
Copyright © 2014 Tech Science Press CMC, vol.42, no.1, pp.25-61, 2014

Generalized Rayleigh Wave Dispersion Analysis in a
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Abstract: Within the framework of the piecewise homogeneous body model the
influence of the shear-spring type imperfect contact conditions on the dispersion
relation of the generalized Rayleigh waves in the system consisting of the initially
stressed covering layer and initially stressed half plane is investigated. The second
version of the small initial deformation theory of the three-dimensional linearized
theory of elastic waves in initially stressed bodies is applied and the elasticity rela-
tions of the materials of the constituents are described by the Murnaghan potential.
The magnitude of the imperfectness of the contact conditions is estimated through
the shear-spring type parameter. Consequently, the influence of the imperfectness
of the contact conditions on the generalized Rayleigh wave propagation velocity
is studied through the influence of the values of this parameter. Numerical results
on the action of the imperfectness of the contact conditions and the influence of
the initial stresses in the constituents on the wave dispersion curves are presented
and discussed. In particular, it is established that the magnitude of action of the
imperfectness of the contact conditions under the influence of the initial stresses on
the wave propagation velocity cannot be limited with corresponding ones obtained
in the case where the contact between the constituents is complete and in the case
where this contact is full slipping one. The possible application of the obtained
results on the geophysical and geotechnical engineering is also discussed.
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1 Introduction

The theory of elastic surface waves in layered half-spaces, though it is an old topic
in classical sense, it has found highly important scientific and engineering applica-
tions through the last couple of decades. Fields of applications are vast but some
notable areas might be acoustic, smart materials, metrology, Earth sciences, subsur-
face explorations, non-destructive testing and damage detection. Indeed, variety of
mechanical, material and structural properties, presence of damages and/or cracks,
different external loading, etc. make the study of these wave processes still an
active and interesting field of research these days.

There are two types the most important investigations in this regard the first of
which relates to study of the effect of imperfect bonding between the covering
layer and half-space on a surface wave propagation and its characteristics. But the
other one is the study of influence of initial stresses which exist in the constituents
of the stratified half-space on this wave.

The investigations of the first type problems are motivated by very high sensitivity
of the wave propagation characteristics to interface defects such as weak-bonding
between the constituents which can be caused by interface damages or chemical
actions and etc. The results of these investigations can be successfully applied for
determination of various defects between the covering layer and half-space.

But the investigations of the second type problems are motivated by the non-destruc-
tive determination of mostly the residual (or initial) stresses in the elements of con-
structions. Currently the results of these investigations are successfully employed
for determination of the mentioned residual stresses. At the same time, the forego-
ing investigations are also propounded the fundamental questions of the dynamics
of the non-homogeneous deformable solid bodies.

It is evident from the foregoing discussions that the investigations of the general-
ized Rayleigh wave dispersion in a pre-stressed elastic stratified half-plane with
imperfectly bonded interfaces, which is the topic of the present paper, lies at the
junction of the above-noted two type problems.

Note that propagation of the elastic waves in pre-stressed bodies is studied by uti-
lizing of the Three-dimensional Linearized Theory of Elastic Waves in Initially
Stressed Bodies (TLTEWISB). The relations and equations of the TLTEWISB are
obtained from the exact relations and equations of the non-linear theory of elas-
todynamics by linearization with respect to small dynamical perturbations. The
general questions of the TLTEWISB have been elaborated in many investigations
such as in works by Biot (1965), Truestell (1961), Eringen and Suhubi (1975),
Guz (2004) and others. It should be noted that there are some versions of the TL-
TEWISB which were detailed in the monograph by Guz (2004). These versions of
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the TLTEWISB are distinguished from each other with respect to the magnitude of
the initial strains. The version of the TLTEWISB developed for high-elastic mate-
rials, according to which the initial strains in the bodies are determined within the
scope of the non-linear theory of elasticity without any restrictions on the magni-
tude of the initial strains, is called the large (or finite) initial deformation version.
The version of the TLTEWISB, according to which, an initial stress-strain state in
bodies is determined within the scope of the geometrical nonlinear theory of elas-
ticity and changes to the elementary areas and volumes as a result of the initial
deformation are not taken into account, is called the first version of the small ini-
tial deformation theory of the TLTEWISB. The second version of the small initial
deformation theory of the TLTEWISB is the version, according to which, an initial
stress-strain state in bodies is determined within the scope of the classical linear
theory of elasticity.

The review of the investigations carried out before the year 2007 on the wave prop-
agation in pre-stressed bodies has been made in the papers by Guz (2002), Guz
(2005) and Akbarov (2007). The detail consideration of the results of these inves-
tigations was made in the monographs by Biot (1965), Eringen and Suhubi (1975),
Guz (2004). The review of the more resent related investigations can be found in
papers by Akbarov (2012), Akbarov and Ipek (2012), Akbarov; Agasiyev and Za-
manov (2011) and etc. However, in considerable part of these works the interface
between layers was assumed to be bonded perfectly, which it is not the real case in
many applications.

