend not only on its global behaviors, but also on random mesoscopic
configurations. It hence can be expressed as Tε(x,ω, t) = T (x,y,ω, t), where y = x

ε
,

x denotes the macroscopic coordinate and y is the local one. And then material pa-
rameters can be expressed as ρε(x,ω) = ρ(y,ω), cε(x,ω) = c(y,ω), kε

i j(x,ω) =
ki j(y,ω) and bε

i j(x,ω) = bi j(y,ω).

In order to obtain the two-scale expression of the temperature field, it is assumed
that Tε(x,ω, t) can be expanded into the series of the following form:

Tε(x,ω, t) = T0(x, t)+ εNα1(x,y,ω
s)

∂T0(x, t)
∂xα1

+ ε
2(Mα1α2(x,y,ω

s)
∂ 2T0(x, t)
∂xα1∂xα2

+Nα1α2(x,y,ω
s)

∂ 2T 4
0 (x, t)

∂xα1∂xα2

+Rα1(x,y,ω
s)(

∂T0(x, t)
∂xα1

)2

+Cα1(x,y,ω
s)

∂T0(x, t)
∂xα1

+θ(x,y,ωs)
∂T0(x, t)

∂ t
)+ ε

3P1(x,y,ω, t), x ∈ εY s ⊂Ω
ε ,

(2)

where T0(x, t) only reflects the macroscopic behaviors of the structure, and is called
the homogenization solution. P1(x,y,ω, t) is the asymptotic expansion function de-
pending the two-scale variables x and y. Nα1(x,y,ω

s), Mα1α2(x,y,ω
s), Nα1α2(x,y,ω

s),
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Rα1(x,y,ω
s), Cα1(x,y,ω

s) and θ(x,y,ωs) are the local solutions, respectively. They
will be determined below. For simplicity, let T0 = T0(x, t) and f = f (x, t).

It is worth noting that the expansion (2) is different from the traditional form given
by [Li and Cui (2005)], the differences are that the correction terms Nα1α2(x,y,ω

s),
Rα1(x,y,ω

s) and Cα1(x,y,ω
s) are constructed into the asymptotic expansion and all

of the correction terms depend on the macroscopic variable x owing to the thermal
radiation.

Taking into account

∂

∂x
→ ∂

∂x
+

1
ε

∂

∂y
, (3)

and substituting (2) into (1) yield the equalities

ρ(y,ωs)c(y,ωs)
∂Tε(x,ωs, t)

∂ t
− ∂

∂xi
(ki j(y,ωs)

∂Tε(x,ωs, t)
∂x j

+bi j(y,ωs)
∂ (Tε(x,ωs, t))4

∂x j
)

=−ε
−1 ∂

∂yi

(
(ki j(y,ωs)+4T 3

0 bi j(y,ωs))

(
∂T0

∂x j
+

∂Nα1(x,y,ω
s)

∂y j

∂T0

∂xα1

))
− ε

0
(

∂

∂xi
((ki j(y,ωs)+4T 3

0 bi j(y,ωs))(
∂T0

∂x j
+

∂Nα1(x,y,ω
s)

∂y j

∂T0

∂xα1

))

+
∂

∂yi

(
ki j(y,ωs)

∂Nα1(x,y,ω
s)

∂x j

)
∂T0

∂xα1

+
∂

∂yi

(
(6T 2

0 bi j(y,ωs))
∂ (Nα1(x,y,ω

s))2

∂y j

)
(

∂T0

∂xα1

)2

+
∂

∂yi

(
bi j(y,ωs)

∂Nα1(x,y,ω
s)

∂x j

)
∂T 4

0
∂xα1

+
∂

∂yi
(bi j(y,ωs)Nα1(x,y,ω

s))
∂ 2T 4

0
∂x j∂xα1

+
∂

∂yi
(ki j(y,ωs)Nα1(x,y,ω

s))
∂ 2T0

∂x j∂xα1

+
∂

∂yi

(
(ki j(y,ωs)+4T 3

0 bi j(y,ωs))
∂Mα1α2(x,y,ω

s)

∂y j

)
∂ 2T0

∂xα1∂xα2

+
∂

∂yi

(
(ki j(y,ωs)+4T 3

0 bi j(y,ωs))
∂Nα1α2(x,y,ω

s)

