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Predicting Effective Elastic Moduli and Strength of
Ternary Blends with Core–Shell Structure by

Second–Order Two–Scale Method

Y. T. Wu1, J. Z. Cui2, Y. F. Nie3 and Y. Zhang3

Abstract: Core–shell particle–filled PA6/EPDM–g–MA/HDPE ternary blend
has excellent mechanical properties. In this paper, effective elastic properties and
tensile yield strength of the ternary blend are predicted by the second–order two–
scale method, to investigate the relationship between morphology and mechanical
properties. The method and the limit analysis for predicting mechanical properties
of random heterogeneous materials are briefly introduced. Realistic morphology of
the ternary blend including both core–shell particles and pure particles is simulated,
and finite element mesh is generated. The unified strength theory is embedded in
the method for the convenience of selecting a suitable yield criterion. The effective
elastic moduli and tensile yield strength predicted by the method in this paper are
compared with analytical and experimental results. Finally, effect of shell thickness
in the core–shell particles on the effective elastic moduli and tensile yield strength
is investigated.

Keywords: Core–shell structure, second–order two–scale method, effective prop-
erty, unified strength theory, shell thickness.

1 Introduction

Polymer blending has been widely applied to the design of high–performance and
functional materials in science and engineering because of its lower cost than syn-
thesizing new polymers [Malik, Hall and Genzer (2013); Liebscher, Blais, Potschke
and Heinrich (2013); Cohen, Zonder, Ophir, Kenig, McCarthy, Barry and Mead
(2013); Yu, Zhou and Zhou (2010); Yin, Zhao, Yang, Pan and Yang (2006)]. Apart
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from the dependence on the properties of component materials, effective proper-
ties of polymer blends depend greatly on the microscopic morphology. Common
morphology of binary blends are the sea–island morphology, the co–continuous
morphology and the salami morphology. For ternary blends, two phases may dis-
perse separately in a continuous matrix phase, or form core–shell particles that
disperse in the matrix phase. Due to their high performance, a lot of work has
focused on the preparation of ternary blends filled with core–shell structures; ex-
amples are HDPE/PS/PMMA [Reignier and Favis (2000)], PA6/PB–g–MA/LDPE
[Ke, Shi, Yin, Li and Mai (2008)] and PMMA/PP/PS [Valera, Morita and Demar-
quette (2006)]. In their works, Yin et al. [Yin, Li, Zhou, Gong, Yang and Xie
(2013); Zhou, Wang, Dou, Li, Yin and Yang (2013); Dou, Wang, Zhou, Li, Gong,
Yin and Yang (2013); Li, Yin, Zhou, Gong, Yang, Xie and Chen (2012)] have
prepared PA6/EPDM–g–MA/HDPE ternary blend with core–shell structures (core:
HDPE, shell: EPDM–g–MA in PA6 matrix) by controlling some thermodynamic
factors and kinetic factors (see Fig. 1). The effect of core–shell structure–filled
morphology on the rheological behavior, crystallization behavior and mechanical
behavior were discussed. The notched impact strength is considerably improved
in the ternary blend with core–shell structures. That is, the notched Izod impact
strength of the ternary blend is 4–5 times higher than that of PA6/EPDM–g–MA
binary blend and 9–10 times higher than that of pure PA6.

(a) (b)

Figure 1: SEM photo (a) and TEM photo (b) of PA6/EPDM–g–MA/HDPE
(70/15/15 wt %) ternary blend with core–shell structures [Li, Yin, Zhou, Gong,
Yang, Xie and Chen (2012)].

Studying the relationship between the mechanical properties and the microscopic
morphology of heterogeneous materials is the key to design and optimize high–
performance and functional materials. Compared to experiment, numerical simu-
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lation and theoretical prediction are always economic ways to study the effect of
morphology on the effective properties of heterogeneous materials. Homogeniza-
tion has been widely used to predict the effective properties of heterogeneous ma-
terials [Bishay and Atluri (2012); Dong and Atluri (2012); Dong, Gamal and Atluri
(2013); Ma, Temizer and Wriggers (2011); Zohdi and Wriggers (2005); Kanit,
Forest, Galliet, Mounoury and Jeulin (2003)]. Three categories of homogeniza-
tion methods are commonly used, namely effective medium methods (e.g., self–
consistent method and Mori–Tanaka method), upper and lower bounding methods
(e.g., Voigt–Reuss bounds and Hashin–Shtrikman bounds) and numerical methods
(e.g., finite element method and boundary element method). Macroscopic behavior
of heterogeneous materials can be captured effectively by homogenization. On the
other hand, multiscale methods have attracted the attention of many researchers.
Among them, the two–scale asymptotic homogenization method possesses rigor-
ous mathematical theory, and has been applied to the prediction of effective prop-
erties such as thermal properties, elastic properties, elastic–plastic properties and
viscoelastic properties for heterogeneous materials [Yu, Cui and Han (2009); Han,
Cui and Yu (2010); Yang and Cui (2013); Yi, Park and Youn (1998); Ghosh, Lee
and Moorthy (1996)].