Two classical boundary conditions, that are, perfect bonded interfaces and full slip-
ping ones idealize real physical contact between two layers. In perfect contact
condition also known as welded interfaces all the stress and displacement com-
ponents are continuous across the interface, whereas, in the case of full slipping
conditions also known as non-welded interfaces there is a discontinuity in the shear
component of the displacement [Rokhlin and Wang (1991)]. An actual interface
conditions between two layers is much more complicated in mathematical model-
ing viewpoint and different investigators spent significant efforts to describe the real
physical conditions by different mechanical models. To summarize some, Martin
(1992) has reviewed imperfect interface models and formulated the problem math-
ematically. Pecorari (2001) has investigated the scattering problem of a Rayleigh
wave by surface-breaking cracks with partial contact interfaces. Leungvichcharoen
and Wijeyewickrema (2003) has discussed the effect of an imperfect interface on
harmonic extensional wave propagation in a pre-stressed, symmetric layered com-
posite by employing shear spring type resistance model to simulate the imperfect
interface. Zhou; Lu and Chen (2012) also have tried to simulate the imperfect in-
terface conditions by using linear spring model to study bulk wave propagation in
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laminated piezomagnetic and piezoelectric plates with initial stresses. Kumara and
Singh (2009) have considered the propagation of plane waves at an imperfectly
bonded interface of two orthotropic generalized thermoelastic rotating half-spaces
with different elastic and thermal properties. Liu; Wang and Wang (2010) have
analyzed SH surface waves in a piezoelectric elastic layer and an elastic half-space
structure with imperfect bonding. Similar model was used by Huang and Li (2010)
to study the propagation of shear waves along a weak interface of two dissimilar
magnetoelectric or magnetoelectroelastic materials. Reflection and transmission
problem of plane waves between piezoelectric and piezomagnetic media with im-
perfectly bonded interfaces has also been considered by Pang and Liu (2011). Ak-
barov and Ipek (2010, 2012) have studied the influence of the imperfectness of the
interface conditions on the dispersion of the axisymmetric longitudinal waves in the
pre-strained compound cylinder under the shear spring type model of the contact
condition between layers. Kepceler (2010) has also carried out investigations of a
similar type for the initially stressed bi-material compounded circular cylinder.

To the best of the authors’ knowledge, up to now there has not been made any in-
vestigation related to the study of the influence of imperfectness of the contact con-
ditions on the dispersion characteristics of the generalized Rayleigh wave not only
in initially stressed stratified half-space, but also in the stratified half-spaces which
has not any initial stresses. Akbarov and Ozisik (2003) have studied the influence
of the third order elastic constants on the velocity of the generalized Rayleigh wave
propagation in a pre-stressed stratified half-plane, but they also considered only
the perfect contact conditions in their analysis. So in the present work, within the
framework of the second version of the small initial deformation theory of the TL-
TEWISB we attempt to study the effects of the imperfect interface conditions on
the generalized Rayleigh wave propagation in a pre-stressed stratified half-plane.
Piecewise homogeneous body model were applied and elasticity relations for ma-
terials of the constituents were described through the Murnaghan potential. In the
classical sense (i.e. in the cases where the initial stresses in the constituents are
absent), the investigations carried out in the present paper can be considered as a
development of the paper by Tolstoy and Usdin (1953) (in which the generalized
Rayleigh waves were studied for the perfectly bounded stratified half-plane) for the
concrete selected pair of materials under imperfect contact between the layer and
half-plane. At the same time, the investigations carried out in the present paper can
be considered as a development of the paper by Akbarov and Ozisik (2003) also
for the case where the contact between the constituents of the stratified half-plane
is imperfect. Consequently, the goal of the investigations is a study of the role
of imperfectness of the contact conditions on the dispersion characteristics of the
pre-stressed bi-material non-linear elastic systems.
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2 Formulation of the problem

Figure 1: The geometry of the considered stratified half-plane.

The geometry of the problem is shown in Fig. 1. It is assumed that the half-
plane covered by the layer with thickness h. In the natural state we determine
the positions of the points by the Lagrangian coordinates which coincide with the
Cartesian system of coordinates Ox1x2x3. The layer and the half-plane occupy the
regions {−∞ < x1 <+∞,0≤ x2≤ h,−∞ < x3 <+∞} and {−∞ < x1 <+∞,−∞≤
x2≤ 0, −∞ < x3 <+∞}, respectively. Note that the following notation will be used
through the formulations: the values related to the layer and half-plane are denoted
by upper indices (1) and (2) respectively and the values related to the initial (or
residual stresses) are denoted by upper indices (m), 0 where m = 1, 2. We consider
the case where initial stresses in the layer and half-plane are determined as follows:

σ
(m),0
11 = constm 6= 0, m = 1,2, σ

(m),0
i j = 0, for i = j 6= 1. (1)

All investigations in the present paper are made in the framework of the second
version of the small initial deformation theory of the TLTEWISB in the plane strain
state in the Ox1x2 plane.

According to Guz (2004), the equations of motion for the considered case are writ-
ten as:

∂σ
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2
∂ t2 . (2)
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In (2) the conventional notation is used. We assume that the following boundary
conditions on the free face plane of the covering layer satisfy:

σ
(1)
12

∣∣∣
x2=h

= 0, σ
(1)
22

∣∣∣
x2=h

= 0. (3)

Now we consider the formulation of the imperfect contact conditions on the inter-
face plane between the covering layer and half-plane. It should be noted that, in
general, the imperfectness of the contact conditions is identified by discontinuities
of the displacements and forces across the mentioned interface. A review of the
mathematical modeling of the various types of incomplete contact conditions for
elastodynamics problems has been detailed in a paper by Martin (1992). It follows
from this paper that for most models the discontinuity of the displacement u+ and
force f+ vectors on one side of the interface are assumed to be linearly related to
the displacement u− and force f− vectors on the other side of the interface. This
statement, as in the paper by Rokhlin and Wang (1991), can be presented as fol-
lows:

[f] = Cu−+Df−, [u] = Gu−+Ff−, (4)

where C, D, G and F are three-dimensional (3×3) matrices and the square brackets
indicate a jump in the corresponding quantity across the interface. Consequently,
if the interface is at x2 = 0, then [u] = u|x2=0+ − u|x2=0− , [f] = f|x2=0+ − f|x2=0− .
It follows from (4) that we can write incomplete contact conditions for various
particular cases by selection of the matrices C, D, G and F. One such selection was
made in the paper by Jones and Whitter (1967), according to which, it was assumed
that C = D = G = 0. In this case the following can be obtained from (4):

[f] = 0, [u] = Ff−, (5)

where F is a constant diagonal matrix. The model (5) simplifies significantly the so-
lution procedure of the corresponding problems and is adequate in many real cases.
Therefore, this model (i.e. the model (5)) is called a shear-spring type resistance
model and has been used in many investigations carried out within the framework
of classical elastodynamics by Jones and Whitter (1967), Berger; Martin and Mc-
Caffery (2000), and within the framework of the TLTEWISB by Kepceler (2010)
and by Akbarov and Ipek (2010, 2012). According to this statement, we also use
the model (5) for the mathematical formulation of the imperfectness of the contact
conditions and these conditions are written as follows:

