
Copyright © 2014 Tech Science Press CMC, vol.42, no.2, pp.141-174, 2014

Size-Dependent Flexural Dynamics of Ribs-Connected
Polymeric Micropanels

K.B. Mustapha1,2

Abstract: This study investigates the sensitivity of the flexural response of a rib-
connected system of coupled micro-panels with traction-free surfaces. Idealized as
a two-dimensional elastic continuum with a finite transverse stiffness, each micro-
panels’ behavior is examined within the framework of the biharmonic mathemati-
cal model derived from the higher-order, size-dependent strain energy formulation.
The model incorporates the material length scale, which bears an associative re-
lationship with the underlying polymer’s averaged Frank elastic constant. Upper
estimates of the eigenvalue of the system, under fully clamped edges and simply-
supported edges, are determined by the Rayleigh method. The adopted theory for
the micro-panel’s behavior takes into account the rotary inertia, the small-scale ef-
fect, the Poisson’s ratio and the effective stiffness of the ribs, but neglects shear
distortion. Frequency shifts of the rib-connected coupled micro-panels are system-
atically identified and presented. Results indicate the critical thickness for which
the polymeric micro-panel’s resonant frequency starts to experience stiffened re-
sponses based on the magnitude of the size-effect. The Rayleigh method of eigen-
value extraction is augmented with the applied statistical method of design of ex-
periment for the discovery of notable interaction effects between the aspect ratio,
rotary inertia, small-scale effect, and thickness-to-span ratio of the system.

Keywords: Modified couple stress, Micro plates, Size-effect, Vibration, Rayleigh
method.

1 Introduction

Microelectromechanical and nanoelectromechanical systems (MEMs and NEMS)
occupy preeminent functional roles within the landscape of next generation devices.
Often endowed with micro-sized structures, MEMs and NEMs have found unal-
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loyed advantage in portable field accelerometers, electrical filters, hydrophones,
high-Q oscillators and inertia sensors [Nguyen (1995); Yazdi, Ayazi and Najafi
(1998); Kun and Nguyen (1999); Mattila, Kiihamäki, Lamminmäki, Jaakkola,
Rantakari, Oja, Seppä, Kattelus and Tittonen (2002)]. A number of reasons shape
the adoption of micro-systems across different emerging scientific fields: (i) prodi-
gious capacity for fast response; (ii) ultra-high resonating frequency; and (iii) a
high sensitivity to changes in stimulus.

The complexity of most microsystems depends on the intended functional pur-
pose and operational requirements. In a simple form, a microsystem comprises
cantilever arrays along with some other functional embodiment. In a more com-
plex form, however, it may be composed of structural elements with different
geometrical parameters for different functional purposes [Boisen, Dohn, Keller,
Schmid and Tenje (2011)]. Among the unique set of structural elements rou-
tinely employed in MEMs is the two-dimensional plate-like micro-scale struc-
tures (e.g. thin film, micro-scale panels, and orthotropic micron metallic web
[Benkhelifa, Farnsworth, Tiwari and Bandi (2010)]. These micro-structural ele-
ments have excellent magnetic, optical, mechanical and electrical properties that
make them resourceful in specific applications like thermal sealing and energy har-
vesting [Sakhaee-Pour, Ahmadian and Vafai (2008); Liu, Tu and Chung (2012);
Manzaneque, Ruiz, Hernando-Garcia, Ababneh, Seidel and Sanchez-Rojas (2012)]
Since the optimal design of MEMs and NEMs impels the understanding of their
response under disparate mechanical loadings, the analyses of their constituent
micro-structural elements has gained attention in the past few years [Younis (2011)].
During the operational life of MEMs, some factors compromise the exhibition
of their intended performance [Ardito, Baldasarre, Corigliano, De Masi, Frangi
and Magagnin (2013)]. Frequently, such factors are closely related to the inter-
relationship between the mechanical parameters of the underlying materials and
the geometric parameters of the system’s architecture. This interplay imposes a
strict constrain on the predictability of MEMs’ mechanical responses.

Several studies relating to the prediction of MEMs’ response have revealed the de-
mands for the refinement of the mathematical models of the constituent elements of
these miniature devices [Peddieson, Buchanan and McNitt (2003); Reddy (2011);
Mustapha (2014)]. This is because, at small length scale, the vexing contribution
of size-effect to the response of the structures starts to set in. Initial studies on
the modeling of micro-scale structures through the framework of computational
mechanics, employed the classical continuum theory (CCT). However, the under-
lying assumptions of the CCT do not account for the contribution of the latent size-
dependency that manifests in micro and nano-scale structures [Fleck and Hutchin-
son (1993); Georgiadis and Velgaki (2003); Liew, Wong, He, Tan and Meguid
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(2004); Uchic, Dimiduk, Florando and Nix (2004); Volkert and Lilleodden 2006;
Mahdavi, Farshidianfar, Tahani, Mahdavi and Dalir (2008); Chiroiu, Munteanu and
Delsanto (2010)]. It is this deficiency of the CCT that has ignited the adoption of a
number of enriched microstructure-dependent elasticity theories with higher-order
constitutive laws [Farokhi, Ghayesh and Amabili (2013)]. The models derived from
these higher-order theories contain additional material constants, along with the
well-known Lamé constants, to address the quantification of the phenomenological
size-specific property.