The effective thermal conductivity of polymer nanocomposites was predicted by
homogenization in [Shin, Yang, Chang, Yu and Cho (2013)]. To account for the
thermal resistance at the interface and the immobilized interphase, a four–phase
equivalent continuum model was introduced. Kaiser et al. [Kaiser and Stommel
(2012)] predicted the strength of short fiber reinforced polymers by embedding
strength criteria in a homogenization method. The effective elastic–plastic prop-
erties of a polymer blend comprising elastic rubber spheres in an elastic–plastic
glassy polymer matrix was estimated by a finite element–based homogenization
method in [Khdir, Kanit, Zairi and Nait-Abdelaziz (2013)]. It was found that the
effective properties of the binary blend can be accurately determined by a sufficient
number of small microstructures. Song et al. [Song and Youn (2006)] investigated
the effective elastic properties of carbon nanotube–filled nanocomposites by the
first–order two–scale asymptotic homogenization method. The method was val-
idated by comparing the predicted effective elasticity tensor with analytical and
experimental results. Considering that the first–order asymptotic homogenization
method provides microscopic fields in ε–cell area with very low accuracy, Han
et al. [Han, Cui and Yu (2008)] developed higher–order asymptotic homogeniza-
tion method. The second–order two–scale expressions for the microscopic stress
and strain fields were developed. The stiffness and strength of several core–shell
particle–filled polymer composites were predicted by the method. So far, there are
a limited number of studies available in the literature that adopt numerical meth-
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ods to investigate the effective properties of ternary polymer blends with core–shell
structures.

The main task of this paper is to predict effective elastic properties and strength of
PA6/EPDM–g–MA/HDPE ternary blend by the second–order two–scale method.
To study the relationship between mechanical properties and morphology of the
ternary blend, the effect of shell thickness on the effective elastic moduli and tensile
yield strength is investigated. In actual microscopic morphology of PA6/EPDM–
g–MA/HDPE ternary blend, there are some isolated EPDM–g–MA particles and
HDPE particles in PA6 matrix besides EPDM–g–MA/HDPE core–shell structures.
Random microstructures in three–dimensional space that closely resemble the ac-
tual ternary blend’s morphology are generated by computer. Since the yield strength
prediction of heterogeneous materials depends greatly on the yield criterion used,
selecting an appropriate yield criterion is very important in the second–order two–
scale method. For this purpose, the unified strength theory is introduced. To val-
idate the method, the effective elastic moduli and tensile yield strength predicted
are compared with experimental and analytical results.

The remainder of this paper is outlined as follows. A brief introduction of the
second–order two–scale method and the limit analysis problem for tensile yield
strength is presented in section 2. The geometry modeling and mesh generation
of PA6/EPDM–g–MA/HDPE ternary blend are explained in section 3. Numerical
results of the effective elastic moduli and strength for the ternary blend are shown
in section 4. It includes validation of the method, selection of yield criterion and
investigation of the effect of shell thickness on the effective properties of the ternary
blend. Some conclusions are drawn in the last section.

2 Description of the numerical method

2.1 Second–order two–scale method

The second–order two–scale method has been developed by Cui et al. in [Han, Cui
and Yu (2008); Li (2004)]. As shown in Fig. 1, PA6/EPDM–g–MA/HDPE ternary
blends are random heterogeneous materials at the microscale. Compared to the
characteristic length of the macroscopic structure, the characteristic length of the
microscopic heterogeneities is sufficiently small, i.e., Lmicro � Lmacro; see Fig. 2.
It is assumed that there are two scales in the heterogeneous materials. The micro-
scopic morphology of the heterogeneous materials is assumed to be consistently
random. That is, the probability model of the particles in the matrix is the same
everywhere in the structure.