∂y j

)
∂ 2T 4

0
∂xα1∂xα2

+
∂

∂yi

(
(ki j(y,ωs)+4T 3

0 bi j(y,ωs))
∂Cα1(x,y,ω

s)

∂y j

)
∂T0

∂xα1

+
∂

∂yi

(
(ki j(y,ωs)+4T 3

0 bi j(y,ωs))
∂θ(x,y,ωs)

∂y j

)
∂T0

∂ t

+
∂

∂yi

(
(ki j(y,ωs)+4T 3

0 bi j(y,ωs))
∂Rα1(x,y,ω

s)

∂y j

)
(

∂T0

∂xα1

)2

−ρ(y,ωs)c(y,ωs)
∂T0

∂ t

)
+O(ε) = f .
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(4)

Supposing that the equality (4) holds for any ε > 0, then from the coefficients of
ε−1 in both sides of equality (4), the following equality is obtained:

∂

∂yi
((kiα1(y,ω

s)+4T 3
0 biα1(y,ω

s))

+(ki j(y,ωs)+4T 3
0 bi j(y,ωs))

∂Nα1(x,y,ω
s)

∂y j
)

∂T0

∂xα1

= 0.
(5)

Since ∂T0
∂xα1

arises from the macroscopic behavior of the structure, it is not identical
to zero, (5) can be rewritten as

∂

∂yi

(
(ki j(y,ωs)+4T 3

0 bi j(y,ωs))
∂Nα1(x,y,ω

s)

∂y j

)
=− ∂

∂yi
(kiα1(y,ω

s)+4T 3
0 biα1(y,ω

s)) in Y s .

(6)

To attach the following boundary condition on ∂Y s

Nα1(x,y,ω
s) = 0 on ∂Y s . (7)

For any sample ωs (s = 1,2,3, ...), we obtain the auxiliary function Nα1(x,y,ω
s).

Nα1(x,y,ω
s) is the solution of the following elliptic partial differential equation

∂

∂yi

(
(ki j(y,ωs)+4T 3

0 bi j(y,ωs))
∂Nα1 (x,y,ω

s)

∂y j

)
=− ∂

∂yi
(kiα1(y,ω

s)+4T 3
0 biα1(y,ω

s)), y ∈ Y s,

Nα1(x,y,ω
s) = 0, y ∈ ∂Y s.

(8)

It is proved that problems Eq.(8) have a unique solution for any specified sample.

Referring to [Li and Cui (2005); Yu, Cui, Han and Chen (2008); Yu, Cui and
Han (2009)], for any sample ωs (s = 1,2,3, ...), the homogeneous parameters are
defined as

k̂i j(x,ωs) =
1
|Y |

∫
Y
(kip(y,ωs)

∂N j(x,y,ωs)

∂yp
+ ki j(y,ωs))dy,

b̂i j(x,ωs) =
1
|Y |

∫
Y
(bip(y,ωs)

∂N j(x,y,ωs)

∂yp
+bi j(y,ωs))dy,

(ρc)∗(ωs) =
1
|Y |

∫
Y

ρ(y,ωs)c(y,ωs)dy,

(9)

where |Y | denotes the Lebesgue measure of Y .
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From the finiteness of ki j(y,ωs), bi j(y,ωs), ρ(y,ωs), c(y,ωs) and Lemma 3.2 in [Li
and Cui (2005)], it follows that k̂i j(x,ωs), b̂i j(x,ωs) and (ρc)∗(ωs) are bounded
random functions and exist uniquely. Then applying Kolmogorov’s strong law of
large numbers, the expected homogenization coefficients can be calculated by

k̄i j(x) = lim
M→∞

∑
M
s=1 k̂i j(x,ωs)

M
,

b̄i j(x) = lim
M→∞

∑
M
s=1 b̂i j(x,ωs)

M
,

(ρc)∗ = lim
M→∞

∑
M
s=1 (ρc)∗(ωs)

M
,

(10)

where M is the maximum number of samples.

After the expected homogenized coefficients are obtained in the structure Ω, the
homogenized equation associated with Eq. (1) is defined as follows


(ρc)∗ ∂T0(x,t)

∂ t − ∂

∂xi
(k̄i j(x)

∂T0(x,t)
∂x j

)

− ∂

∂xi
(b̄i j(x)

∂T0(x,t)4

∂x j
) = f (x, t), (x, t) ∈Ω× (0,t∗),

T0(x, t) = T̄ (x, t), (x, t) ∈ ∂Ω× (0,t∗),
T0(x,0) = Tin(x), x ∈Ω.