Evidently, attempt on the theoretical modeling of microstructured materials stretches
back to the work of the Cosserat brothers [Cosserat E. and F (1909); Chiroiu,
Munteanu and Gliozzi (2010)]. Consolidating on the work of the Cosserat broth-
ers, a select list of advanced continuum theories that have emerged to be of relevant
to the modeling of microstructured materials include the Eringen’s nonlocal elas-
ticity theory [Eringen (1972); Eringen and Edelen (1972); Fotouhi, Firouz-Abadi
and Haddadpour (2013)], the strain gradient theory [Aifantis (1992); Tang, Shen
and Atluri (2003); Papacharalampopoulos, Karlis, Charalambopoulos and Polyzos
(2010)], the couple stress theory [Toupin (1962); Yang, Chong, Lam and Tong
(2002)] and the micropolar elasticity [Toupin (1962); Xie and Long (2006); Marin,
Agarwal and Othman (2014)]. A concise summary of the distinction between these
theories is well-stated in Aifantis [Aifantis (2011)]. Meanwhile, a well-founded
challenge with the new higher-order models is the difficulty associated with the de-
termination of the microstructure-dependent material constants introduced by these
theories [Lam, Yang, Chong, Wang and Tong (2003)]. Consequently, models of
the structural elements with fewer length scale parameters offer both experimental
benefit and mathematical convenience. The modified couple stress theory (MCST),
which is adopted in the current study, is one such higher-order elasticity theories.
With the MCST, the characterization of size-effect is done with just one material
length scale parameter [Yang, Chong, Lam and Tong (2002); Papargyri-Beskou,
Tsepoura, Polyzos and Beskos (2003)]. The MCST has already set off a burst
of research activities in the theoretical prediction of the deformational response
of micro-scale structural elements. Initial application of the MCST focused on
the analyses of micro-scale beams, rods and micro-scale pipes [Anthoine (2000);
Park and Gao (2006); Güven (2011); Reddy (2011); Mustapha and Zhong (2012);
Mustapha and Zhong (2012); Akgöz and Civalek (2013); Wang, Liu, Ni and Wu
(2013)]. However, a limited number of recent studies have also extended the work
to the analyses of micro-scale plates [Yin, Qian, Wang and Xia (2010); Jome-
hzadeh, Noori and Saidi (2011); Akgöz and Civalek (2013); Gao, Huang and Reddy
(2013)] An experimental validation of the MCST is recently presented in Romanoff
and Reddy (2014).
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Drawing on the strength of the MCST, the present study investigates the size-
dependent flexural vibration of a rib-connected system of micro-panels. The system
under investigation is part of an on-going design of a polymeric vibration isolation
pad for electronic communicating systems. For the derivation, each micro-panel is
treated as a micro-scale plate with an internal material length scale. The stiffness
of the ribs between the micro-panel is derived by treating the ribs as a collection
of clamped-clamped elastic beams. A hybrid numerical experiment based on the
Rayleigh method of eigenvalue extraction and an applied statistical method of de-
sign of experiment (DOE) is adopted for parametric analysis of the derived model.
The adopted hybrid approach helps to illuminate the pattern of the resonant fre-
quency shifts under varying influences of the stiffness of the ribs. The effects of the
material length scale of the micro-panel, the Poisson’s ratio and the rotary inertia
are also assessed. The ensuing part of the paper proceeds with the presentation
of the derivation of the size-dependent elastodynamics governing equation of the
system in section 2. The solution procedure for the free vibration study is detailed
in section 3. Reduced special cases of the derived model are highlighted in section
4. In section 5, numerical results and the discussion of the influence of the model’s
parameters on the frequency shift of the system are presented. Basic conclusions
from the analysis are given in section 6.

2 Variational Formulation

2.1 The higher-order elasticity theory

The system being considered is the elastically connected micro-panels shown in
Fig. 1. In what follows, the equations governing the flexural vibration of each
micro-panel are derived from the Hamilton’s principle and the modified couple
stress theory (MCST). In deriving the governing equation, we treat each micro-
panel as an isotropic linear elastic body occupying a volume ∀. In line with the the-
oretical framework of the MCST, the size-dependent strain energy of a deformed
micro-scale structure is characterized by a quartet of tensors related as [Yang,
Chong, Lam and Tong (2002); Reddy (2011)]:

ΠU =
1
2

∫
∀
(σσσ : εεε +mmm : χχχ)d∀. (1)

In general, the volume ∀ is taken to be an open set in R3 with a well-behaved surface
boundary (see Fig. 1b for the unit normal to the boundaries’ of a micro-panel).
Accordingly, ΠU , εεε and σσσ are the strain energy, the dilatation strain tensor and
the Cauchy stress tensor, respectively. Furthermore, the tensors mmm and χχχ refer to
the deviatoric components of the couple stress and the symmetric curvature tensor,
respectively.



Size-Dependent Flexural Dynamics of Ribs-Connected Polymeric Micropanels 145

       

(a)                                                                         (b) 

 
Figure 1: Schematic of the rib-connected system of micro-panels: (a) a 3D view
of the coupled system; and (b) the mid-plane of a micro-panel with the adopted
coordinate system.

Given that the deformation of a material point of the micro-panel is described by
the displacement field uuu and a rotation vector θθθ , then the tensors εεε and χχχ in Eq. (1)
are known to satisfy the following geometric relations:

εεε =
1
2

[
∇uuu+(∇uuu)T

]
(2)

χχχ =
1
2

[
∇θθθ +(∇θθθ)T

]
(3)

where the operator ∇ is the 2D gradient notation. From kinematics consideration,
the rotation vector θθθ is easily related to the displacement field in the form:

θθθ =
1
2

curl uuu (4)

Additionally, the stress fields (σσσ and mmm) are mapped to the displacement field
through the enriched constitutive rules as:

σσσ = λ tr(ε)I+2Gε (5a)

mmm = 2ζ
2
µχχχ (5b)

In Eq. (5a) the stress field is related to the displacement field through the parameters
λ (the bulk modulus) and G (the shear modulus) respectively. However, in Eq.
(5b), the higher-order stress field (mmm) is related to the displacement field through an
additional material constant (ζ ) This new constant is associated with the material
length scale parameter [Reddy (2011)].
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For the purpose of characterizing the deformation of the micro-panel through the
above higher-order constitutive rules, an infinitesimal bounded volume of the micro-
panel is considered. The infinitesimal bounded volume of the micro-panel is treated
as a differentiable manifold embedded in a Euclidean 3-space ∀. Consequently, the
following displacement trial field holds:

uuu = u1iii+u2 jjj+u3kkk (6)

where u1,u2, and u3 are components of the displacement vector of an arbitrary
material point of the micro-panel in the x,y and z directions. Based on the small-
deflection theory of thin plates, which rests on the Kirchhoff assumptions, each of
these components of the displacement field is defined as:

u1 (x,y,z, t) = u(x,y, t)− z
∂w(x,y, t)