σ
(1)
i2 |x2=0 = σ

(2)
i2 |x2=0 , i = 1,2, u(1)2 |x2=0 = u(2)2 |x2=0,

u(1)1 |x2=0− u(2)1 |x2=0 = F
h

µ(1) σ
(1)
12 |x2=0,F > 0 (6)
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where F is the non-dimensional shear spring parameter and 0 ≤ F ≤ ∞. Note that
the case where F = 0 means that the displacement component across the interface
is continuous and therefore the half-space and covering layer are perfectly bonded
together or to say that they are in welded contact condition. At the other extreme,
F = ∞ implies that the half-space and covering layer are completely unbounded
together and the full slipping condition is satisfied. Thus, any other finite positive
values of F expresses different imperfect interface conditions in the problem.

Moreover, we assume that the following decay conditions are satisfied:

σ
(2)
i j

∣∣∣
x2→−∞

→ 0, u(2)i

∣∣∣
x2→−∞

→ 0, i = 1,2. (7)

As stated above, we assume that the constitutive relations of the materials of the
constituents are given by the Murnaghan potential which is given as follows Guz
(2004):

Φ
(m) =

1
2

λ
(m)
(
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1
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3
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3
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3 , (8)

where λ (m) and µ(m) are Lame’s and a(m), b(m) and c(m) are the third order elasticity
constants. Here A(m)

1 , A(m)
2 and A(m)

3 are the first, second and the third algebraic
invariants of Green’s strain tensor respectively. For the case under consideration,
the expressions of these invariants are:
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, (9)

where

ε
(m)
i j =

1
2

(
∂u(m)

i
∂x j

+
∂u(m)

j

∂xi

)
. (10)

According to Guz (2004), linearized constitutive relations for the layer and half-
plane materials are obtained in the following form:

σ
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11 ε
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12 ε
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where

A(m)
11 =λ
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σ
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A(m)
22 = λ
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11
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a(m)−b(m) λ (m)
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,

µ
(m)
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σ
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This completes the formulation of the problem and in the case where σ
(1),0
11 =

σ
(2),0
11 = 0 this formulation transforms to the corresponding one made within the

scope of the classical linear theory of elastodynamics.

3 Solution procedure and obtaining the dispersion relation

Each displacements component of the considered system are represent as follows:

u(m)
1 = φ

(m)
1 (x2)sin(kx1−ωt) , u(m)

2 = φ
(m)
2 (x2)cos(kx1−ωt) . (13)

This way we obtain the following equations for the φ
(m)
1 (x2) and φ

(m)
2 (x2) from the

Eqs. (1), (2), (11)–(13).
d2φ

(m)
1

d(kx2)
2 +b(m)

21 φ
(m)
1 + c(m)

21
dφ
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2
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1
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where
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11
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12 −µ
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,
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µ
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−
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(m),0
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+
ρ(m)ω2

A(m)
22 k2
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22 =

µ
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12 +A(m)

12

A(m)
22

. (15)

We can solve the system (14) using linear operator method as follows:
(

D2 +b(m)
21

)
φ
(m)
1 + c(m)

21 Dφ
(m)
2 = 0

c(m)
22 Dφ

(m)
1 +

(
D2 +b(m)

22

)
φ
(m)
2 = 0
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or in matrix form as:[
D2 +b(m)

21 c(m)
21 D

c(m)
22 D D2 +b(m)

22

][
φ
(m)
1

φ
(m)
2

]
=

[
0
0

]
, (17)

where D is the differentiation operator: D = d/d (kx2). This homogenous system
(17) has non-trivial solution only when the determinant of operational matrix be
zero, that is:(

D2 +b(m)
21

)(
D2 +b(m)

22

)
− c(m)

21 c(m)
22 D2 = 0,

or

D4 +B(m)
2 D2 +C(m)

2 = 0, (18)

where

B(m)
2 = b(m)

22 +b(m)
21 − c(m)

21 c(m)
22 , C(m)

2 = b(m)
21 b(m)

22 . (19)

Therefore we derive the following differential equation for φ
(m)
2 (x2):(

D4 +B(m)
2 D2 +C(m)

2

)
φ
(m)
2 (x2) = 0. (20)

We determine the solution to the Eq. (20) as follows:

φ
(1)
2 (x2) =Z(1)

1 exp
(

R(1)
1 kx2

)
+Z(1)

2 exp
(
−R(1)

1 kx2

)
+Z(1)

3 exp
(

R(1)
2 kx2

)
+Z(1)

4 exp
(
−R(1)

2 kx2

)
,

φ
(2)
2 (x2) = Z(2)

1 exp
(

R(2)
1 kx2

)
+Z(2)

3 exp
(

R(2)
2 kx2

)
, (21)

where

R(m)
1 =

√√√√√
−

B(m)
2
2

+

√√√√(B(m)
2

)2

4
−C(m)

2 , R(m)
2 =

√√√√√
−

B(m)
2
2
−

√√√√(B(m)
2

)2

4
−C(m)

2 .

(22)

In a similar way using (22) we can also determine the function φ
(m)
1 (x2) from Eq.

(16). Finally, we obtain the dispersion equation considering the conditions (3)–(7).
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This dispersion equation after some mathematical manipulations can be expressed
formally as follows:

det
∥∥∥αi j

(
c,kh,F,σ (1),0

11 ,σ
(2),0
11 ,a(1),b(1),c(1),a(2),b(2),c(2)

)∥∥∥= 0, (23)

where i; j = 1,2, ...,6 and

c =
ω

k
, c(m)

1 =

√
λ (m)+2µ(m)

ρ(m)
, c(m)

2 =

√
µ(m)

ρ(m)
. (24)

The explicit expressions of the αi j in the dispersion equation (23) are presented in
Appendix A by formulae A1.

This completes the solution method of the problem under consideration.