(11)

Similar to [Oleinik, Shamaev and Yosifian (1992)] and [Li and Cui (2005)], it is
proved that k̄i j(x) and b̄i j(x) are symmetrical and positive define. Thus the homog-
enization problem (11) has the unique solution, see [Zhang and Cui (2012); Zhang
(2012)].

Comparing the coefficient of ε0 on both sides of Eq.(4), since ∂ 2T0
∂xα1 ∂xα2

, ∂ 2T 4
0

∂xα1 ∂xα2

and ∂T0
∂xα1

are not identical to zero, by the constructing way analogous to determin-
ing Nα1(x,y,ω

s), we can obtain auxiliary functions Mα1α2(x,y,ω
s), Nα1α2(x,y,ω

s),
Rα1(x,y,ω

s), Cα1(x,y,ω
s) and θ(x,y,ωs), respectively.

Mα1α2(x,y,ω
s) is the solution of the following problem:


∂

∂yi

(
(ki j(y,ωs)+4T 3

0 bi j(y,ωs)
∂Mα1α2 (x,y,ω

s)

∂y j
)
)

= k̄α1α2(x)− kα1α2(y,ω
s)− kα2 j(y,ωs)

∂Nα1 (x,y,ω
s)

∂y j

− ∂

∂yi
(kiα2(y,ω

s)Nα1(x,y,ω
s)), y ∈ Y s,

Mα1α2(x,y,ω
s) = 0, y ∈ ∂Y s.

(12)
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Nα1α2(x,y,ω
s) is the solution of the following problem:

∂

∂yi

(
(ki j(y,ωs)+4T 3

0 bi j(y,ωs))
∂Nα1α2 (x,y,ω

s)

∂y j

)
= b̄α1α2(x)−bα1α2(y,ω

s)−bα2 j(y,ωs)
∂Nα1 (x,y,ω

s)

∂y j

− ∂

∂yi
(biα2(y,ω

s)Nα1(x,y,ω
s)), y ∈ Y s,

Nα1α2(x,y,ω
s) = 0, y ∈ ∂Y s.

(13)

Rα1(x,y,ω
s) is the solution of the following problem:

∂

∂yi

(
(ki j(y,ωs)+4T 3

0 bi j(y,ωs))
∂Rα1 (x,y,ω

s)

∂y j

)
=− ∂

∂yi
(6T 2

0 bi j(y,ωs)
∂ (Nα1 (x,y,ω

s))2

∂y j
), y ∈ Y s,

Rα1(x,y,ω
s) = 0, y ∈ ∂Y s.

(14)

Cα1(x,y,ω
s) is the solution of the following problem:

∂

∂yi

(
(ki j(y,ωs)+4T 3

0 bi j(y,ωs))
∂Cα1 (x,y,ω

s)

∂y j

)
=

∂ k̄iα1 (x)
∂xi

− ∂

∂xi
(ki j(y,ωs)

∂Nα1 (x,y,ω
s)

∂y j
)− ∂

∂yi
(ki j(y,ωs)

∂Nα1 (x,y,ω
s)

∂x j
)

+4T 3
0 (

∂ b̄iα1 (x)
∂xi

− ∂

∂xi
(bi j(y,ωs)

∂Nα1 (x,y,ω
s)

∂y j
)

− ∂

∂yi
(bi j(y,ωs)

∂Nα1 (x,y,ω
s)

∂x j
)), y ∈ Y s,

Cα1(x,y,ω
s) = 0, y ∈ ∂Y s.

(15)

θ(x,y,ωs) is the solution of the following problem
∂

∂yi

(
(ki j(y,ωs)+4T 3

0 bi j(y,ωs) ∂θ(x,y,ωs)
∂y j

)
= ρ(y,ωs)c(y,ωs)− (ρc)∗, y ∈ Y s,
θ(x,y,ωs) = 0, y ∈ ∂Y s.

(16)

For any fixed given sample ωs (s= 1,2,3, ...), by Lax-Milgram theorem, Poincare’s
inequality and supposition (ii), (12)-(16) are determined uniquely.