Let us consider the elastic problem in the structure Ω ⊂ Rd ,d = 2,3 occupied by
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Figure 2: Schematic diagram of random heterogeneous materials at the macroscale
and microscale.

random heterogeneous materials
−div σ ε(x,ω) = f (x) in Ω,
σ ε(x,ω) = aε(x,ω) : eε(x,ω),
eε

i j(x,ω) = (uε
i, j(x,ω)+uε

j,i(x,ω))/2,
uε(x,ω) = ū(x) on Γu,
σ ε(x,ω) ·n = T̄ (x) on Γσ .

(1)

The displacement ū and traction T̄ are described on the boundary Γu and Γσ re-
spectively. n is the outward unit normal vector and f is the body force. The fourth–
order stiffness tensor aε changes rapidly as x varies at the macroscale. A parameter
ε � 1, which means the ratio of the characteristic length of the oscillation and the
characteristic length of the region Ω, is then introduced to describe the multiscale
feature. Parameter ω denotes a realization of the random heterogeneous materials.
σ ε is the Cauchy stress tensor, eε is the strain tensor, and uε is the displacement.

In the second–order two–scale method, the displacement of the elastic problem
(Eq. 1) has a formal asymptotic expansion of the form

uε(x,ω) = u0(x)+ εNα1(ξ ,ω
s)

∂u0(x)
∂xα1

+ ε
2Nα1α2(ξ ,ω

s)
∂ 2u0(x)

∂xα1∂xα2

+O(ε3), (2)

where ωs is a realization of the random heterogeneous materials in the unit cell Qs,
and ξ is the local coordinate. α1,α2 = 1, . . . ,d. Einstein summation convention on
repeated indices is used here. Due to

∇uε(x,ω) = ∇xu(x,ξ ,ω)+
1
ε

∇ξ u(x,ξ ,ω),
(

ξ =
x
ε

)
, (3)

when substituting Eq. 2 into Eq. 1 and equating coefficients of the same powers of
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ε , it is found that, u0 is the solution of the homogenized problem
−div σ0(x) = f (x) in Ω,
σ0(x) = ā : e0(x),
e0

i j(x) = (u0
i, j(x)+u0

j,i(x))/2,
u0(x) = ū(x) on Γu,
σ0(x) ·n = T̄ (x) on Γσ .

(4)

Note that u0 is a macroscopic function which does not obviously depend on ξ and
ω . In contrast, Nα1(ξ ,ω

s) and Nα1α2(ξ ,ω
s) are d–order matrix–valued functions

defined in Qs, which depend on ξ and ω . These functions satisfy the following
boundary value problems respectively{
− ∂

∂ξ j

(
ai jkl(ξ ,ω

s)1
2

(
∂Nα1km(ξ ,ω

s)

∂ξl
+

∂Nα1lm(ξ ,ω
s)

∂ξk

))
=

∂ai jα1m(ξ ,ω
s)

∂ξ j
in Qs,

Nα1m(ξ ,ω
s) = 0 on ∂Qs.

(5)


− ∂

∂ξ j

(
ai jkl(ξ ,ω

s)1
2

(
∂Nα1α2km(ξ ,ω

s)

∂ξl
+

∂Nα1α2lm(ξ ,ω
s)

∂ξk

))
=−ãiα2mα1(ω

s)

+aiα2mα1(ξ ,ω
s)+aiα2kl(ξ ,ω

s)
∂Nα1km(ξ ,ω

s)

∂ξl

+ ∂

∂ξ j

(
ai jkα2(ξ ,ω

s)Nα1km(ξ ,ω
s)
)

in Qs,

Nα1α2m(ξ ,ω
s) = 0 on ∂Qs.

(6)

Eq. 5 is solved numerically first by finite element method. After Nα1(ξ ,ω
s) is

obtained, effective stiffness tensor ã(ωs) in Eq. 6 is computed by the formula

ãi jkl(ω
s) =

∫
Qs

(
ai jkl(ξ ,ω

s)+ai jpq(ξ ,ω
s)

1
2

(
∂Nkpl(ξ ,ω

s)

∂ξq
+

∂Nkql(ξ ,ω
s)

∂ξp

))
dξ .