4 Numerical results and discussion

We will assume that,

Re R(1)
1 = ReR(1)

2 = 0, R(2)
1 > 0, R(2)

2 > 0. (25)

In this case, the solution (21) corresponds to such a wave propagation in the layered
half-plane that the layer undergoes an oscillatory motion in the Ox2 direction prop-
agating in the Ox1 direction with velocity c. The disturbances in the layer decay
exponentially with depth in the half-plane and therefore the wave can be considered
as a generalized Rayleigh wave confined to the pre-stressed covered layer [Tolstoy
and Usdin (1953)].

First we consider the numerical results for the case where σ
(1),0
11 = σ

(2),0
11 = 0, i.e.

for the case where initial stresses in the constituents are absent. We recall that
this case for the Poisson material has been discussed by Tolstoy and Usdin (1953)
and also discussed in the monograph by Eringen and Suhubi (1975). It was estab-
lished by Tolstoy and Usdin (1953) that the dispersion equation (23) has infinitely
many modes unlike ordinary Rayleigh waves, which can propagate only in one
mode. Moreover, the dispersion curves related to each mode has two branches
which were denoted by M1n and M2n respectively for the n− th mode. For the first
M1n branch the displacement of the layer circumscribes the ellipse similar to the
ordinary Rayleigh waves, but for the second M2n branch leads to an opposite type
of motion.

As noted above, numerical results are given by Tolstoy and Usdin (1953) for the
Poisson materials, i.e. for the case where λ (1) = µ(1), λ (2) = µ(2) (it is assumed
that υ(1) = υ(2) = 0.25, where υ(m) is Poisson’s coefficient), under c(1)1 /c(1)2 =
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c(2)1 /c(2)2 =
√

3, c(2)2 /c(1)2 = 3.147, ρ(2)/ρ(1) = 1.374 (where ρ(m) is the density of
the m− th material). After programming of the Eq. (23), the above mentioned case
(Poisson materials) was considered first in our numerical studies. Fig. 2 shows the
dependencies (dispersion curves) between c′′ and kh for different values of shear
spring parameter F . In this figure the graphs denoted by M11and M12 (Fig. 2a)
correspond respectively to the first and second branch of the first mode, whereas the
graphs denoted by M21 and M22 (Fig. 2b) correspond to the first and second branch
of the second mode. It should be noted that the graphs denoted by M11, M12, M21
and M22, and obtained for the case where F = 0(i.e. for the case where the contact
between the constituents is perfect) coincide with the corresponding ones given in
the paper by Tolstoy and Usdin (1953). This situation gives a certain guarantee on
the correctness of the algorithm-programs constructed for the numerical solution to
the dispersion equation (23).

We also, consider similar results obtained for some pairs of the real materials. Val-
ues of the mechanical constants of these materials are given in Tab. 1 (i.e. the values
of the mechanical constants which enter the expression (8) of the Murnaghan po-
tential). We select four pairs from these materials. For the I, II, III and IV pairs, the
material of the covering layer we take as bronze, brass 59-1, brass 62 and acrylic
plastic respectively, but for all the pairs the material of the half-plane we take as
steel. The graphs related to the foregoing pairs are given in Figs. 3 (for the I pair),
4 (for the pairs II and III) and 5 (for the pair IV ). Note that the results given in
these figures and obtained for the case where F = 0 coincide with corresponding
ones obtained in the paper by Akbarov and Ozisik (2003).

Note that, according to the expressions (11) and (12), as under calculation of the
foregoing results it is assumed that σ

(1),0
11 = σ

(2),0
11 = 0, therefore the third order of

elastic constants of the selected materials do not influence on these results.

Table 1: The values of elastic constants of the selected materials [Guz (2004)].
Materials ρ

(g/cm3)
λ × 10−4

(MPa)
µ × 10−4

(MPa)
a ×
10−5

(MPa)

b× 10−5

(MPa)
c ×
10−5

(MPa)
Steel 3 7.795 9.26 7.75 -2.35 -2.75 -4.90
Bronze 7.20 8.16 3.84 1.20 -3.10 4.80
Brass
59–1

7.20 9.49 4.47 -0.70 2.70 -3.40

Brass 62 7.20 9.49 4.47 -2.80 -2.10 -3.20
Plexiglass
(Lucite)

1.16 0.404 0.19 2.68 ×
10−3

-3.12 ×
10−2

-6.77 ×
10−2
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(a) 

  

                                 (b) 

 Figure 2: Dispersion curves for Poisson material [Tolstoy and Usdin (1953)]: First
and second branches of the first (a) and the second (b) modes.

 

 

 Figure 3: Dispersion curves for the I pair of materials.

Thus the dispersion curves obtained for the pairs II and III coincide because, ac-
cording to the data given in Tab. 1, the constants ρ , λ and µ are the same for brass
59-1 and brass 62 (Fig 4). Moreover note that, for clarity of the illustration the
first and second modes of the graphs obtained for the IV pair are given separately
in Figs. 5a and 5b respectively.

Now we analyze the foregoing numerical results which are obtained within the
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Figure 4: Dispersion curves for the II and III pair of materials.

(a) (b) 

  

 
Figure 5: Dispersion curves for the IV pair of materials: The first and the second
branches of the first (a) and the second (b) modes.

framework of the restriction (25). According to this restriction, it must be c
/

c(2)2 <

1 and c
/

c(1)1 > 1, i.e. the near-surface waves propagated in the system under con-
sideration is subsonic in the half-plane, but it is supersonic in the covering layer.
Thus, it follows from Figs. 2, 3, 4 and 5 that the dimensionless wavenumber kh
has cut off values for the second branch of the first mode, the first and second
branches of the second mode. We denote these cut of values through (kh)P

c f 21’
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(kh)P
c f 12, (kh)P

c f 22for the pair of materials selected by Tolstoy and Usdin (1953)
(Fig. 2), through (kh)I

c f 21’ (kh)I
c f 12, (kh)I

c f 22 for the I pair of materials (Fig. 3),
through (kh)II

c f 21’ (kh)II
c f 12, (kh)II

c f 22 for the II pair of materials (Fig. 4) and through
(kh)IV

c f 21’ (kh)IV
c f 12, (kh)IV

c f 22 for the IV pair of materials (Fig. 5). Moreover, we in-
troduce the notation cP

11, cP
21 (cP

12, cP
22) for the pair of materials selected by Tolstoy

and Usdin (1953), cI
11, cI

21 (cI
12, cI

22) for the I pair of materials; cII
11, cII

21 (cII
12, cII

22)
for the II pair of materials and cIV

11 , cIV
21 (cIV

12 , cIV
22) for the IV pair of materials for

indication of the wave propagation velocity related to the first (second) branches of
the first and the second modes.