To sum up, one acquires the following theorem:

Theorem The coupled conduction-radiation heat transfer problem (1) for porous
materials with random distribution formally has a SSOTS asymptotic expansion
given by

Tε(x,ωs, t) = T0 + εNα1(x,y,ω
s)

∂T0

∂xα1

+ ε
2
(

Mα1α2(x,y,ω
s)

∂ 2T0

∂xα1∂xα2

+Nα1α2(x,y,ω
s)

∂ 2T 4
0

∂xα1∂xα2

+Rα1(x,y,ω
s)(

∂T0

∂xα1

)2

+Cα1(x,y,ω
s)

∂T0

∂xα1

+ θ(x,y,ωs)
∂T0

∂ t

)
+ ε

3P1(x,y,ωs, t),

(17)
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where T0 is the solution of the homogenized Eq. (11) with the parameters (10).
P1(x,y,ωs, t) is the asymptotic expansion function depending the two-scale vari-
ables x and y. Nα1(x,y,ω

s), Mα1α2(x,y,ω
s), Nα1α2(x,y,ω

s), Rα1(x,y,ω
s), Cα1(x,y,ω

s)
and θ(x,y,ωs) are the local solutions satisfying (8), (12), (13), (14), (15) and (16),
respectively.

In practical computation of engineering only the sum of fore three terms in (17) are
evaluated. Furthermore, the expansion formulation of the temperature gradients
and heat flux densities are approximately given as follows

∂Tε(x,ωs, t)
∂xi

=
∂T0

∂xi
+

∂Nα1(x,y,ω
s)

∂yi

∂T0

∂xα1

+ εNα1(x,y,ω
s)

∂ 2T0

∂xα1∂xi

+ ε
∂Nα1(x,y,ω

s)

∂xi

∂T0

∂xα1

+ ε
∂Mα1α2(x,y,ω

s)

∂yi

∂ 2T0

∂xα1∂xα2

+ ε
2Mα1α2(x,y,ω

s)
∂ 3T0

∂xα1∂xα2∂xi
+ ε

2 ∂Mα1α2(x,y,ω
s)

∂xi

∂ 2T0

∂xα1∂xα2

+ ε
∂Nα1α2(x,y,ω

s)

∂yi

∂ 2T 4
0

∂xα1∂xα2

+ ε
2Nα1α2(x,y,ω

s)
∂ 3T 4

0
∂xα1∂xα2∂xi

+ ε
2 ∂Nα1α2(x,y,ω

s)

∂xi

∂ 2T 4
0

∂xα1∂xα2

+ ε
∂Rα1(x,y,ω

s)

∂yi
(

∂T0

∂xα1

)2

+ ε
2Rα1(x,y,ω

s)
∂

∂xi
(

∂T0

∂xα1

)2 + ε
2 ∂Rα1(x,y,ω

s)

∂xi
(

∂T0

∂xα1

)2

+ ε
∂Cα1(x,y,ω

s)

∂yi

∂T0

∂xα1

+ ε
2Cα1(x,y,ω

s)
∂ 2T0

∂xα1∂xi
+ ε

2 ∂Cα1(x,y,ω
s)

∂xi

∂T0

∂xα1

+ ε
∂θ(x,y,ωs)

∂yi

∂T0

∂ t
+ ε

2
θ(x,y,ωs)

∂ 2T0

∂ t∂xi
+ ε

2 ∂θ(x,y,ωs)

∂xi

∂T0

∂ t
,

(18)

qi(x,ωs, t) =−kε
i j(x,ω

s)
∂Tε(x,ωs, t)

∂x j
. (19)

3.2 Algorithm procedure

1. Generate a sample ωs for a unit cell Y s according to the probability distri-
bution models P and the volume fraction. Further, partition Y s into finite
element (FE) mesh.

2. Choose different points xi (i = 1,2, · · ·, L̄) ⊂ Ωε and solve Nα1(x
i,y,ωs) ac-

cording to the problem (8) by FE method for a range of macroscopic tem-
perature [Ta, Tb]. And then homogenization coefficients

{
k̂i j(xi,ωs)

}
and{

b̂i j(xi,ωs)
}

are evaluated by using the formula (9).
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3. Repeat the step 1) and 2) for M samples ωs ∈P (s= 1, · · ·,M), and M homog-
enized coefficients are obtained, respectively. The expected thermal conduc-
tion

{
k̂i j(xi)

}
and the thermal radiation

{
b̂i j(xi)

}
(i = 1,2, · · ·, L̄) parameters

are given by the formula (10).