∂x
(7a)

u2 (x,y,z, t) = v(x,y, t)− z
∂w(x,y, t)

∂y
(7b)

u3 (x,y,z, t) = w(x,y, t) (7c)

where u, v, and w are displacement components in the x, y and z directions, respec-
tively. Based on Eqs. (7a) – (7c), the non-zero components of the strain tensor are
obtained as:

εxx =
∂u
∂x
− z

∂ 2w
∂x2 (8a)

εyy =
∂v
∂y
− z

∂ 2w
∂y2 (8b)

εxy = εyx =
1
2

[
∂u
∂y

+
∂v
∂x
−2z

∂ 2w
∂y∂x

]
(8c)

The components of the rotation vector, from Eq. (4), are obtained as:

θx =
∂w
∂x

; θy =−
∂w
∂y

; θz =
1
2

[
−∂u

∂y
+

∂v
∂x

]
(9)

With the help of Eq. (9) bearing in mind Eq. (3), the components of the symmetric
curvature tensor, are derived as:

χxx =
∂ 2w
∂y∂x

; χyy =−
∂ 2w
∂y∂x

; χzz = 0 (10a)

χxy = χyx =
1
2

[
−∂ 2w

∂x2 +
∂ 2w
∂y2

]
(10b)
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χzy = χyz =
1
4

[
− ∂ 2u

∂y∂x
+

∂ 2v
∂x2

]
(10c)

χzx = χxz =
1
4

[
−∂ 2u

∂y2 +
∂ 2v

∂y∂x

]
(10d)

Given the above derived kinematic variables, the first variation of the microstructure-
dependent strain energy is now written as:

δΠU =
1
2

δ

∫ ∫ ∫ h/2

−h/2
[

E
(1− v2)

ε
2
xx +

E
(1− v2)

ε
2
yy +

2vE
(1− v2)

εyyεxx +Gε
2
yx+

G{ζ 2
µ(χxx)

2 +ζ
2
µ(χyy)

2 +ζ
2
µ(2χxy)

2 +ζ
2
µ(2χyz)

2 +ζ
2
µ(2χxz)

2}]dxdydz
(11)

From the displacement field defined in Eq. (7), the first variation of the kinetic en-
ergy, with the rotary inertia included, is defined as [Reddy (2002); Szilard (2004)]:

δΠT =
1
2

δ

∫ ∫
ρh

[(
∂u1

∂ t

)2

+

(
∂u2

∂ t

)2

+

(
∂u3

∂ t

)2
]

dydx (12)

where ρ is the mass density and h is the constant thickness of the micro-panel.
In the same spirit, the first variation of the virtual work done by external loads is
[Akgöz and Civalek (2013)]:

T∫
0

δΠWB =−
∫

R
( fiδui + ciδθi)−

∫
∂R

(tiδui + siδθi)ds (13)

where fi,ci, ti and si are components of the body force, the body couple, the trac-
tion and the surface couple, respectively. With Eqs. (11) – (13), one invokes the
variational statement of the Hamilton’s principle, which mathematically translates
to:

δ
T
∫
0
(ΠT −ΠU +ΠWB)dt = 0 (14)

where the integration in Eq. (14) is carried out between the time interval (0,T ). Eqs.
(11) – (13) are substituted in Eq. (14), and the fundamental lemma of variational
calculus is invoked to retrieve the size-dependent governing equations of a single
micro-panel as:

−ρh
∂ 2u
∂ t2 +Eh

[
1

2(1+ v)
∂ 2u
∂y2 +

1
2(1− v)

∂ 2v
∂y∂x

+
1

1− v2
∂ 2u
∂x2

]
+

Ehζ 2

8(1+ v)

[
∂ 4v

∂y3∂x
− ∂ 4u

∂y4 −
∂ 4u

∂x2∂y2 +
∂ 4v

∂x3∂y

]
= 0

(15)
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−ρh
∂ 2v
∂ t2 +Eh

[
1

1− v2
∂ 2v
∂y2 +

1
2(1− v)

∂ 2u
∂y∂x

+
1

2(1+ v)
∂ 2v
∂x2

]
+

Ehζ 2

8(1+ v)

[
∂ 4u

∂y3∂x
− ∂ 4v

∂x2∂y2 +
∂ 4u

∂x3∂y
+

∂ 4v
∂x4

]
= 0

(16)

−ρh
∂ 2w
∂ t2 +ρI

[
∂ 4w

∂ t2∂y2 +
∂ 4w

∂ t2∂x2

]
− Eh3

12(1− v2)

[
∂ 4w
∂y4 +2

∂ 4w
∂x2∂y2 +

∂ 4w
∂x4

]
− Ehζ 2

2(1+ v)

[
∂ 4w
∂y4 +2

∂ 4w
∂x2∂y2 +

∂ 4w
∂x4

]
= 0

(17)

The terms that arise from the use of the MCST are underlined in Eqs. (15) – (17).
In general, Eqs. (15) and (16) are adequate to predict the in-plane (extensional)
vibration of a single micro-panel. On the other hand, Eq. (17) is suitable for the
quantification of the transverse motion of a single micro-panel. Now, while Eq.
(17) can be tackled alone, Eqs. (15) and (16) are coupled, and thus they cannot
be solved independent of each other. Of interest in this study is the case of two
inextensible micro-panels separated by evenly distributed ribs. On this premise,
the focus of the current study is restricted to Eq(17) and its eigen-analysis. For the
purpose of incorporating the influence of the ribs, the following assumptions are
adopted:

1. the ribs are made of similar materials and have resistance to stretching and
compression;

2. the ribs suffer negligibly marginal distortion of their positions with respect
to their initial contact positions with the surface of each micro-panel;

3. no structural anisotropy is introduced by the ribs and;

4. the two micro-panels are made of the same material, length, width and den-
sity.