(7)

Then we can solve Eq. 6 by finite element method to obtain Nα1α2(ξ ,ω
s). Ap-

parently ã in Eq. 7 is a random variable dependent on the realization ωs. The
deterministic effective stiffness tensor ā in the homogenized problem (Eq. 4) is
determined as the mathematical expectation of ã(ωs). Let ā, ã1, ã2, . . . be indepen-
dent and identically distributed random variables, Kolmogorov’s strong law of large
numbers indicates that

1
N

N

∑
i=1

ãi→ ā, as N→+∞. (8)
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Selecting a sample (ã1, ã2, . . . , ãN) with size N, the sample average ∑
N
i=1 ãi/N is an

unbiased estimator of ā [Shao (2010)]. In numerical computations, Eq. 5 is solved
repeatedly with N realizations ωs

i (i = 1,2, . . . ,N), and then the average

āN =
1
N

N

∑
i=1

ã(ωs
i ) (9)

is calculated as an approximation of the effective stiffness tensor ā. The accuracy
of the approximation āN depends on the sample size N.

In fact, ā depends on the size of ε–cell. Under zero displacement boundary con-
dition, it was found that ā converges to the true effective stiffness tensor with the
first–order accuracy as the ε–cell size goes to infinity. Compared to the homog-
enization and multiscale methods, more accurate effective elastic properties have
been obtained by Richardson extrapolation technique with reduced amount of com-
putations [Wu, Nie and Yang (2014)]. That is, the extrapolation result

āRE = 2ā2l− āl (10)

is more accurate than ā2l and āl , where the subscript denotes the size of ε–cell.
In this paper, the technique is integrated into the second–order two–scale method
for predicting high–precision effective elastic moduli of PA6/EPDM–g–MA/HDPE
ternary blend.

With accurate effective elastic coefficients, Eq. 4 is solved to get the homogenized
solution u0(x). Finally, we could compute the second–order two–scale solution
from Eq. 2.

2.2 Strength prediction

To predict the tensile yield strength for random heterogeneous materials, the fol-
lowing limit analysis problem is considered

Find Σt = max Σ, such that

−div σ ε(x,ω) = 0 in Ω,
σ ε(x,ω) = aε(x,ω) : eε(x,ω),
eε

i j(x,ω) = (uε
i, j(x,ω)+uε

j,i(x,ω))/2,
uε(x,ω) = 0 on x3 = 0,
σ ε(x,ω) = Σ on x3 = L,
σ ε(x,ω) ∈ Gε(x,ω), ∀x ∈Ω.

(11)

The shape of the structure Ω is a column with rectangular cross section. Assuming
the axis of the column is parallel to the x3–axis, the macroscopic traction Σ is loaded
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on the surface at x3 = L where L is the length of the column, and the surface at
x3 = 0 is fixed. Gε is the material strength domain at point x which is defined as

Gε(x,ω) = {σ ε(x,ω) : gε(σ ε)≤ 0}, (12)

where gε(σ ε) is the yield function defined by certain yield criteria. The tensile
yield strength Σt of the heterogeneous materials is dominated by the tensile yield
strength of component materials and is determined by solving this problem.

The second–order two–scale method approximates the multiscale solution uε of
Eq. 11 by the second–order two–scale solution uε

2. That is,

Find Σt = max Σ, such that

−div σ0(x) = 0 in Ω,
σ0(x) = ā : e0(x),
e0

i j(x) = (u0
i, j(x)+u0

j,i(x))/2,
u0(x) = 0 on x3 = 0,
σ0(x) = Σ on x3 = L,
σ ε

2 (x,ω) ∈ Gε(x,ω), ∀x ∈Ω.

(13)

To predict the tensile yield strength Σt , the homogenized problem is solved at the
macroscale and it is required that the second–order two–scale stress field σ ε

2 is not
outside the strength domain Gε .

Taking into consideration the randomness of the heterogeneous materials, the ten-
sile yield strength is defined as

Σt = lim
N→+∞

1
N

N

∑
i=1

Σt,i (14)

based on Kolmogorov’s strong law of large numbers. In the equation, Σt,i (i =
1,2, . . .) are independent and identically distributed random variables.

