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Fast and High-Resolution Optical Inspection System for
In-Line Detection and Labeling of Surface Defects

M. Chang1,2,3, Y. C. Chou1,2, P. T. Lin1,2 and J. L. Gabayno2,4

Abstract: Automated optical inspection systems installed in production lines help
ensure high throughput by speeding up inspection of defects that are otherwise dif-
ficult to detect using the naked eye. However, depending on the size and surface
properties of the products such as micro-cracks on touchscreen panels glass cover,
the detection speed and accuracy are limited by the imaging module and lighting
technique. Therefore the current inspection methods are still delegated to a few
qualified personnel whose limited capacity has been a huge tradeoff for high vol-
ume production. In this study, an automated optical technology for in-line surface
defect inspection is developed offering high performance in spatial resolution and
detection speed for any surface. The inspection system consisting of an LED array
which illuminates a wide inspection area on the test object captures scattered light
from surface defects using a 12288-pixel line CCD at 12 kHz acquisition rate. A 3.5
µm per pixel resolution of the line CCD provides a detection width capability of at
most 43 mm which is equivalent to 147 megapixels image data acquired per second.
To handle the large volume of data per acquisition cycle, the data are transmitted
from a host CPU to multiple GPU devices where CUDA-based image processing
kernels are adopted to perform detection and labeling of surface defects in parallel.
The processed data is sent back to the CPU to display user-defined defect maps.
2-D inspection of back-coated flat mirrors, 43 mm x 70 mm2 in size, using a single
CCD module and multiple GPU reveals that surface flaws such as bubbles, cracks,
and edge defects are detected accurately. The acquisition time to capture and load
the data to a CPU is 1.7 s while the processing time to transmit the same data for
surface defect detection in a GPU is 248 ms. The latter time scale is considerably
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faster compared to minute-long computations in solely CPU-based processing al-
gorithm of the same test object. The minimum width of detected surface defects is
about 10 µm with true detection rates above 94%. Moreover, the inspection sys-
tem is easily configurable by tasking multiple CCD imaging modules to different
GPU devices to allow inspection of larger test objects. This flexibility can improve
both acquisition and detection speeds to boost in-line circuit chips, packaging, and
touchscreen panel inspection systems.

Keywords: surface defects, automated in-line inspection, linear CCD, parallel
computing, Compute Unified Device Architecture (CUDA).

1 Introduction

Manufactured products are tested prior to delivery to ensure that they remain reli-
able and meet customer expectations. Under such environment, it is essential that
the tests being implemented do not compromise the properties and performance of
the final product, i.e. non-destructive [Blitz (1991)]. The decision to test the qual-
ity of a product is usually defined by economic considerations in the part of the
manufacturer, where cost of the inspection system, expenses of replacing a failed
component, and inconvenience to the end users are weighed in. Prohibitive costs
of test systems often lead manufacturers to take calculated risks and only test a
small sample from a given batch of products. However, for sensitive components
such as ICs, imagers, etc., in-line inspection is strictly enforced during the early
stages of manufacturing and at specific intervals in order to monitor critical parts
of the product. Early detection of defects at these stages help manufacturers imple-
ment corrective actions prior to delivery thereby improving overall productivity by
reducing re-works, line disruptions, and eventual shipment delay.

Automated optical inspection (AOI) systems based on computer or machine vision
technology (MVT) have been employed to equip a production line with more re-
liable measurements. The fast acquisition speeds of the instruments compared to
manual inspection saves the manufacturer both time and resources in troubleshoot-
ing, quality evaluation, and yield. Depending on the size and surface properties of
the materials, the inherent concerns on the performance of AOIs are the processing
speed, accuracy, and resolution of the imaging module.

Computer vision technology is a method that relies on image or motion analysis
to provide automated optical inspection, robot control, remote navigation, and dy-
namic visual recognition. In general, it consists of an image acquisition module
such as a camera, lenses, and illumination source and a software package that can
interpret the acquired images by means of digital image-processing (DIP) tech-
niques [Gonzalez and Woods (2008)]. The software package is developed specifi-
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cally to extract key features from the images where decisions for succeeding actions
of the system are based on. In recent years, the technology has been widely used
in automotive camera systems, remote surveillance, materials sorting, and product
packaging.