With the stated assumptions, the concentrated rigidities of the ribs can be replaced
by the distributed continuous support of the Winkler’s type. Given this simplifica-
tion, the contribution of the ribs’ stiffness is now reflected in the equation governing
the transverse vibration of individual micro-panel as:



Size-Dependent Flexural Dynamics of Ribs-Connected Polymeric Micropanels 149

Upper micro-panel:

−ρh
∂ 2wu

∂ t2 +ρI
[

∂ 4wu

∂ t2∂y2 +
∂ 4wu

∂ t2∂x2

]
− Eh3

12(1− v2)

[
∂ 4wu

∂y4 +2
∂ 4wu

∂x2∂y2 +
∂ 4wu

∂x4

]
− Ehζ 2

2(1+ v)

[
∂ 4wu

∂y4 +2
∂ 4wu

∂x2∂y2 +
∂ 4wu

∂x4

]
−K (wu−wl) = 0

(18)

Lower micro-panel:

−ρh
∂ 2wl

∂ t2 +ρI
[

∂ 4wl

∂ t2∂y2 +
∂ 4wl

∂ t2∂x2

]
− Eh3

12(1− v2)

[
∂ 4wl

∂y4 +2
∂ 4wl

∂x2∂y2 +
∂ 4wl

∂x4

]
− Ehζ 2

2(1+ v)

[
∂ 4wl

∂y4 +2
∂ 4wl

∂x2∂y2 +
∂ 4wl

∂x4

]
−K (wl−wu) = 0

(19)

It is pointed out that in Eqs. (18) – (19), the total stiffness (K) of the Winkler’s
foundation is taken to be equivalent to the averaged stiffness of the overall ribs
between the micro-panels. Besides, wu and wl denote the transverse motions of the
upper and lower micro-panel, respectively. The two displacement field variables
describing the response of each micro-panel are homogenized by subtracting Eq.
(19) from (18) to get:

−ρh
∂ 2 (wu−wl)

∂ t2 +ρI
[

∂ 4

∂ t2∂y2 +
∂ 4

∂ t2∂x2

]
(wu−wl)

− Eh3

12(1− v2)

[
∂ 4

∂y4 +2
∂ 4

∂x2∂y2 +
∂ 4

∂x4

]
(wu−wl)

− Ehζ 2

2(1+ v)

[
∂ 4

∂y4 +2
∂ 4

∂x2∂y2 +
∂ 4

∂x4

]
(wu−wl)−2K (wu−wl) = 0

(20)

A further modification of the system’s response is sought by employing a change of
variable as done in Murmu and Adhikari (2011). In this vein, the relative displace-
ment (wu−wl) of the upper micro-panel with respect to the lower micro-panel is
denoted by wa. The change of variable leads to the equations of the rib-connected
micro-panels as:

−ρh
∂ 2wa

∂ t2 +ρI
[

∂ 4

∂ t2∂y2 +
∂ 4

∂ t2∂x2

]
wa

− Eh3

12(1− v2)

[
∂ 4

∂y4 +2
∂ 4

∂x2∂y2 +
∂ 4

∂x4

]
wa

− Ehζ 2

2(1+ v)

[
∂ 4

∂y4 +2
∂ 4

∂x2∂y2 +
∂ 4

∂x4

]
wa−2Kwa = 0

(21)
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−ρh
∂ 2wl

∂ t2 +ρI
[

∂ 4wl

∂ t2∂y2 +
∂ 4wl

∂ t2∂x2

]
wa−

Eh3

12(1− v2)

[
∂ 4wl

∂y4 +2
∂ 4wl

∂x2∂y2 +
∂ 4wl

∂x4

]
− Ehζ 2

2(1+ v)

[
∂ 4wl

∂y4 +2
∂ 4wl

∂x2∂y2 +
∂ 4wl

∂x4

]
+Kwa = 0

(22)

Equations (21) and (22) describe the transverse motion of the connected micro-
panels, where I is the moment of inertia per unit area of a micro-panel. It de-
serves to be pointed out that if the underlined terms are eliminated, the classical
size-independent governing equation of the Kirchhoff plate theory is retrieved. In
succeeding sections, the dynamic behavior of the system is investigated under two
idealized boundary conditions: (i) simple support on the four edges (that is, SSSS,
where S stands for simply-supported); and (ii) a built-in support on the four edges
(that is, CCCC, where C stands for clamped) as shown in Fig. 2.

 
Figure 2: The two types of boundary supports investigated for the rib-connected
micro-panels.
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In order to specify the expressions for the stipulated boundary conditions the fol-
lowing stress resultants are defined:

Cxx

Cxy

Cxz

Cyy

Cyz

=
h/2
∫
−h/2


mxx

mxy

mxz

myy

myz

dz (23)


Mxx

Mxy

Myy

=
h/2
∫
−h/2


σxx

σxy

σyy

zdz (24)

where Cxx,Cxy,CxzCyy and Cyz are the couple moments that need to be mapped to the
displacement field through Eq. (10). Also, MMMxx,MMMxy and MMMyy are the moments (re-
lated to the Cauchy stress tensor) that are mapped to the displacement field through
Eq. (8). Under the SSSS boundary condition, the following constraints are imposed
around the periphery of the coupled micro-panels:

wa (0,y, t) = wu (0,y, t)−wl (0,y, t) = 0 (25)

wa (a,0, t) = wu (a,0, t)−wl (a,0, t) = 0 (26)

wa (x,0, t) = wu (x,0, t)−wl (x,0, t) = 0 (27)

wa (x,b, t) = wu (x,b, t)−wl (x,b, t) = 0 (28)

Mxxa (0,y, t)+Cxya (0,y, t) = 0 (29)

Mxxa (a,y, t)+Cxya (a,y, t) = 0 (30)

−Myya (x,0, t)+Cxya (x,0, t) = 0 (31)

−Myya (x,b, t)+Cxya (x,b, t) = 0 (32)

Analogously, under the CCCC boundary condition the expressions stated in Eqs.
(25) – (28), are supplemented with the following additional constraints around the
periphery of coupled micro-panels:

∂

∂x
wa (0,y, t) =

∂

∂x
[wu (0,y, t)−wl (0,y, t)] = 0 (33)

∂

∂x
wa (a,0, t) =

∂

∂x
[wu (a,0, t)−wl (a,0, t)] = 0 (34)

∂

∂x
wa (x,0, t) =

∂

∂x
[wu (x,0, t)−wl (x,0, t)] = 0 (35)