3 Morphology and mesh of the ternary blend

In PA6/EPDM–g–MA/HDPE ternary blend, the core–shell particles are uniformly
distributed in the matrix and these particles can be considered as spheres [Dou,
Wang, Zhou, Li, Gong, Yin and Yang (2013)]. To predict the mechanical proper-
ties of the ternary blend by the second–order two–scale method, the microscopic
morphology in the unit cell should be generated first. However, it is difficult to
use CAD software to generate the morphology of random heterogeneous materi-
als, because the number of particles in the unit cell is large and a lot of random
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unit cells need to be generated. Furthermore, it is difficult to generate the mor-
phology based on the digital images of actual random heterogeneous materials in
three–dimensional space. Yu et al. [Yu, Cui and Han (2008)] proposed an effective
computer generation method to construct the morphology of unit cells filled with
randomly distributed particles. The morphology of the unit cell is described by the
probability distribution which reflects the randomness of particles. Since all of the
size, position and orientation of every particle are random variables, and the shape
of particles can be sphere, ellipsoid and polyhedron, complex morphology of ac-
tual random heterogeneous materials can be simulated by the method. In addition,
for the purpose of solving Eq. 5 and Eq. 6 by the finite element method, a fast
mesh generation method was developed by Han et al. [Han, Cui and Yu (2008)]
for the randomly distributed ellipsoid–filled unit cell. High–quality mesh can be
generated by handling the sliver elements and smoothing the mesh further. The
core–shell structures have also been constructed and the mesh has been generated
for the shells.

Tetrahedron elements are more adaptable for complex geometry of structures in
three–dimensional space. The tetrahedron elements are generated for both matrix
and particles in the unit cell comprising some randomly distributed particles. To
generate the core–shell structures, the internal surface and external surface of an
ellipsoid are assumed to be concentric ellipsoidal surfaces. Firstly, the tetrahedron
elements inside an ellipsoid are shrunk around the centroid at the same rate which
is calculated by the volume fractions of the shell and core, and then the internal
and external surfaces of the shell are obtained. Next the corresponding nodes on
the internal and external surfaces are connected to construct triangular prism ele-
ments. Finally refined triangular prism elements are generated by partitioning the
triangular prisms along their length.

Apart from EPDM–g–MA/HDPE core–shell particles, there are some pure EPDM–
g–MA particles and pure HDPE particles in actual PA6/EPDM–g–MA/HDPE tern-
ary blend. When the weight ratio of three component materials is fixed, the ratio
of pure particles is correlated to the thickness of shells in the core–shell particles
which has great effect on the mechanical properties of the ternary blend. Pure parti-
cles were not considered in the polymer composites filled with core–shell structures
in [Han, Cui and Yu (2008)]. In this paper, more realistic morphology of polymer
blends composed of both pure particles and core–shell particles is generated. To
this end, we first input some data such as the volume fractions of three component
materials, the volume fractions of pure EPDM–g–MA and HDPE particles, and the
thickness of shells into the algorithm. Then we generate the morphology of the
unit cell filled with particles and partition tetrahedron elements for the matrix and
particles. The volume fraction of particles is the sum of the volume fractions of
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EPDM–g–MA and HDPE. Next the particles are divided into three types, that is,
EPDM–g–MA/HDPE core–shell particles, pure EPDM–g–MA particles and pure
HDPE particles. Considering that the pure particles are randomly distributed in the
unit cell, a particle is selected randomly and marked as pure HDPE particle. The
volume fraction of the particle is computed and compared to the given volume frac-
tion of pure HDPE particles. If the volume fraction of the particle does not reach the
one we set, the procedure is repeated by selecting another particle randomly from
the remainder particles and adding up the volume fraction of pure HDPE particles,
until the given volume fraction of pure HDPE particles can be reached. Similar pro-
cedure is then implemented to select and mark pure EPDM–g–MA particles. The
remainder particles will be the core–shell particles. Based on the given thickness of
shells, the tetrahedron elements in the particles are shrunk and triangular prism ele-
ments are then generated to construct the shell structures. Fig. 3 presents unit cells
filled with pure particles, with core–shell particles, and with both pure particles and
core–shell particles. In the figure, uniformly distributed spherical particles with the
same size are generated, because it is difficult to identify the probability distribu-
tion of particle’s size by experiment. We mention that more complex morphology
comprising ellipsoids with different sizes and orientations can be obtained by the
algorithm. In addition, the thickness of shells can also be determined randomly.

(a) (b) (c)

Figure 3: Unit cells with pure particles (a), with core–shell particles (b), and with
both pure particles and core–shell particles (c).

4 Numerical results

4.1 Validation of the second–order two–scale method

In computations, there are more than 100 particles in every random unit cell, so
that the statistical characteristic of the particles can be well reflected and the unit
cell can be used to simulate the random morphology of actual heterogeneous ma-
terials. The second–order two–scale method is validated by comparing effective
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elastic properties predicted with the results of Mori–Tanaka method and Hashin–
Shtrikman upper and lower bounds. Since those two methods are widely used for
two–phase heterogeneous materials, the effective elastic properties of PA6/EPDM–
g–MA binary blend computed by the three methods are compared.