According to the foregoing results, we can conclude that the imperfectness be-
tween the constituents causes to decrease of the wave propagation velocity of the
all above-noted branches and modes. In this cases values of the velocity decrease
monotonically with the shear-spring parameter F . This conclusion can be explained

with the fact that the shear wave propagation velocity c2 =
√

µ
/

ρ of the half-plane
material (i.e. of the steel) is greater than that of the covering layer materials for the
all considered pairs. Therefore the complete contact of the covering layer with the
half-plane made of the steel makes the system under consideration more suitable
ones for high wave propagation velocity.

We analyze the influence of the imperfectness of the contact conditions, i.e. the in-
fluence of the shear-spring type parameter Fon the low and high wavenumber limit
values of the wave propagation velocities of the fırst branch of the fırst mode. The
foregoing results show that the low wavenumber limit values of the wave propaga-
tion velocity related to the first branches of the first mode obtained for the all pairs
of materials denoted by cP

11L, cI
11L, cII

11L and cIV
11L, and determined from the relations:

cP
11→ cP

11L, cI
11→ cI

11L, cII
11→ cII

11L, cIV
11 → cIV

11L as kh→ 0, (26)

do not depend on the shear-spring type parameter F . At the same time, the forego-
ing results show that the wave propagation velocities related to the second branch
of the first mode and the first and second branches of the second mode approach to
the c(2)2 as the dimensionless wavenumber kh approach to its corresponding cut off
values, i.e.

cP
12→ c(2)2 as kh→ (kh)P

c f 12 , cI
12→ c(2)2 as kh→ (kh)I

c f 12 ,

cII
12→ c(2)2 as kh→ (kh)II

c f 12 , cIV
12 → c(2)2 as kh→ (kh)IV

c f 12 ,

cP
2n→ c(2)2 as kh→ (kh)P

c f 2n , cI
2n→ c(2)2 as kh→ (kh)I

c f 2n ,

cII
2n→ c(2)2 as kh→ (kh)II

c f 2n , cIV
2n → c(2)2 as kh→ (kh)IV

c f 2n ,

(27)
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where n = 1,2. In this cases the cut of values (kh)P
c f 12, (kh)I

c f 12, (kh)I
c f 2n and

(kh)II
c f 2n do not depend on the parameter F , but cut off values (kh)II

c f 12, (kh)IV
c f 12,

(kh)P
c f 2n and (kh)IV

c f 2n depend significantly on F and an increase in the values of the
parameter F causes to decrease in the values of the (kh)II

c f 12, (kh)IV
c f 12, (kh)P

c f 2n and
(kh)IV

c f 2n.

According to the well-known physical considerations, for the wave propagation
velocity related to the first branch of the first mode of each pair of materials the
following high wavenumber limit relation:

c→min
(

c(1)R ,cS

)
as kh→ ∞ (28)

must satisfy, where c(1)R is a velocity of the Rayleigh wave in the covering layer
material, cS is a velocity of the Stonoley wave for the corresponding pair of ma-
terials. It is known that the Stoneley waves exist for a few pairs of materials only
and do not exist for the pairs of materials selected in the present investigation. This
conclusion follows from nature of the problem under consideration. Consequently,
the high wavenumber limit value of the wave propagation velocity related to the
first branch of the first mode of each pair of materials is c(1)R . This conclusion is
illustrated in Fig. 6 for the I pair of materials.

 

Figure 6: Asymptotic behavior of dispersion curves for the I pair materials as kh→
∞.

Moreover, the results illustrated in Fig. 6 and other numerical results which are
not given here show that the second branch of the first mode, the first and sec-
ond branches of the second mode have the same high wavenumber limit value and
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this limit value is c(1)2 . It follows from the foregoing discussions that, the high
wavenumber limit values of the wave propagation velocities do not depend also on
the parameter F . This and foregoing conclusions in the qualitative sense agree with
corresponding ones obtained in works by Berger; Martin and McCaffery (2000),
Kepceler (2010), Akbarov and Ipek (2010, 2012). Finally, we note the following
consideration which follows from the results illustrated in Figs. 3 and 4. In the
cases where F ≥ 10 the dispersion curves obtained for the I and II pairs of materi-
als have a point kh = (kh)∗ (0 < (kh)∗ < ∞ ) at which:

dc
d(kh)

= 0. (29)

It is known that (see, Achenbach; Keshava and Hermann (1967), Akbarov and Ilhan
(2008, 2009), Akbarov and Salmanova (2009) and others listed therein) velocities
related to the case (29) is taken as a critical velocity for a moving load acting on
the free face plane of the covering layer and under this velocity of the moving load
a resonance type behavior of the system takes place. Moreover, at kh = (kh)∗ for
which the relation (29) satisfies the group velocity becomes equal to the corre-
sponding phase velocity and namely the velocity of the moving load which is equal
to the group velocity is also called a critical velocity (see, Dieterman and Metrikine
(1997)).