Manufacturing industries have employed MVT as a non-destructive test (NDT)
protocol for reliable inspection and localization of surface defects. In such sys-
tems, one or multiple DIP solutions are applied after image acquisition to assess
the integrity of the product. Among the popular DIP operations include gamma
correction, stitching, binarization, labeling, edge detection, color and texture anal-
yses, and pattern recognition. Surface defect inspection systems based on these
operations have been previously proposed in combination with advanced imaging
techniques. Inspection platforms using linear CCDs were developed to discriminate
texture variation in metal slabs [Ryu, Choi, Jeon, Lee, Yun, and Kim (2014)] and
surface flaws in decorative labels [Busin, Vandenbroucke, and Macaire (2013)].
Contrast based image processing algorithm [Li, Lu, and Zhang (2012)] and im-
age recognition technique [Chen, Lin, Han, and Liang (2013)] were also proposed
to localize defect in steel bars and ceramic surfaces, respectively. Scanning sys-
tems for in-line inspection were developed for surface inspection of metal slabs
[Zhao, Ouyang, Chen, and Wen (2011)] and textures of plastic surfaces [Michaeli
and Berdel (2011)]. Other schemes featured automatic detection of cracks on solar
wafers [Li and Tsai (2011); Tsai, Chang and Chao (2010); Chiou, Liu and Liang
(2011)] and real-time inspection of automotive parts [Rosati, Boschetti, Biondi,
and Rossi (2009)] and reflective metal surfaces [Zhang, Ding, Lv, Shi, and Liang
(2011)]. To inspect surface imperfections on LCD panels and other glass sam-
ples, the solutions employed were optical flow-based motion analysis [Tsai and
Tsai (2011)], binary feature histogram operation [Zhao, Kong, Zhao, Liu, and Liu
(2011)], and color space selection method [Nishu and Agrawal (2012)]. In terms of
screening products based on pre-defined criteria, these techniques have delivered
reliable performance. However, a compromise between resolution and detection
speed often creates a bottleneck for in-line inspection.

This paper presents an inspection system that can achieve significant and reliable
performance in speed and resolution for extraction and labeling of micron-sized
surface defects. The system features a lighting solution combining a linear CCD
with LED array and a parallel computing algorithm for simultaneous detection and
labeling of the surface defects. These defects are reconstructed from light scattered
on the surface of the test objects. The information is collected by the line CCD and
stored in a host CPU. To deliver fast computation, the image data is transmitted
to a GPU device where computations using Compute Unified Device Architecture
(CUDA) kernel functions such as gamma correction, Gaussian pyramid, binariza-



128 Copyright © 2014 Tech Science Press CMC, vol.42, no.2, pp.125-140, 2014

tion, labeling, and edge detection, are completed in parallel. The processed data is
sent back to the CPU allowing the user to display a defect map. To our knowledge,
this is the first non-destructive optical inspection system that combines parallel
computing architecture to support both high resolution and fast detection speed of
surface defects for in-line measurements of large test objects.

2 Optical Inspection Setup

The optical inspection system consists of an imaging module, a motorized inspec-
tion stage, and image processing software such as shown in Fig. 1. Each imaging
module features a 5W broadband light source and a 12288 pixel-line CCD camera
(Basler raL12288-66km). The pixel resolution of the CCD is 3.5 µm hence the de-
tectable width is roughly 43 mm per CCD module. At 12 kHz line rate, the image
data acquired by one CCD alone is approximately 147 megapixels per second. The
detectable width can be improved to accommodate even bigger samples by invest-
ing on additional imaging modules or increasing the pixel number of each module.
Huge data capacity can be expected from either method which can be handled by
parallel processing on a common integration server combining CPU and multiple
GPU devices.