The mechanical properties of component materials for simulations are listed in
Tab. 1. The data is provided by the State Key Laboratory of Polymer Materials
Engineering at Sichuan University. As reported in Tab. 2, for PA6/EPDM–g–MA
binary blend with two different weight ratios [Li, Yin, Zhou, Gong, Yang, Xie
and Chen (2012)], the Young’s modulus computed by the second–order two–scale
method is outside the Hashin–Shtrikman bounds, while Mori–Tanaka method pre-
dicts the effective Young’s modulus inside the Hashin–Shtrikman bounds. On the
contrary, the second–order two–scale method provides effective shear modulus that
lies in the Hashin–Shtrikman bounds, while Mori–Tanaka method gives the ef-
fective shear modulus outside the Hashin–Shtrikman bounds. When integrating
Richardson extrapolation technique into the second–order two–scale method, both
effective Young’s modulus and effective shear modulus lie in the Hashin–Shtrikman
bounds. In addition, there is a big difference of results between the second–order
two–scale method and Mori–Tanaka method, while there is a small difference of
results between the second–order two–scale method and Hashin–Shtrikman upper
bounds.

Table 1: Mechanical properties of component materials in PA6/EPDM–g–
MA/HDPE ternary blend.

Material ρ (g/cm3) E (MPa) ν σt (MPa)
PA6 1.13 2620 0.4 95.1±1.5
EPDM–g–MA 0.88 6.11 0.49 4.8±1.9
HDPE 0.95 1070 0.41 22.5±2.2

In fact, Mori–Tanaka method is more suitable for random heterogeneous materi-
als with simple morphology and small volume fraction of reinforcement material.
For random heterogeneous materials with a high contrast of component proper-
ties, the Hashin–Shtrikman upper and lower bounds are very broad. In contrast,
the second–order two–scale method is more effective to predict effective mechani-
cal properties of random heterogeneous materials. Furthermore, microscopic stress
and strain fields can be analyzed by the method to predict the strength of random
heterogeneous materials. Of course, bigger ε–cells are required to obtain more ac-
curate effective properties by using the method directly. In this case, Richardson
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Table 2: Comparison of effective elastic moduli for PA6/EPDM–g–MA binary
blend predicted by the second–order two–scale (SOTS) method, Richardson ex-
trapolation (RE), Mori–Tanaka (MT) method and Hashin–Shtrikman (HS) bounds
(MPa).

wt % Modulus SOTS RE MT HS Upper HS Lower
70/30 EH 1322 1272 1074 1286 33

GH 448 391 487 477 11
85/15 EH 1843 1763 1610 1838 72

GH 663 628 678 672 24

extrapolation can be embedded in the method to efficiently provide more accurate
results as well as to reduce the amount of computations.

4.2 Effective properties of the ternary blend (70/15/15 wt %)

4.2.1 Effect of sample size on the accuracy of simulated results

It is mentioned in section 2 that the sample average is used to estimate the math-
ematical expectation for both effective stiffness and strength of random heteroge-
neous materials. The size of sample has an effect on the accuracy of effective
stiffness and strength properties. Larger sample size leads to more accurate ap-
proximations, but it increases the amount of computations. To choose a suitable
sample size, samples with different sizes are used to compute the effective elas-
tic moduli and tensile yield strength of PA6/EPDM–g–MA/HDPE ternary blend.
These results are presented in Fig. 4. Since the sample average is a random vari-
able, 6 samples are generated for every sample size. The mechanical properties of
three component materials are listed in Tab. 1.

As presented in Fig. 4, the simulated effective Young’s modulus lies in the 1%
relative error margin of the average (blue solid circles) of these results computed
from 6 samples for every sample size, while the simulated tensile yield strength
lies in the 1% relative error margin (red dashed line) only when the sample size
is as large as 50. In addition, both effective Young’s modulus and tensile yield
strength are more dispersive with smaller sample size; see the standard deviation of
Young’s modulus as the blue line. On the contrary, increasing sample size leads to
centralized data.
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Figure 4: Variation of effective Young’s modulus (a) and tensile yield strength (b)
with increasing sample size.