According to investigations carried out by Achenbach; Keshava and Hermann (1967),
Akbarov and Ilhan (2008, 2009), Akbarov and Salmanova (2009) and other ones
listed therein, under perfect contact between the constituents the foregoing type sit-
uation, i.e. the existence of the critical velocity of the mentioned moving load takes
place in the cases where c(1)2 (shear wave velocity in the covering layer material)
is greater than c(2)2 (shear wave velocity in the half-plane material) only. However,
in the present case, i.e. in the case where the contact between the covering layer
and half-plane is imperfect, the critical velocity may arise also in the cases where
c(1)2 < c(2)2 . Consequently, the shear-spring type imperfectness between the con-
stituents can acts on the dispersion curves and, in general, on the dynamics of the
system under consideration not only quantitatively, but also qualitatively.

Now we analyze the numerical results related to the influence of the initial stresses
in the constituents on the wave propagation velocity. For estimation of the magni-
tude of the initial stresses we introduce the parameters:

ψ
(1) = σ

(1),0
11 /µ

(1), ψ
(2) = σ

(2),0
11 /µ

(2). (30)

Here we will present the results only for cases:

Case 1. ψ
(1) > 0, ψ

(2) = 0; Case 2. ψ
(1) = 0, ψ

(2) < 0;

Case 3. ψ
(1) > 0, ψ

(2) < 0; Case 4. ψ
(1) > 0, ψ

(2) > 0.
(31)
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Moreover, we introduce the notation:

η =
c|

ψ(1) 6=0; or ψ(2) 6=0− c|
ψ(1)=0; ψ(2)=0

c|
ψ(1)=0; ψ(2)=0

, (32)

for estimation of the influence of the initial stresses in the constituents, i.e. the
influence of the parameters ψ(1) and ψ(2) on the wave propagation velocity.

Thus, through the graphs of the dependencies between η (32) and kh constructed
for various values of the parameters F , ψ(1) and ψ(2) we analyze the effect of the
imperfectness of the contact conditions between the covering layer and half-plane
under the influence of the initial stresses in the constituents on the wave propaga-
tion velocity in the cases noted in (31). For the I and III pairs of materials in Case
1 these graphs are given in Figs. 7 and 8 respectively. Note that in these figures
the graphs indicated by letters a and c (b and d) correspond to the first and sec-
ond branches of the first (second) mode. Moreover, note that the results given in
Figs. 7 and 8 and obtained in the case where F = 0 coincide with corresponding
ones obtained in the paper by Akbarov and Ozisik (2003). The graphs show that
for the Ipair of the materials in Case 1 the initial stretching stress in the covering
layer causes to increase the wave propagation velocity and in this case the values
of c
/

c(2)2 increase monotonically with ψ(1). Also, the graphs show that the wave
propagation velocity related to the first branch of the first mode and to the second
branch of the second mode increase monotonically with the parameter F . Conse-
quently, the imperfectness of the contact conditions causes to increase the influence
of the initial stress in the covering layer on the wave propagation velocity related
to the first branch of the first mode and to the second branch of the second mode of
the I pair of materials. However, the character of the effect of the imperfectness of
the contact conditions, i.e. of the parameter F on the influence of the initial stress
in the covering layer on the wave propagation velocity related to the second branch
of the first mode and to the first branch of the second mode depends on the values
of the dimensionless wavenumber kh. So, it follows from the Figs. 7b and 7c that,
before (after) a certain value of the kh, the imperfectness of the contact conditions
causes to increase (decrease), the wave propagation velocity.

Fig. 8 shows that as a result of the initial stretching stress in the covering layer
the wave propagation velocity related to the III pair of materials decreases. This
conclusion was also noted in the paper by Akbarov and Ozisik (2003). In this
case the imperfectness of the contact conditions, in general, causes to increase the
wave propagation velocity related to the first branches of the first and the second
modes. However, the imperfectness of the contact conditions before (after) a certain
value of the kh causes to decrease (increase) the wave propagation velocity related
to the second branches of the first and the second modes. At the same time, it
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should be noted that the influence of the parameter F on the graphs between η and
kh which are shown in Fig. 8, has a complicate character. For instance, in the
cases where 0 < kh < 3.0 the imperfectness of the contact conditions can cause
to change the character of the influence of the initial stress in the covering layer
on the wave propagation velocity related to the first branch of the first mode (Fig.
8a). Moreover, the influence of the parameter F on the values η related to the first
branch of the second mode (Fig. 8b) is non-monotonic.

Now we analyze the effect of the imperfectness of the contact conditions on the in-
fluence of the initial compressional stress in the half-plane on the wave propagation
velocity to the II (or III) and IV pairs of materials in Case 2. The graphs of the
dependencies between η and kh related to the II (or III) and IV pairs of materials
and constructed for various values of the parameters F and ψ(2) are given in Figs.
9 and 10, respectively. Note that the graphs constructed in the case where F = 0
coincide with corresponding ones obtained in the paper by

Akbarov and Ozisik (2003). It follows from the graphs given in Figs. 9 and 10 that
as a result of the initial compression of the half-plane the wave propagation velocity
related to the II (or III) and IV pairs of materials in Case 2 increase monotonically
with the absolute values of the parameter ψ(2). In this case before (after) a certain
value of the kh, the influence of the parameter F causes to increase (decrease) the
wave propagation velocity related to the first branch of the first mode for the II
pair of materials. At the same time, as a result of the influence of the parameter
F the wave propagation velocities related to the second branch of the first mode,
the first and second branches of the second mode of the II pair of materials de-
crease. The magnitude of this decreasing depends significantly on the values of the
dimensionless wavenumber kh.

Analyses of the graphs given in Figs. 10a, 10b and 10c show that the wave propa-
gation velocity related to the first and second branches of the first mode and to the
first branch of the second mode of the IV pair of materials decrease with the pa-
rameter F . However, the character of the influence of the parameter F on the wave
propagation velocity related to the second branch of the second mode has a compli-
cate character. This complication is also caused by decreasing of the cut off values
of the kh with the parameter F . The similar situation also takes place for the first
branch of the second mode. Consequently, the influence of the imperfectness of the
contact conditions on the wave propagation velocities related to the first and second
branch of the second mode has not only quantitative, but also qualitative character.
Moreover, the graphs given in Figs. 10b and 10d show that the results obtained for
the first and second branch of the second mode for various values of the parameter
F cannot be limited with the corresponding ones obtained in the cases where F = 0
(complete contact) and F = ∞ (full slipping). Note that this conclusion rises again
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(a) (b) 

  

(c) (d) 

 Figure 7: The influence of the imperfect bonding conditions and initial stresses to
the dispersion of the generalized Rayleigh wave for the I pair of materials in Case
1: First (a) and second (c) branches of the first mode; First (b) and second (d)
branches of the second mode.

the significance of the investigations carried out in the present paper.