The inspection stage is motorized with a maximum translation speed of 70 mm/s.
It has a built-in movable holder for mounting the samples. Two opposite levers can
be used to lock-in different sizes of test samples on the stage. The levers are also
fitted with adjustment knobs to latch on the samples and control their position and
tilt. The camera and linear stage are connected to a common host computer. The
images acquired are also stored on the same computer.

In order to demonstrate the detection speed and resolution capability of the test
setup, this study will focus on only one imaging module. The line CCD is oriented
parallel to the width of the test object as shown. Two sets of LED array are mounted
on the light source holder and are juxtaposed to the CCD. The LED illuminates the
sample at an angle from the normal. In principle, the incident light impinging the
test object is reflected, transmitted, or absorbed by the surface. In our case, the
normal orientation of the CCD with respect to the sample is optimized to receive
the most light which are scattered from artificial or geometrical defects on the sur-
face. Thus, if the surface is perfectly smooth the camera will record a mostly dark
image since the majority of the light reflected is specular. Conversely, if there is a
defect on the surface it will scatter light in the direction of the camera which in turn
appears as a bright area in a dark background on the recorded image.
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Figure 1: The hardware components of the optical inspection system.

3 System Flow Chart

As shown in Fig. 2, the surface detection software initially prompts the user to input
the parameters settings which include the capture rate of the CCD, speed of the mo-
torized stage, and acquisition time. A command string is sent out next to initialize
the CCD and the stage. The line CCD acquires the surface scattered light from the
test object as it moves on the translation stage. The image data is stored on the host
server (CPU) after the set acquisition time has elapsed. The image pre-processing
and defect inspection tasks are assigned as CUDA-based kernel functions to a GPU
device. With this design and depending on the size of the object, multiple GPU
devices can be configured to perform the same kernel operations in parallel.

In a GPU device, the image pre-processing and defect detection tasks are performed
as pixel-wise operations on a designed block of CUDA threads. An image pixel is
represented by a CUDA thread which can be varied depending on the resolution
requirements. Initially, the raw data is copied from the CPU’s main memory to
the GPU’s global memory through a Message Passing Interface (MPI) command.
Separate memory is also allocated in the GPU to contain the processed data after
each kernel function, i.e. dst_1, dst_2, etc. in Fig 2. The kernel functions are
also initiated by MPI commands. After the CUDA threads complete the kernels,
the processed data (i.e. dst_out) is transferred back to the CPU. The processed
data from multiple GPUs are combined to generate a defect map where the size,
number, and features of surface defects are displayed for defect classification or
quality evaluation of the test object.
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Figure 2: The system flowchart from acquisition to transmission and detection of
surface defects.

4 Kernel Functions for Surface Defect Inspection

Six kernel functions are carried out by the CUDA threads. These include two image
pre-processing operations and four successive defect detection algorithms. These
kernels can be completed iteratively on a single GPU or in parallel on multiple
devices depending on the size of the image data.

4.1 Image pre-processing

The first kernel is gamma correction [Asadi and Hassanpour (2012)]. This is ap-
plied to the raw image Iin to enhance the contrast and is defined by the relation Iout

= αIγ

in. The coefficient αgs arbitrarily assigned a value of 1 and γg 0.84 is chosen
after optimization. The output data is normalized from 0 to 255. After correction,
the data is stored in the allocated memory dst_1 as shown in Fig. 2.

The second kernel implements a Gaussian pyramid [Jain and Sharma (2013)] scal-
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ing operation to further reduce the computation time. The processed data in dst_1 is
resized by convolving with the kernels gR (x,y,σ) = 1

16 [1 4 6 4 1 ] along the rows

and gC (x,y,σ) = 1
16


1
4
6
4
1

on all the columns. The computation is repeated un-

til the pixel size approaches a set threshold, e.g. 25 µm. All the even rows and
columns are removed after convolution and the processed output is stored in the
allocated memory dst_2.

4.2 Defect Detection

Four kernel functions for defect detection are carried out in succession by the
CUDA threads. These include binarization, labeling, size detection, and edge de-
tection. The latter two operations can be combined into one kernel.