4.2.2 Selection of yield criterion

Many strength criteria have been developed in the past century. Several commonly
used yield criteria for materials with identical yield strength in tension and com-
pression are the maximum principal stress theory, the maximum principal strain
theory, the maximum shear stress theory, the von Mises theory and the twin–shear
theory. Each strength theory is suitable for only a certain kind of material. For ex-
ample, the maximum shear stress theory, the von Mises theory and the twin–shear
theory are more suitable for those materials satisfying τy = 0.5σy, τy = 0.577σy

and τy = 0.667σy respectively, where τy is the shear yield strength and σy is the
tensile yield strength [Yu and Li (2012)]. For materials with unequal tensile and
compressive yield strength, other strength theories like the Mohr–Coulomb theory
and the general twin–shear theory have also been developed.

In [Han, Cui and Yu (2008)], the von Mises theory was adopted to predict strength
of composite materials. In order to select a suitable yield criterion in predicting
tensile yield strength of PA6/EPDM–g–MA/HDPE ternary blend, effect of differ-
ent yield criteria on the accuracy of tensile yield strength of the ternary blend is
investigated in this paper. For the convenience of testing different yield criteria, the
unified strength theory [Yu and Li (2012)] is embedded in the second–order two–
scale method. The unified strength theory contains a series of well–known yield
criteria, and a lot of new yield criteria can also be derived.

The model of the unified strength theory is expressed as

F =

{
τ13 +bτ12 +β (σ13 +bσ12) =C, if τ12 +βσ12 ≥ τ23 +βσ23,
τ13 +bτ23 +β (σ13 +bσ23) =C, if τ12 +βσ12 < τ23 +βσ23,

(15)
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where τ13, τ12 and τ23 are three principal shear stresses and τ13 is the maximum
principal shear stress. σ13, σ12 and σ23 are the corresponding normal stresses acting
on the sections where τ13, τ12 and τ23 act. Parameter b can be used to select different
yield criteria. β and C are determined by the formulas

β =
1−α

1+α
, C =

1+b
1+α

σt ,

(
α =

σt

σc

)
, (16)

where σt denotes the tensile yield strength and σc the compressive yield strength.

When substituting β and C into Eq. 15, another expression of the unified strength
theory reads as

F =


σ1−

α

1+b
(bσ2 +σ3) = σt , if σ2 ≤

σ1 +ασ3

1+α
,

1
1+b

(σ1 +bσ2)−ασ3 = σt , if σ2 >
σ1 +ασ3

1+α
,

(17)

where σ1, σ2 and σ3 are the three principal stresses.

Table 3: Typical cases of the unified strength theory. They are the maximum shear
stress theory (MSST), approximate von Mises theory (VMT), twin–shear theory
(TST), Mohr–Coulomb theory (MCT), general twin–shear theory (GTST), maxi-
mum principle stress theory (MPSeT) and maximum principle strain theory (MP-
SaT).

MSST Approximate VMT TST MCT GTST MPSeT MPSaT
α 1 1 1 6= 1 6= 1 0 2ν

b 0 0.5 1 0 1 – 1

Table 4: Tensile yield strength Σt of the ternary blend (MPa).

MPSaT MSST MPSeT Approximate VMT VMT TST Experiment
30.4 33.4 33.9 34.5 34.8 35.2 35.9

Tab. 3 reports some typical yield criteria which can be deduced or approximated by
the unified strength theory with different parameters α and b. The unified strength
theory is implemented in the second–order two–scale method to investigate the ef-
fect of yield criteria on the accuracy of yield strength of random heterogeneous
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materials. In Tab. 4, some simulated tensile yield strengths of PA6/EPDM–g–
MA/HDPE ternary blend by different yield criteria are listed. The tensile and
compressive yield strength are assumed to be identical for every component ma-
terial. The tensile yield strength predicted by the second–order two–scale method
combined with yield criterion is smaller than the experimental result. And the
twin–shear theory predicts the closest result to the experimental one. In the follow-
ing computations, the twin–shear theory is selected as a suitable strength theory for
predicting tensile yield strength of PA6/EPDM–g–MA/HDPE ternary blend.