Now we consider the results obtained in Case 3 for the II pair of materials. These
results are given in Fig. 11 in the case where ψ(2) = −0.01 for various values of
the parameter ψ(1)(> 0). Note that the corresponding results obtained in the case
where ψ(2) = 0.0 are given in Fig. 7. Consequently, it can be conclude from the
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(a) (b) 

(c) (d) 

 Figure 8: The influence of the imperfect bonding conditions and initial stresses
to the dispersion of the generalized Rayleigh wave for the III pair of materials in
Case 1: First (a) and second (c) branches of the first mode; First (b) and second (d)
branches of the second mode.

comparison of the results given in Fig. 11 with the corresponding ones given in
Fig. 7, that how the initial compression of the half-plane acts on the influence of
the parameter F on the wave propagation velocities under initial stretching of the
covering layer. First, this comparison shows that the initial compression of the half-
plane causes to considerable increase the wave propagation velocity with respect
to the wave propagation velocity obtained in the case where the initial compression
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(a) (b) 

(c) (d) 

 Figure 9: The influence of the imperfect bonding conditions and initial stresses to
the dispersion of the generalized Rayleigh wave for the II and III pair materials in
Case 2: First (a) and second (c) branches of the first mode; First (b) and second (d)
branches of the second mode.

in the half-plane is absent. Moreover, this comparison shows that the influence
of the parameter F on the wave propagation velocity in the latter case is more
complicated than the influence of that on the wave propagation velocity obtained in
the case where ψ(2) = 0. At the same time, the analyses of the results given in Fig.
11 shows that the graphs obtained for various values of the parameter F cannot be
limited with corresponding ones obtained in the cases where F = 0and F = ∞.
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(a) (b) 

(c) (d) 

 Figure 10: The influence of the imperfect bonding conditions and initial stresses
to the dispersion of the generalized Rayleigh wave for the IV pair of materials in
Case 2: First (a) and second (c) branches of the first mode; First (b) and second (d)
branches of the second mode.

Finally, we consider the graphs given in Fig. 12 which show the dependence be-
tween the η and kh for the III pair of materials in Case 4, i.e. in the case where the
covering layer and half-plane are initially stretched simultaneously and ψ(1)=ψ(2).
Note that these graphs can be taken as generalization of the graphs given in Fig. 8
for the case where the initial stretching exists not only in the covering layer, but also
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(a) (b) 

(c) (d) 

 Figure 11: The influence of the imperfect bonding conditions and initial stresses
to the dispersion of the generalized Rayleigh wave for the II pair of materials in
Case 3: First (a) and second (c) branches of the first mode; First (b) and second (d)
branches of the second mode.

in the half-plane. Consequently, through the comparison of the graphs given in Fig.
12 with the corresponding ones given in Fig. 8 we can conclude on the action of the
initial stretching of the half-plane under the influence of the initial stretching of the
covering layer on the wave propagation velocity. It follows from this comparison
that as a result of the initial stretching of the half plane the influence of the initial
stretching of the covering layer on the wave propagation velocity related to the III
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(a) (b) 

(c) (d) 

 Figure 12: The influence of the imperfect bonding conditions and initial stresses
to the dispersion of the generalized Rayleigh wave for the III pair of materials in
Case 4: First (a) and second (c) branches of the first mode; First (b) and second (d)
branches of the second mode.

pair of materials increase significantly and in this case the initial stretching of the
covering layer causes to decrease of the wave propagation velocity. The analyses of
the graphs given in Fig. 12 show that the character of the influence of the parameter
F on the behavior of these graphs is similar with the character of this influence on
the graphs given in Fig. 8.

This completes the analyses of the numerical results related to the four pairs of
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materials shown in Tab. 1. Note that these results are theoretical ones. The ex-
perimental studies on the generalized Rayleigh waves for the IV pair of materials
was made in a paper by Lu; Zhang and Wang (2006). These studies was carried
out within the complete contact condition between the Plexiglass (Lucite) covering
layer and Steel half-plane and the dispersive characteristics of Rayleigh waves are
investigated experimentally. Under these studies the thickness of the covering layer
is taken h = 5mm (Fig. 1) and the experimental results were compared with the
theoretical results obtained for the first branches of the first and second modes of
the dispersion curves, i.e. the experimental results are compared with the theoreti-
cal results given in Fig. 5a. However, in the paper by Lu; Zhang and Wang (2006)
the mentioned dispersion curves are given as graphs of dependencies between the
phase velocity c and frequency ω . For clarity, in Fig. 13 the dispersion curves
given in Fig. 5a are reconstructed as a dependencies between the phase velocity c
and frequency ω . Note that, namely, the curves obtained in the case where F = 0
and given in Fig. 13 were used in the paper by Lu; Zhang and Wang (2006) for
verification of the experimental results and this verification illustrate a very good
agreement between the theoretical and corresponding experimental results. Conse-
quently, the experimental method used in the paper by Lu; Zhang and Wang (2006)
can also be employed for verification of the theoretical results obtained for the
cases where F > 0, i.e. for verification of the imperfectness degree of the contact
between covering layer and substrate. Note that the experimental methods based on
the measurement of the Rayleigh waves for determination of the bonded defects in
fiber-layered composites were developed in papers by Zurn and Mantell (2001) and
Castaings; Hosten and Francois (2004) and others listed therein. Also, in the pa-
pers by Zurn and Mantell (2001) and Castaings; Hosten and Francois (2004) it was
established that the mentioned bonded defects causes to decrease the generalized
Rayleigh wave propagation velocity. Consequently, the theoretical results obtained
in the present paper and related to the influence of the imperfectness of the contact
conditions on the generalized Rayleigh wave propagation velocity is validated with
the experimental results obtained in the papers by Zurn and Mantell (2001) and
Castaings; Hosten and Francois (2004) in the qualitative sense.