4.2.1 Binarization

The processed data in dst_2 is binarized based on a preset threshold. As illustrated
in Fig. 3, if a pixel value is larger than the threshold, the pixel value is set to
255. Otherwise, the pixel value is set to zero. The binarized output is stored in the
allocated memory dst_3.

Figure 3: The binarization algorithm.



132 Copyright © 2014 Tech Science Press CMC, vol.42, no.2, pp.125-140, 2014

4.2.2 Labeling

In order to obtain the number of defects in an image, each are assigned a label. The
idea is to locate the starting and terminal points of defects, and then eliminate the
redundant starting and terminal points. After elimination, the number of defects
should be the same as the number of starting or terminal points.

The algorithm for determining the starting point of a defect follows the diagram
shown in Fig. 4(a). If a pixel value is equal to zero, the pixel value is not changed.
However, if a pixel value is larger than zero, and if the pixel value’s left, upper-
left, upper, and upper-right pixel values are all zeroes, that pixel value is set to
1. Otherwise, the pixel value is set to 9. Image pixels with a value of 1 are then
considered the starting points of defects.

The algorithm for determining the terminal point of a defect is illustrated in Fig.
4(b). If a pixel value is either equal to zero or 1, that pixel value is not changed.
However, if a pixel value is larger than zero but not equal to 1, and if the pixel
value’s right, bottom-right, bottom, and bottom-left pixel values are all zeroes, the
pixel value is set to 2. Otherwise, the pixel value is still set to 9. Image pixels with
a value of 2 are then considered the terminal points of defects.

The algorithm for elimination of redundant defect starting points is shown in Fig.
5(a). This operation is specifically targeted toward pixels with a value equal to 1.
In such a case, if there is any pixel on its left side along the same row with a value
of 1, the target pixel’s value is changed from 1 to 9.

The algorithm for elimination of redundant defect terminal point is illustrated in
Fig. 5(b). In contrast to the previous operation, this is targeted toward pixels with
a value equal to 2. For a target pixel, if there is any pixel on its right side along the
same row with a value of 2, the target pixel’s value is changed from 2 to 9. The
processed output after labeling is stored in the allocated memory dst_4.

4.2.3 Size and Edge Detection

Finally, this operation is implemented to obtain the size and geometric shapes or
contours of defects, i.e. the left, upper, right, and bottom edges of defects. In
addition, after the labeling operation, all nonzero pixel values are changed back to
255, which is the original value obtained after binarization. Moreover, an array
of zeroes, which has the same size as the image, is allocated in the CUDA global
memory for the edge detect algorithm.

The algorithm for left edge detection of defect is shown in Fig. 6(a). For a target
pixel with a value of 255, if the values of its left and right pixels are zero and 1,
respectively, the target pixel’s value in the new array is set to 255. Otherwise, the
target pixel’s value in the new array is not changed.
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Figure 4: The defect (a) starting point and (b) terminal point determination algo-
rithms.

The algorithm for right edge detection shown in Fig. 6(b) is the counterpart of the
left edge detection procedure. For a target pixel with a value of 255, if the values
of its right and left pixels are zero and 1, respectively, the target pixel’s value in the
new array is also set to 255. Otherwise, the target pixel’s value in the new array is
not changed.

The algorithm for upper edge detection is illustrated in Fig. 7(a). For a target pixel
with a value of 255, if the values of its upper pixel and its corresponding pixel in
the new array are both zeroes, and also the value of its bottom pixel is 255, then
the target pixel’s value in the new array is set to 255. Otherwise, the target pixel’s
value in the new array is not changed.
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Figure 5: The redundant defect (a) starting point elimination and (b) terminal point
elimination algorithms.

The algorithm for bottom edge detection shown in Fig. 7(b) is also the counterpart
of the upper edge detection procedure. For a target pixel with a value of 255, if
the values of its bottom pixel and its corresponding pixel in the new array are both
zeroes, and also the value of its upper pixel is 255, then the target pixel’s value in
the new array is set to 255. Otherwise, the target pixel’s value in the new array is
not changed.

The size of the defects is calculated from the bounded edges. The processed output
is stored in the allocated memory dst_out. This memory is directly accessible to
the CPU.
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 Figure 6: The defect (a) left edge and (b) right edge detection algorithms.