4. According to
{

k̂i j(xi)
}

,
{

b̂i j(xi)
}
(i = 1,2, · · ·, L̄) obtained from 3), thermal

conduction and thermal radiation parameters can be calculated by interpo-
lation technique on the entire temperature range. Then, the nonlinear ho-
mogenization solution T0(x, t) is obtained by solving problem (11) in Ω, and
the standard Backward Euler full discrete format (see [Su, Xu, Dong and Li
(2011)] ) is employed to solve the nonstationary homogenized problem.

5. With the same meshes to 2), we evaluate Mα1α2(x,y,ω
s), Nα1α2(x,y,ω

s),
Rα1(x,y,ω

s), Cα1(x,y,ω
s) and θ(x,y,ωs) corresponding to a sample ωs ∈ P

by solving the cell problems (12), (13), (14), (15) and (16), respectively.

6. From (18) and (19), the temperature and heat flux densities distributions cor-
responding to the sample ωs ∈ P are evaluated.

7. Suppose the value of the heat flux densities at x ∈ cs is q(x,ωs, t). One
obtains the following maximum heat flux density for a cell cs corresponding
to the sample ωs ∈ P

qextr(ω
s, t) = max

x∈cs
q(x,ωs, t). (20)

8. Repeating the steps 6) and 7) for M samples ωs ∈ P (s = 1, · · ·,M), one ob-
tains M the maximum heat flux density qextr(ω

s, t). By analogizing the ex-
pected homogenization parameters, the expected maximum heat flux density
is given by

q̄extr(t) =

M
∑

s=1
qextr(ω

s, t)

M
. (21)

4 Numerical experiments and results

In order to verify that the presented algorithm is feasible and effective to predict the
thermal properties of the porous materials, we have developed computer programs
and performed some numerical experiments.
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4.1 Algorithm validation

Consider the mixed boundary value problem (1) and study the validity of the SSOTS
method, a macrostructure Ωε , which is the union of entire periodic cells as illus-
trated in Figure 2(a), is chosen, and the unit cell Y =[0,1] is as shown in Figure 2(b).
The boundary temperatures in the z-direction are set as T̄1 and T̄2, and the time step
is taken as ∆t=0.02.

     

                   (a)                           (b) 

 Figure 2: (a) Domain Ωε = [0,0.25]3 (b) Unit cell Y = [0,1]3.

Since it is difficult to find the analytical solution of (1), we have to replace Tε(x,ωs, t)
with its FE solution T−FE in a very refined mesh, and implement the tetrahedron
partition for Ωε . The number of elements and nodes used in the numerical simula-
tions are listed in Table 1.

Table 1: Comparison of computational cost.

Elements
Original equation Unit cell Homogenized equation

1568790 5078 93750
Nodes 276069 1403 17576

The following two cases are investigated:

Case1: ρ = 1kg/m3, c = 1J/kgK, ki j0 = 100W/mKδi j, ki j1 = 0.05W/mKδi j, b̄i j =
1.356e−11W/mKδi j, T̄1 = 100K, T̄2 = 500K, f = 1×106MWm−3,

Case2: ρ = 1kg/m3, c = 1J/kgK, ki j0 = 1W/mKδi j, ki j1 = 0.05W/mKδi j, b̄i j =
1.356e−11W/mKδi j, T̄1 = 100K, T̄2 = 500K, f = 1×105MWm−3,
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where δi j is the Kronecker symbol, ki j1 denotes the coefficients inside the ellip-
soids, and ki j0 represents the coefficients on the other part. b̄i j is the effective
radiative thermal conductivity [Yan (2006)].

It should be noted that T0(x, t) is the numerical solution for the homogenized equa-
tions (11) in a coarse mesh. T̂ ε

1 (x,ω
s, t) and T̂ ε

2 (x,ω
s, t) correspond to the first-

order and the second-order two-scale numerical solutions based on (17). Set error0 =
T−FE−T0(x, t), error1 = T−FE− T̂ ε

1 (x,ω
s, t) and error2 = T−FE− T̂ ε

2 (x,ω
s, t).

For convenience, we introduce the following notation

‖v‖L2(Ω) = (
∫

Ω

|v|2dx)1/2, |v|H1(Ω) = (
∫

Ω

(|∇v|2)dx)1/2.