∂

∂x
wa (x,b, t) =

∂

∂x
[wu (x,b, t)−wl (x,b, t)] = 0 (36)
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3 Solution Procedure

The Rayleigh method is adopted to evaluate the dynamic response of the system.
The energy functional Π from the governing equation of the coupled is defined as:

Π = [(ΠU)maxu +(ΠU)maxl]− [(ΠT )maxu +(ΠT )maxl] (37)

where (ΠU)maxu and (ΠU)maxl represent the maximum strain energy of the upper
and lower micro-panels, respectively. Equally, (ΠT )maxu and (ΠT )maxl represent
the maximum kinetic energy of the upper and lower micro-panels, respectively. As
it is often a good practice to cast the governing equation into the non-dimensional
form, the following parameters are introduced:

ξ = x/a; η = y/b; ϕ = a/b; D =
Eh3

12(1−υ2)
(38)

With the non-dimensional parameters, the explicit expressions for the maximum
energy terms for the overall system become:

(ΠU)max

=
1
2

∫ 1

0

∫ 1

0

{
D

[(
∂ 2wa
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(39)

(ΠT )max=
ω2
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1
∫
0

1
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+

[
∂wa

∂η

]2

+

[
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+

[
∂wl

∂η

]2
)]
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(40)

The Rayleigh solution procedure requires that the mid-plane deflections of the
micro-panel be expressed in terms of an assumed mode shape function in the form
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of a double Fourier series as:

w(ξ ,η) =
M

∑
m=1

N

∑
n=1

pmnφm (ξ )βn (η) , (41)

such that pmn is the amplitude of the function, while φm (ξ ) and βn (η) are the mode
functions that satisfy the Dirichlet boundary conditions of the micro-panel. The fol-
lowing comparison functions are used for the two boundary conditions considered
in this study:

SSSS: w(ξ ,η) = ∑
M
m=1 ∑

N
n=1 pmn sin(mπξ )sin(nπη) ;

(m = 1,2,3 . . . ;n = 1,2,3 . . . ;)
(42)

CCCC: w(ξ ,η) = ∑
M
m=1 ∑

N
n=1 pmn sin(mπξ )sin(πξ )sin(πη)sin(nπη) (43)

where m and n are the nodal lines in the ξ and η directions that determine the
wave modes of the micro-panels. For the frequency values to be determined, the
Rayleigh method minimizes the energy functional (by ensuring that ∂Π/∂ pmn = 0)
[Liu (2011)]. The minimization procedure results in a system of algebraic equations
whose secular determinant yields the natural frequencies of the coupled system. In
the next section, detailed numerical results are provided to evaluate the influence of
different parameters of the model on the dynamic response of the coupled systems.

4 Special cases

Three different mechanistic cases of practical interests can be derived from the gov-
erning equation. These cases, shown in Fig. 3, are briefly highlighted below. For
convenience, the following additional non-dimensional terms have been introduced
in what follows:

γ = ζ/h; αeff = Ka4/D; µ = h/a; λnm = ωnma2
√

ρh/D; (44)

4.1 Asynchronous motion of the coupled system

The case of the asynchronous motion of the coupled system, which is also referred
to as the out-of-phase vibration, occurs when the two micro-panels move in differ-
ent directions [Murmu and Adhikari (2011)]. In such case the condition of motion
stipulates that wa 6= 0. Under this condition, the Rayleigh method yields an upper
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estimate of the frequency of the coupled micro-panels with the SSSS edge condi-
tions as:

(λnm)
2 =[

12γ2
(
−6m4π4+6m4π4v−12m2n2π4φ 2+12m2n2π4vφ 2−6n4π4φ 4 +6n4π4vφ 4

)
12+µ2φ +µ2φ 3

+
12
(
m4π4 +2m2n2π4φ 2 +n4π4φ 4 +2αe f f

)
12+µ2φ +µ2φ 3

]
.

(45)

In Eq. (45), γ now represents the influence of the size-effect (that is, the mate-
rial length scale of the micro-panel). This specific parameter quantifies the size-
dependent vibration dynamics of the micro-panel with respect to the micro-panel’s
thickness. Also, αe f f is the non-dimensional averaged stiffness of the elastic con-
nections, while µ and φ represent the thickness-to-length ratio and the aspect ratio
of the micro-panel, respectively

4.2 Synchronous motion of the coupled system

Under a synchronous motion, the movements of the two micro-panels are in sync.
Hence, this case is also referred to as the in-phase vibration Here, the condition of
motion during the in-phase vibration requires that wa = 0. With this, the Rayleigh
method again yields an upper estimate of the frequency of the coupled micro-panels
with SSSS edge conditions as:

(λnm)
2 =[

12
(
m4π4 +2m2n2π4φ 2 +n4π4φ 4

)
12+µ2φ +µ2φ 3

+
12γ2

(
−6m4π4 +6m4π4v−12m2n2π4φ 2 +12m2n2π4vφ 2−6n4π4vφ 4

)
12+µ2φ +µ2φ 3

]
.

(46)

4.3 Motion of the upper-panel supported by the ribs

The third special case relates to the situation when the lower micro-panel is a rigid
base. Such situations do arise in the development of a mass sensing device [Agache,
Blanco-Gomez, Cochet and Caillat (2011)]. When this occurs, then wl = 0. Con-
sequently, the frequency of the remnant systems is governed by the geometric and
material properties as well as the boundary conditions of the upper micro-panel and
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the ribs. The upper estimate of the frequency of the remnant system with a SSSS
edge conditions for the upper micro-panel then takes the simplified form:

(λnm)
2 =

12
(

π4
(
1+6γ2 (−1+υ)

)(
m2 +n2ϕ2

)2
+αe f f

)
12+µ2 (ϕ +ϕ3)

 (47)

 

Figure 3: Special cases of the rib-connected micro-panels: (a) out-of-phase motion;
(b) in-phase motion; and (c) motion of a single rib-supported micro-panel.