5 Experimental Results

The dark-field image of the upper left corner of a back-coated mirror object is
shown in Fig. 8(a). The actual dimension is 43 mm (W) x 70 mm (L). The image
on the left was the raw data stored on the CPU’s main memory after acquisition.
The data is transferred to the GPU’s global memory for defect inspection following
the algorithm discussed in Fig. 2. The processed output in dst_out is shown in Fig.
8(b). On the CPU, a defect map was created based on the geometrical shape, size,
and position of the defects on the sample. The map is a specific area on the test
object where a cluster of defects is detected. An example of a defect map on the
corner of a test sample is shown in Fig. 10(c). The sizes and features of defects
found on the sample are listed in Table 1. Point-like or circular defects ranging from
50 µm to 160 µm in diameter are labeled as bubbles. Thin and elongated features
which are located far from the edge of the test object are labeled as cracks. The
width and length of the cracks found on the sample is about 10 to 20 µm and 1 to
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      Figure 7: The defect (a) upper edge and (b) bottom edge detection algorithms.

10 mm, respectively. Jagged contours and voids that are detected on the perimeter
of the test object are generally labeled as edge defects. Information about the shape
and size of this particular defect can be utilized to gauge not only the quality of the
test object but also the integrity of the tooling/cutting process on the sample.

Tab. 2 summarizes the detection sensitivity of the algorithm for each defect. The
calculation compares the number of defects correctly detected by the algorithm
with that of the actual defects. The results are significant and show that the accuracy
of the algorithm is above 94% on the three defects category.

The processing time for each kernel function on a single GPU is listed in Table 3.



Fast and High-Resolution Optical Inspection System 137

  
 (a)                                              (b)                                             (c) 

  Figure 8: (a) Dark-field image of test object stored on CPUs main memory. (b)
Processed output with defects detected near the upper-left edge. (c) A typical defect
map with labeled bubbles and crack.

Table 1: Size and features found on the test sample.

Features Average size
Bubbles Point-like or circular shape 50 to 160 µm
Cracks Thin, elongated, located far from

the perimeter of the test object
Width: 10 to 20 µm
Length: 1 to 10 mm

Edge defects Jagged lines, voids

Table 2: True detection rates (TDR) of surface defect detection algorithm. TDR =
100x(Nd /Na); Nd = defects identified from algorithm, Na = actual defects = 100.

Surface Defects TDR
Bubbles 96 %
Cracks 94 %

Edge defects 99 %

The total time to complete the image-processing tasks is 126.71 ms. Meanwhile,
the total time to complete the defect detection tasks is 121.82 ms. In total, the
combined processing times is significantly faster than computations on a CPU of
the same tasks which exceeds more than 1 minute for the same test object.
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Table 3: Computation time to complete surface detection.

Processing commands Processing
time (ms)

Image pre-processing
Copy memory from CPU to GPU 79.306

GPU kernel function: Gamma
correction and Gaussian pyramid

0.091

Copy memory from GPU to CPU 47.309

Defect detection
Copy memory from CPU to GPU 61.581

GPU kernel function: Binarization,
Labeling, size and edge detections

0.144

Copy memory from CPU to GPU 60.092

6 Conclusions

The paper presents an automated optical inspection system that combines a versa-
tile imaging module with parallel computing platform to achieve fast and high res-
olution surface defect detection for in-line measurements. Fast processing time of
large image data from the imaging module is realized by utilizing GPU structures
to execute image processing functions in parallel. High resolution surface flaws
such as bubbles, cracks, and edge defects are detected accurately from the image
processed defect maps where the width of the smallest defect is about 10 µm. The
sensitivity of the detection algorithm is above 94% for each defect category. The
computation time to complete the defect inspection on a single CPU-GPU platform
is at least 248 ms, which is significantly faster compared to purely CPU-based
processing. As such, inspection of defects on large objects is possible by either
multiplying the GPU platforms to complete the processing tasks or increasing the
number of imaging modules to expand the inspection area.
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