The relative numerical errors of the homogenization, first-order, and second-order
two-scale methods in the L2-norm and H1-norm for examples are listed in Tables 2
and 3.

Table 2: Comparison with computing results of norm L2.

‖error0‖L2
/
‖T−FE‖L2 ‖error1‖L2

/
‖T−FE‖L2 ‖error2‖L2

/
‖T−FE‖L2

Case1,t =0.02 0.24219603 0.24218782 0.017753913
Case1,t =0.2 0.24142463 0.24141778 0.022944393
Case2,t =0.2 0.01552770 0.01022539 0.003593778

Table 3: Comparison with computing results of semi-norm H1.
|error0|H1

/
|T−FE|H1 |error1|H1

/
|T−FE|H1 |error2|H1

/
|T−FE|H1

Case1,t =0.02 12.420958 12.416015 1.197010
Case1,t =0.2 12.370834 12.365863 1.399024
Case2,t =0.2 0.3283665 0.238355 0.069558

Figures 3 (a)–(d) illustrate the numerical results for T0(x, t), T̂ ε
1 (x,ω

s, t), T̂ ε
2 (x,ω

s, t)
and T−FE at the intersection z=0.15 at time t=0.2 in Case 1.

Figures 4 (a) and (b) clearly show the evolution of the relative errors of approximate
solutions with time t in Case 1, where error0L2, error1L2, error2L2, error0H1,
error1H1, and error2H1 denote ‖error0‖L2

/
‖T−FE‖L2 , ‖error1‖L2

/
‖T−FE‖L2 ,

‖error2‖L2

/
‖T−FE‖L2 , |error0|H1

/
|T−FE|H1 , |error1|H1

/
|T−FE|H1 ,

|error2|H1

/
|T−FE|H1 , respectively.
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(a)          (b) 

  

(c)                                   (d)                    

Figure 3: t =0.2 ; Case 1 (a) T0(x, t); (b) T̂ ε
1 (x,ω

s, t); (c) T̂ ε
2 (x,ω

s, t); (d) T−FE.

In practical engineering, porous materials generally consist of a large number of
pores. A porous system depicted in Figure 5 is used to demonstrate the effective-
ness of the SSOTS computational method, consisting of 27000 pores with a diame-
ter of d=4.1667mm. The thermal conductivity of the matrix is k = 150WK−1m−1.
The boundary temperatures in the z-direction are set as T̄1 = 100K and T̄2 = 500K.
The internal heat source f = 1000MWm−3. Other materials parameters are the
same as example listed in Case 1.

Figures 6 (a)–(c) illustrate the numerical results for T0(x, t), T̂ ε
1 (x,ω

s, t) and T̂ ε
2

(x,ωs, t) at the intersection z=0.13333 at time t=0.2.

Both the SSOTS method and the direct numerical simulations are performed on
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(a)                                    (b) 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

time(s)

error0L2

error1L2

error2L2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

time(s)

error0H1

error1H1

error2H1

Figure 4: Case 1; (a) the evolution of L2 relative errors with t; (b) the evolution of
H1 relative errors with t.

 

Figure 5: Porous materials with a large number of pores. Ωε = [0,0.25]3.

the same computer (which has memory of 96GB and 24 processors with CPU =
2.33GHz). On the aspect of the SSOTS method, it is very cheap to solve the sim-
ulation (it takes about 40 seconds to finish solving the cell problem, and about
60 seconds for the homogenized problem), which takes the majority of the com-
putational efforts. On the other hand, we cannot easily obtain T−FE by classical
numerical methods because it would require very fine meshes and a great amount
of computation. Moreover, the convergence of FE method is not easy.
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(a) (b)   

 

(c)       

 Figure 6: t =0.2; (a) T0(x, t); (b) T̂ ε
1 (x,ω

s, t); (c) T̂ ε
2 (x,ω

s, t).

From the results presented in Tables 2-3 and Figures 3-6, we can see that the sta-
tistical second-order two-scale approximate solution is in a good agreement with
the FE solution in a refined mesh, and can effectively capture the local fluctua-
tions caused by 3-D microstructures well. But the statistical first-order two-scale
approximate solution and the homogenized solution are not capable of providing
satisfactory results, especially when the thermal conduction coefficients in differ-
ent parts of unit cell are large or the source term varies with large amplitude. The
statistical second-order two-scale method is clearly the best among the computa-
tion schemes studied in this paper, and it gives the accurate numerical solutions.
Furthermore, the proposed method is suitable for a very small periodic parameter
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ε; i.e., there are a great number of cells in porous materials.