5 Discussion

The centerpiece of this section is to detail the qualitative and quantitative results
relating to the free vibration properties of the system, based on the formulation
presented in the foregoing sections. Principally, the section details the variation
of the natural frequencies of the system with respect to changes in the aspect ratio
(ϕ), the material length scale parameter (γ), the Poisson’s ratio (ν), the thickness-
to-span ratio (µ), and the stiffness of the ribs (αe f f ). For the reported analyses,
the effective material properties of the polymeric micro-panel are assumed to be:
E = 1.44GPa; ρ = 1220kg/m3; and ν = 0.38. Furthermore, based on the exper-
imental work of Lam, Yang, Chong, Wang and Tong (2003), the material length
scale parameter for the epoxy micro-plate is restricted to a conservative value of
ζ = 17.6µm. Meanwhile, for polymeric structural elements with underlying poly-
mer chains of finite stiffness, the material length scale parameter (ζ ) is reported to
be directly related to the effective averaged Frank elastic constant [Gao, Huang and
Reddy (2013)]. For the analyses that follow, the thickness values considered is in
the range 20µm ≤ h ≤ 176µm. Besides, each rib is idealized as a fixed-fixed bar.
Thus for each rib, the equivalent stiffness is estimated from kr = 192ErIr/L3

r , where
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Ar, Ir,Er, and Lr are the cross-sectional area, the moment of inertia, the Young’s
modulus and length of each rib.

5.1 Validation

For the purpose of validation, the governing equation of the system is modified
by eliminating the parameters µ , αe f f and γ from the mathematical model. With
this elimination, the governing equation is reduced to that of the Kirchhoff’s plate
theory [Szilard (2004)]. Tab. 1 reveals the comparison of the frequency values,
based on the reduced form of the current model, with the classic work of Leissa
(1973). Tab. 1 contains selected numerical results for a panel (treated as a plate)
under the SSSS edge conditions and the CCCC edge conditions.

Tab. 2 provides the validation of the non-dimensional frequencies of a micro-plate
with simply-supported edges. The governing equation employed for the results in
Tab. 2 contains γ , but it does not contain αe f f and µ . The validation involves
comparison with the closed-form expression presented in Yin, Qian, Wang and Xia
(2010). It is noticed from Tab. 2 that a good agreement is achieved between the
predicted non-dimensional frequency from the current method and the closed-form
solution.

For brevity sake, the discussion is restricted to the two lowest symmetrical modes
of the flexural vibration (whose non-dimensional frequency parameters are λ11 and
λ22) in the next subsections. For completeness, the mode shapes corresponding
to both λ11 and λ22 are shown in Figs 4 and 5, respectively. In these figures, the
contour plot corresponding to each of the two vibration modes are also provided
under each of the mode shape. From the plots, it is noticed that increasing values
of the small-scale parameter stiffen the response of the micro-panel. Besides, as
seen from the contour plots, higher values of the small-scale parameter generate
more equilibrium positions during the deformation of the system.

5.2 Frequency distribution and frequency shift

To evaluate the frequency shift induced by the small-scale parameter, a percentage
change in the computed natural frequencies based on the MCST and the classical
(size-independent) theory is defined as:

Rnm =

∣∣∣∣(λnm)CCT − (λnm)MCST
(λnm)CCT

∣∣∣∣×100 (48)

where (λnm)MCST is the natural frequency of the system from the MCST, while
(λnm)CCT is the corresponding natural frequency from the CCT. Besides, λnm is the
non-dimensional natural frequency parameter defined as:

λnm = ωnma2
√

ρh/D. (49)
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Table 1: Validation of the non-dimensional frequencies of a classical plate.

Normalized Natural Frequency (λ ) (µ = 0,αe f f = 0,γ = 0)
CCCC

ϕ Method λ11 λ12 λ21 λ22

2/3
Present 27.853 43.424 68.364 83.351
Analytical
[Leissa (1973)]

27.010 41.716 66.148 79.850

1.0
Present 37.221 70.081 76.231 113.390
Analytical
[Leissa (1973)]

35.992 70.123 73.413 108.27

1.5
Present 62.680 153.810 97.704 187.532
Analytical
[Leissa (1973)]

60.772 148.820 93.860 179.66

SSSS

2/3
Present 14.256 27.415 43.864 57.024
Analytical
[Leissa (1973)]

14.256 27.416 43.865 57.024

1.0
Present 19.739 49.348 49.348 78.956
Analytical
[Leissa (1973)]

19.739 49.348 49.348 78.957

1.5
Present 32.076 98.69 61.685 128.305
Analytical
[Leissa (1973)]

32.076 98.696 61.685 128.305

Table 2: Validation of the non-dimensional frequencies of a micro-plate with
simply-supported edges.

Normalized Natural Frequency (λ ) (µ = 0,αe f f = 0,υ = 0.38)
γ = 0.2 γ = 0.5 γ = 0.8

ϕ Rayleigh
Method

[Yin, Qian,
Wang and

Xia (2010)]

Rayleigh
Method

[Yin, Qian,
Wang and

Xia (2010)]

Rayleigh
Method

[Yin, Qian,
Wang and

Xia (2010)]
2/3 15.28 15.28 19.81 19.81 26.22 26.22
1.0 21.16 21.16 27.42 27.42 36.29 36.29
1.5 34.38 34.38 44.56 44.56 58.97 58.97
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    (a)       (b)         (c) 

 Figure 4: The variation in the mode shape along with the corresponding contour
plots of the lowest symmetrical mode (λ11): (a) γ = 0; (b) γ = 0.2; and (c) γ = 0.8.