4.2.3 Comparison of simulated and experimental results

The effective elastic moduli and tensile yield strength of PA6/EPDM–g–MA/HDPE
ternary blend are presented in Tab. 5. The second–order two–scale method predicts
effective Young’s modulus and tensile yield strength very close to experimental
results. It indicates that the method is effective to predict the mechanical properties
of the ternary blend. The simulated effective shear modulus is also listed in Tab. 5
for completeness, although it was not measured by experiment. Since the elastic
moduli of the constituent materials have a high contrast (see Tab. 1), larger ε–
cells should be generated to get more accurate effective elastic moduli when the
second–order two–scale method is used directly. However, this can easily exceed
the capability of computers. Richardson extrapolation technique is adopted here
to obtain high–precision effective elastic moduli with reduced amount of computer
memory and CPU time.

Table 5: Effective elastic moduli and tensile yield strength of the ternary blend.

EH (MPa) GH (MPa) Σt (MPa)
SOTS RE Experiment SOTS RE SOTS Experiment
1384 1289 1240±47 484 439 35.2 35.9±1.2

4.3 Effect of shell thickness on the mechanical properties

4.3.1 Varying weight ratio of pure particles

In actual PA6/EPDM–g–MA/HDPE ternary blend, there are three types of parti-
cles, namely, EPDM–g–MA/HDPE core–shell particles, pure EPDM–g–MA parti-
cles and pure HDPE particles. Since the thickness of shells affects the mechanical
properties of the ternary blend, it is valuable to investigate their relationship. With
fixed weight ratio of component materials, the thickness of shells can be adjusted by
changing the weight ratio of pure particles. For simplicity, it is assumed that only
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the pure HDPE particles exist in computations, and pure EPDM–g–MA particles
are not considered.

Fig. 5 presents the variation of shell thickness, effective Young’s modulus, effec-
tive shear modulus and tensile yield strength as increasing the weight ratio of pure
HDPE particles. The weight ratio is defined as the ratio of pure HDPE particle’s
weight to the total HDPE’s weight. The weight ratio of PA6, EPDM–g–MA and
HDPE is fixed (70/15/15 wt %). As more HDPE form pure particles, the shell
thickness ratio in the core–shell particles is increased. Then both effective elastic
moduli and tensile yield strength are increased. When the weight ratio of pure par-
ticles is as small as 5 wt %, there is a little effect on the effective elastic moduli and
tensile yield strength.
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Figure 5: Variation of the shell thickness (a), effective Young’s modulus (b), effec-
tive shear modulus (c) and tensile yield strength (d) with different weight ratio of
pure HDPE particles.
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4.3.2 Varying weight ratio of component materials

As shown in the above subsubsection, the shell thickness has a great effect on
the mechanical properties of PA6/EPDM–g–MA/HDPE ternary blend. In this sub-
subsection, we consider the effect of shell thickness further. Only the core–shell
particles are generated in the unit cell, and the volume fraction of particles is fixed
as 35%.
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Figure 6: Variation of the weight ratio of component materials (a), effective
Young’s modulus (b), effective shear modulus (c) and tensile yield strength (d)
with different shell thickness.

The weight ratios of component materials corresponding to different shell thick-
nesses are shown in Fig. 6. With increasing shell thickness, the effective Young’s
modulus, effective shear modulus and tensile yield strength of the ternary blend
are also presented in the figure. When increasing the shell thickness, both effective
Young’s modulus and effective shear modulus are decreased. It is because the vol-
ume fraction of EPDM–g–MA with smaller elastic moduli is increased, while the
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volume fraction of HDPE with larger elastic moduli is decreased. Meanwhile, the
tensile yield strength of the ternary blend is reduced. When the thickness of shells
is small, the effective elastic moduli and tensile yield strength decrease apparently
as the shell thickness increases. However, the effect of shell thickness is reduced
when the shell thickness is large.

5 Conclusions

The second–order two–scale method is used to predict mechanical properties of
PA6/EPDM–g–MA/HDPE ternary blend with core–shell structures. Some details
in the method’s simulations are discussed. The tensile yield strength predicted
with different yield criteria is a little smaller than the experimental result and the
twin–shear theory provides the closest result to the experimental one. The method
can effectively predict the effective elastic moduli and tensile yield strength of the
ternary blend.

The relationship between shell thickness and mechanical properties of the ternary
blend is investigated. With fixed weight ratio of component materials, increasing
the content of pure HDPE particles leads to the increase of effective elastic moduli
and tensile yield strength. However, the effect is little when only a few pure HDPE
particles exist. With fixed volume fraction of particles, increasing the thickness of
shells leads to the decrease of effective elastic moduli and tensile yield strength.
However the effect is reduced when the shell thickness is large.
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