From Table 1, it is seen that the mesh partition numbers of statistical second-order
two-scale approximate solution are much less than that of refined FE solution, espe-
cially for small ε . It means the new approximate solution can greatly save computer
memory and CPU time, which is very important in engineering computations.

4.2 Thermal properties of randomly distributed porous material

In order to investigate thermal properties of porous materials with random dis-
tribution, we consider three different types of microscopic distributions and their
effective computer generation algorithm has been developed by authors [Yu, Cui
and Han (2008)] based on the probability distribution model of pores: spherical
pores subject to uniformly stochastic distribution in a ε-cell; spherical pores sub-
ject to normal distribution around the centric point of ε-cell; orientations of el-
lipsoidal pores, whose long axes is about two times that of the middle axes and
short axes, which are subjected to normal distribution along x1-axis, and subjected
to uniformly stochastic distribution in ε-cell. Figure 7 depicts the three samples
corresponding to those. The effect of locations, orientations and shapes of pores
on material properties is investigated by the SSOTS method, and due to pores ran-
dom dispersion, the numerical results of the different samples will vary even for the
same distribution models of pores. Therefore, to obtain more accurate prediction
values a numbers of samples are required. It should be noted that the following
computation results are averaged from 50 random samples.

     

             (a)                     (b)                       (c) 

 Figure 7: (a) uniform distribution (b) location-normal distribution (c) orientation-
normal distribution.

Figure 8 depicts the geometry structure of the plate studied which is of the length
is 10mm, width is 10mm, and the thickness is 5mm, respectively. The internal heat
source f = 10MWm−3, and the boundary temperatures in the z-direction are set
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as T̄1(x, t)=100K, T̄2(x, t)=500K. The materials parameters of porous materials are
listed in Table 4, and we choose the effective radiative thermal conductivity calcu-
lated by genetic algorithm in Yan (2006). The radii are both taken as 0.05 for the
spherical pores subjected to uniform distribution and spherical pores subjected to
normal distribution. As for the orientations of spherical pores are normal distribu-
tion, the sizes of their long axes are taken as 0.1, middle axes and short axes are
both 0.05.

Table 4: Material parameters of porous materials [Yan (2006)].
Ceramic Gas Effective radiative thermal

conductivity
k = 4.41 (W/mK) k = 0.0557375 (W/mK) k = 1.356×10−11 (W/mK)

ρ = 2.6×103 (kg/m3) ρ = 1.205 (kg/m3)

c = 0.837×103 (J/ kg K) c = 1.4 (J/ kg K)

 Figure 8: Schematic of porous materials plate.

From the discussion in Section 3 it follows that the effective thermal conductivity
and effective radiative thermal conductivity of the porous materials are dependent
of temperature because of the nonlinearity of Rosseland equation. In order to inves-
tigate thermal properties of the porous materials, the effective thermal conductivity
coefficients are obtained, and compared to Hashin-shtrikman bounds and Voigt-
Reuss bounds [Jikov, Kozlov and Oleinik (1994); Hashin and Shtrikman (1963)]
for different temperatures. The results are listed in Table 5 as temperatures are 50K
and 1250K for different volume fractions with normal distribution of pores. Table
6 shows that the effective thermal conductivity at 1000K and the spherical pores
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are orientation-normal distribution around the centric point of ε-cell. From Tables
5 and 6, it can be seen that the effective thermal conductivity decrease with the
increment of volume fraction, and SSOTS method show the effective thermal con-
ductivity which satisfy Hashin-shtrikman bounds and Voigt-Reuss bounds, between
super and low bounds.

Table 5: Effective thermal conductivity of porous materials for different volume
fractions at 50K and 1250K with normal distribution of pores.

Temperature
(K)

Volume
(%)

SSOTS
(W/mk)

HS-upper
bound

(W/mk)

HS-lower
bound

(W/mk)

VR-upper
bound

(W/mk)

VR-lower
bound

(W/mk)

50
0.180 3.4264835 3.5769 0.2155 3.6262 0.2927
0.276 2.9400174 3.0882 0.2145 3.2082 0.1955

1250
0.180 3.4333125 3.5769 0.2155 3.6262 0.2927
0.276 2.9494594 3.0882 0.2145 3.2082 0.1955

Table 6: Effective thermal conductivity of porous materials for different volume
fractions at 1000K with orientation-normal distribution of spherical pores.