Summarized in Figs 68 are the distributions of the frequency variations for the three
mechanistic cases of the coupled systems highlighted in section 4. Precisely, illus-
trated in Figs 6(a) and 6(b) are the distributions of the natural frequencies for the
first symmetric vibration mode, under the SSSS and the CCCC boundary condi-
tions, respectively. In each of the plot, the dummy variables C1,C2 and C3 refer to
case 1, case 2 and case 3, respectively. It is recalled that case 1 relates to the out-of-
phase motion of the coupled micro-panels, case 2 refers to the in-phase vibration of
the coupled micro-panels, and case 3 is the motion of a single rib-supported micro-
panel (case 3). Fig. 7 is indicative of the distribution of the natural frequencies for
the second symmetric vibration modes of the three mechanistic cases. It is noticed
from Fig. 7 that the frequency response increases with the aspect ratio (similar
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    (a)       (b)   (c) 

 
Figure 5: The variation in the mode shape and the contour plots of the second
symmetrical mode (λ22): (a) γ = 0; (b) γ = 0.2; and (c) γ = 0.8.

to Fig. 6). While a clear pattern of skew-symmetric distribution of the frequency
values is easily noticed in Figs 6 and 7, a number of additional subtle observations
can be made from the plots. First, in Fig. 6a, the lowest non-dimensional natural
frequency value for the out-of-phase motion (C1) is more than the highest non-
dimensional natural frequency value for the other two cases for the aspect ratio of
0.2. However, under an increased value of the aspect ratio, the difference in the
natural frequency values for the three cases approaches each other, although C1
still maintains the lead. Furthermore, in Fig. 6(b), the difference in the degrees
of influence of the aspect ratio and the small-scale parameter on the pattern of the
frequency increase is found to be comparatively similar across the three cases.
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(a) 

 

(b) 

 Figure 6: Distribution of the natural frequencies for the first symmetric vibration
modes of the systems: (a) under four simply supported edges; (b) under fully
clamped edges.

Fig. 8 represents a visual display of the boundary condition under which the effect
of the small-scale parameter exerts a greater influence. From this plot, it is seen that
the CCCC edge condition is more heavily affected by the size-effect than the SSSS
edge condition for the two vibration modes. It is worth pointing out that, since the
CCCC edge conditions do naturally yield greater frequency response, normalized
frequency values are employed for Fig. 8. Still, it is noticed that the effect of the
small-scale parameter is more pronounced on the frequency of the system under
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(a) 

 

(b) 

 Figure 7: Distribution of the natural frequencies for the second symmetric vibration
modes (αe f f = 100): (a) micro-panels with four simply supported edges; (b) micro-
panels with fully clamped edges.

the CCCC edge condition.

Additional plots to examine the effects of the geometric and small-scale parameters
are provided in Figs 9-12, all of which are related to the system with the SSSS
edge conditions. It is observed from Fig. 9(a) that as the micro-panel’s thickness
reduces, up to 20% increase in the frequency value is attainable for an aspect ratio
of 1 (basically a square micro-panel). On the other hand, Fig. 9(b) illustrates the
vanishing influence of the size-effect on the natural frequency value of the panels
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Figure 8: A comparison of the effect of the small-scale parameter on the out-of-
phase motion of the coupled system.

as the thickness increases.

Fig. 10 shows the differential trend of the influence of the small-scale effect on
the responses of the three mechanistic cases of the coupled system. From this plot,
one is able to conclude that the out-of-phase motion of the coupled system expe-
riences the most softening effect arising from the decreasing value of the micro-
panels’ thickness. Demonstrated in Fig. 11 is the inverse relationship between
the frequency response of the out-of-phase motion of the coupled system with the
thickness-to-span ratio (µ).

In Fig. 12, the influence of the ribs’ effective stiffness on the three special cases
is shown. Specifically, Fig. 12(a) reveals the trend of the frequency increase when
the ribs’ effective stiffness parameter approaches zero, while Fig. 12(b) shows dif-
ference in the trend for the three cases when the ribs’ effective stiffness parameter
is maintained at a modest value of 100.

5.3 Identification of the order of influence of the model’s parameters

The results presented under subsection 5.3 are generated by the traditional method
of analysis, where one varies a single parameter of the model while keeping all
others constant. Essentially, this method is analogous to the so called one factor-
at-a-time (OFAT) analysis [Karray and Silva (2004)]. One of the drawbacks of
the OFAT methodology in the traditional computational mechanics is the inherent
underestimation of the possibility of interaction effects between the variables that
influence the response of the system under consideration. In the present study for
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         (a)         

 

                                                                                 (b) 

 Figure 9: The quantification of the percentage change in frequency values: (a)
the change in frequency against the small-scale effect; (b) the change in frequency
against the micro-panels’ thickness.

instance, we recognized five continuous numerical dimensionless parameters that
could influence the response of the system as seen in Fig. 13. These five continuous
numerical parameters (or factors) are the aspect ratio (ϕ), the small-scale parameter
(γ), the ribs’ effective stiffness (αe f f ), the Poisson’s ratio (ν) and the thickness-
to-span ratio (µ). In what follows, the OFAT analysis is complemented with the
applied statistical method of design of experiment (DOE) [Dean and Voss (1999);
Mustapha and Zhong (2012)] to examine the order of influence of these parameters.

Figs. 14-16 are indicative of the outcome of the analyses based on the use of the
DOE. Two levels of each of the five parameters are considered for the numerical



164 Copyright © 2014 Tech Science Press CMC, vol.42, no.2, pp.141-174, 2014

 

Figure 10: Variation of frequency values with varying value of the material length
scale for the special motion types of the system.

 

Figure 11: The effect of rotary inertia on the two lowest symmetric vibration modes
for the out-of-phase motion of the coupled system.

DOE. Based on the established procedure of DOE, an experimental design involv-
ing five input factors at two levels (low and high) becomes a problem of 2p number
of experimental runs, where the superscript p is the number of factors. The capa-
bility of the statistical software Minitab [Lesik (2010)] is used to run a randomized
design of the experiment. It is pointed out that the term experiment is used in the
sense of numerical analysis experiment in the current setting. The values of the
factors at each run of the experiment are presented in Tab. 3.

The ordered ranking of the model’s factors (also refers to as main effects) as they
influence the response of the system are presented in the form of the Pareto charts
depicted in Figs 14-16. In these charts the terms A,B,C,D and E are dummy vari-
ables that symbolize the ribs effective stiffness, the aspect ratio, the size-effect, the
thickness-to-span ratio and the Poisson’s ratio, respectively. The combinations of
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     (a) 

 

     (b) 

 Figure 12: The effect of the ribs’ stiffness on the three special cases: (a) a negligible
ribs’ effective stiffness parameter; (b) ribs’ effective stiffness maintained at 100.