Volume
(%)

x1 x2 x3 HS-upper
bound

(W/mk)

HS-lower
bound

(W/mk)

VR-upper
bound

(W/mk)

VR-lower
bound

(W/mk)
0.114 3.8367758 3.7299331 3.7298626 3.8943 0.2160 3.9136 0.4452
0.158 3.6112134 3.4806656 3.4933625 3.6843 0.2157 3.7220 0.3294
0.262 3.0868876 2.9397015 2.9473608 3.1615 0.2147 3.2692 0.2054

In Figure 9 we plot K11 and K22 of the homogenized conductivities of porous
material with volume fraction are 38% in terms of the macroscopic temperature
from 100K to 1500K, and pores subject to uniform random distribution. As a result,
we note that these diagonal components are different at high temperature because
of the effect of radiation.

We have studied the limit of the cell problems and the homogenized coefficients
when the macroscopic temperature goes to infinity. In Figs. 10 we plot the three
different values of the homogenized conductivities with volume fraction of pores
is 38%, and find that, at extremely high temperatures, they reach the limit value,
which has the similar changing trends to the results showed in Allaire and Ganaoui
(2009) owing to the importance of heat radiation at the high temperature.
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Figure 9: K11 and K22 of the homogenized conductivities as a function of the
macroscopic temperature with uniform distribution of pores.

Figure 11 demonstrates that the statistically maximum heat flux density increases
with the increment of time for different volume fraction, and the q̄extr(t) of orientation-
normal distribution is larger than the q̄extr(t) of uniform distribution in a unit cell,
and they all reach a steady state at last. So the curves of Fig. 11 indicate that the
statistically maximum heat flux density of the porous materials is concurrently af-
fected not only by macroscopic properties, but also by the microscopic structure of
random distribution of pores.

Figures 12 and 13 illustrate heat flux densities distribution for different random
distributions with different volume fractions of pores at time t=1.0. One can see that
the heat flux densities in the two local cells are different for different distribution
with a marked fluctuation, and local heat flux densities with high volume fraction
are relatively high. Moreover, the statistically heat flux densities with orientation-
normal distribution of pores are larger than that with uniform distribution of pores
for the same volume fraction.

All the results from above examples demonstrate that the thermal properties of cou-
pled conduction-radiation heat transfer problem for porous materials with random
distribution can be effectively predicted by the SSOTS method.
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(a) (b) 

 

(c) 

 Figure 10: Homogenized conductivities as a function of the macroscopic tempera-
ture with uniform distribution of pores. (a)K11; (b)K22; (c)K33.

 

 Figure 11: Statistically maximum heat flux density as time for different distribu-
tions of pores locations.
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(a) (b) 

 
Figure 12: Heat flux densities in a local cells with different volume fraction and
pores subjected to uniform distribution (a) 0.09 (b) 0.26.

 

(a) (b) 

 Figure 13: Heat flux densities in a local cells with different volume fraction and
pores subjected to orientation-normal distribution (a) 0.09 (b) 0.20.
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5 Conclusions

In this paper, the SSOTS method is presented to predict the heat transfer perfor-
mance of nonstationary coupled conduction-radiation problem for porous materials
with random distribution. The validity of this two-scale model and the effectiveness
of the developed SSOTS method have been verified by comparing with FE methods
in a very fine mesh. As a result, the statistical second-order two-scale method is
effective to numerically solve the coupled conduction-radiation equation. Besides,
the convergence of the SSOTS numerical results is much better than FE method,
especially at a high temperature.

The macroscopic thermal properties for the structures with varying probability dis-
tribution models, including volume fraction, location, orientation and spatial dis-
tribution of pores, are shown. Numerical results demonstrate that the microstruc-
ture has a marked effect on the macroscopic thermal properties. Specifically, these
properties vary with the probability model of random inclusion dispersions. And
the local behaviors caused by microstructures inside porous materials can be cap-
tured exactly by the SSTOS method. Therefore, the SSOTS method proposed in
this paper can be practically employed to predict thermal properties of the random
porous materials.

Furthermore, the SSOTS method and related numerical approximation techniques
developed in this work is helpful to the design and optimization of the porous ma-
terials with random distribution.
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