 

Figure 13: The relation between the inputs and the output of the coupled micro-
panels system.
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these dummy variables (such as AB,ACandABC etc.,) are visible in these charts,
and they are called the interaction effects. Specifically, Figs. 14, 15 and 16 repre-
sent the Pareto chart of case 1 (the asynchronous motion), case 2 (the synchronous
motion) and case 3 (the motion of a rib-connected micro-panel), respectively.

It is observed from Figs 14-16 that the factor that affects the natural frequency of
the motion of the three cases the most is the interaction factor BC.This interaction
factor is created by the interaction between the aspect ratio and the size-effect pa-
rameter. Furthermore, it is observed from the Pareto charts that the Poisson’s ratio
has a somewhat negligible effect on the motion of the three systems. However,
the interaction effect created between the Poisson’s ratio, the aspect ratio and size-
effect (BCE) is the fourth most significant factor that influences the behavior of
the synchronous motion. An additional conclusion that can be drawn from these
charts is the fact the size-effect is the second most significant factor that alters the
natural frequency of the system for case 1 and case 2. It is also the third most sig-
nificant factor for case 3. Besides, the thickness-to-span ratio is discovered not to
significantly affect the response of any of the three mechanistic cases.

 

Figure 14: The Pareto chart of the ordered ranking of the model’s factors for the
asynchronous motion of coupled system.
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Table 3: Randomized numerical experimental runs.

Continuous input variables Response (λ11)
Case 1 Case 2 Case 3

1 10 1.5 0.8 0.05 0.25 63.308 63.150 63.071
2 200 0.1 0.8 0.25 0.38 27.121 18.323 11.656
3 200 0.1 0.8 0.25 0.25 28.020 19.630 13.617
4 200 0.1 0.1 0.25 0.25 22.440 10.187 9.803
5 10 1.5 0.1 0.25 0.25 32.681 32.381 32.230
6 10 1.5 0.1 0.05 0.38 32.955 32.650 32.497
7 10 0.1 0.1 0.25 0.25 11.125 10.187 9.684
8 10 1.5 0.1 0.05 0.25 33.076 32.773 32.620
9 10 0.1 0.1 0.25 0.38 11.090 10.149 9.644
10 10 0.1 0.8 0.05 0.25 20.137 19.635 19.378
11 10 0.1 0.8 0.25 0.38 18.861 18.323 18.049
12 200 1.5 0.8 0.25 0.38 61.501 58.243 56.544
13 10 1.5 0.1 0.25 0.38 32.561 32.260 32.108
14 200 1.5 0.1 0.25 0.25 37.929 32.381 29.214
15 200 0.1 0.1 0.25 0.38 22.423 10.149 9.843
16 10 0.1 0.8 0.25 0.25 20.132 19.630 19.373
17 10 0.1 0.1 0.05 0.38 11.093 10.151 9.646
18 200 1.5 0.1 0.05 0.38 38.284 32.650 29.432
19 200 0.1 0.8 0.05 0.25 28.027 19.635 13.621
20 10 0.1 0.1 0.05 0.25 11.128 10.190 9.686
21 200 1.5 0.8 0.25 0.25 65.440 62.395 60.812
22 200 1.5 0.8 .. 0.38 62.245 58.948 57.228
23 200 1.5 0.1 0.05 0.25 38.388 32.773 29.568
24 200 1.5 0.1 0.25 0.38 37.826 32.260 29.080
25 10 1.5 0.8 0.05 0.38 59.117 58.948 58.863
26 10 0.1 0.8 0.05 0.38 18.866 18.328 18.053
27 10 1.5 0.8 0.25 0.38 58.410 58.243 58.159
28 200 0.1 0.1 0.05 0.25 22.446 10.190 9.806
29 200 1.5 0.8 0.05 0.25 66.239 63.150 61.548
30 10 1.5 0.8 0.25 0.25 62.551 62.395 62.317
31 200 0.1 0.8 0.05 0.38 27.127 18.328 11.659
32 200 0.1 0.1 0.05 0.38 22.428 10.151 9.846
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Figure 15: The Pareto chart of the ordered ranking of the model’s factors for the
synchronous motion of coupled system.

 

Figure 16: The Pareto chart for the motion of ribs-supported single micro-panel.
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6 Conclusion

On the basis of the extended Hamilton’s principle and the modified couple stress
theory, the governing equations of a rib-connected system of coupled micro-panels
are derived. Starting from a displacement trial field, the derivation considers the de-
formation of a single micro-panel embedded in a Euclidean 3-space ∀. The deriva-
tion procedure yields three field equations. Two of the field equations represent
the extensional vibration mode of the micro-panel, while the third equation relates
to the flexural vibration mode. Given the focus of the current study, the third field
equation, which accounts for the flexural vibration of the micro-panel and is uncou-
pled from the extensional modes is adopted for comprehensive response analyses.

In analyzing the behavior of the coupled micro-scale panels, three forms of special
cases of motion of the system were assessed: (i) the out-of-phase motion; (ii) the
in-phase motion; and (iii) the motion of a single micro-panel with rib connections
and a rigid base. The vibration characteristics under each of these motion types
were studied systematically for the determination of the frequency shift and the
pattern of the frequency distribution. The study reaffirms the expected substantial
increase in natural frequency value for a lower range of the micro-panel’s thickness.
A skew-symmetric pattern of distribution of the shift in natural frequencies values
is discovered for the first and second symmetric modes of the coupled system under
the two edge conditions studied. Furthermore, it is noticed that, for lower values
of the aspect ratio, the lowest non-dimensional natural frequency value for the out-
of-phase motion is more than the highest non-dimensional natural frequency value
for both the in-phase motion and the motion of a single micro-panel with rib con-
nection. It is also found that the effect of the material length scale on the frequency
of the out-of-phase motion is higher when the edges are fully clamped than when
simply-supported. Through Pareto analysis, notable interaction effects were dis-
covered between the models’ parameters.

Although extrapolating theoretical conclusions to experimental studies do come
with certain challenges, preliminary theoretical investigations such as the one car-
ried out in this study strives to provide a cogent basis for close scrutiny of future
experimental results. The observations from this study are expected to pave the way
for the recognition of key variables (main effects or interactions effects) that might
be employed in the future optimization of the system’s geometry and response.
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