It is known that the experimental measurement of the generalized Rayleigh wave
propagation is successfully used in the non-destructive determination of the struc-
tural parameters and residual stresses in the elements of constructions. It should be
noted that under these determinations alongside with experimental data the theoret-
ical results similar with the results presented in the present paper are also used. For
example, in a paper by Lakestani; Coste and Denis (1995) generalized Rayleigh
waves of various frequencies were generated using a broadband pulse and their ve-
locities were measured as a function of the frequency and compared to the theoret-



50 Copyright © 2014 Tech Science Press CMC, vol.42, no.1, pp.25-61, 2014

 
Figure 13: Dispersion curves for steel half-space covered by Lucite.

 
Figure 14: Dispersion curves for AISI 316L stainless steel coated with vacuum
plasma sprayed NiCoCrAIY.
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(a) 
(b) 

(c) (d) 

 
Figure 15: The influence of the imperfect bonding conditions and initial stresses to
the dispersion of the generalized Rayleigh wave for AISI 316L steel coated with
(VPS) NiCoCrAIY for the first branch of the first mode: (a) Case 1; (b) Case 2; (c)
Case 3 and (d) Case 4.

ical dispersion curve of the specimen. Experiments were carried out on AISI 316L
specimens coated with vacuum plasma sprayed NiCoCrAlY of various thickness
(190-330 µm). Fig. 14 shows the dispersion curves, i.e. the dependence between
the generalized Rayleigh wave propagation velocity c and the ratio h

/
λ , where h is

a thickness of the coating and λ is a wave length, obtained for the mentioned pair
of materials under various values of the shear-spring type parameter F . Note that
the dispersion curve constructed under F = 0 and shown in Fig. 14 is used in the
paper by Lakestani; Coste and Denis (1995) as the theoretical results, according
to which, using the experimental data the thickness of the coating is determined.
Consequently, the dispersion curves obtained in the cases where F > 0 and shown
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Figure 16: Dispersion curves related to surface waves in the soil which is modeled
as a covering layer + half-plane [Foti (2002)].

in Fig. 14 can also successfully be used for determination of the imperfectness
between the coating and substrate material. Moreover, the results given in Fig. 15
which illustrate the influence of the initial stresses in the constituents on the wave
propagation velocity of the first branch of the first mode, i.e. on the parameter η

(32) in Case 1 (Fig. 15a), Case 2 (Fig. 15b), Case 3 (Fig. 15c) and Case 4 (Fig.
15d) which are determined by the expression (31), can also be used as theoretical
ones for determination of the quantities of the considered type initial stresses in the
coating and substrate material used under the experimental investigations carried
out in the paper by Lakestani; Coste and Denis (1995).

The other application field of the generalized Rayleigh wave measurement methods
is the geophysical and geotechnical engineering. This method in these engineering
fields is employed for determination of the soil stiffness profile. This profile is
constructed with an inversion process starting from the experimentally determined
dispersion behavior of the Rayleigh waves. After determination of the mentioned
stiffness profile, the corresponding theoretical dispersion curves are also calculated
for validation of the experimentally determined dispersion curves. Consequently,
the dispersion curves constructed within the scope of the assumptions used in the
present paper can also be used in the geophysical and geotechnical engineering
under determination of the soil stiffness profile. As an example, we consider the
case which was considered in a paper by Foti (2002), according to which the soil
is modeled as covering layer + half-plane. The thickness of the covering layer
is h = 10m, the densities of the covering layer and half-plane materials are equal
to each other and is 1800kg/m3, shear and bulk waves velocities in the covering
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(a) (b) 

(c) (d) 

 Figure 17: The influence of the imperfect bonding conditions and initial stresses to
the surface wave dispersion in the soil which is modeled as a covering layer + half
-plane [Foti (2002)]. The first branch of the first mode: (a) Case 1; (b) Case 2; (c)
Case 3 and (d) Case 4.

layer (half-plane) material are 300m/s (900m/s) and 500m/s . Fig. 16 shows
the graphs of dependencies between the phase velocity and frequency and these
graphs relate to the first branches of the first and the second modes of the dispersion
curves constructed for the above mentioned case. Note that, namely the graphs
constructed in the case where F = 0 and shown in Fig. 16 were used in the paper
by Foti (2002) for validation of the experimentally constructed dispersion curves.
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Consequently the other results show in Fig. 16 and obtained in the case where
F > 0 can also be used in the corresponding cases related to the geophysical and
geotechnical engineering. Moreover, the results given in Fig. 17, which shows
the influence of the initial stresses in the soil constituents under consideration in
Case 1 (Fig. 17a), Case 2 (Fig.17b), Case 3 (Fig. 17c) and Case 4 (Fig. 17d),
allows to determine the magnitude of the initial stresses in the soil layers using the
experimentally constructed dispersion curves by employing the method described
by Foti (2002). Note that the graphs constructed in Fig. 17 relate to the first branch
of the first mode.

5 Conclusion

Thus, in the present paper within the framework of the piecewise homogeneous
body model with the use of the second version of the small initial deformation the-
ory of the three-dimensional linearized theory of elastic waves in initially stressed
bodies the influence of the shear-spring type imperfect contact conditions on the
dispersion relation of the generalized Rayleigh waves in the system consisting of
the initially stressed covering layer and initially stressed half plane has been inves-
tigated. The elasticity relations of the materials of the constituents are described
by the Murnaghan potential. The magnitude of the mentioned imperfectness of the
contact conditions on the wave propagation velocity has been estimated through the
shear-spring type parameter F(6), where 0 ≤ F ≤ ∞ and the case F = 0 (F = ∞)
corresponds to the complete (full slipping) contact between the constituents. Con-
sequently, the influence of the imperfectness of the contact conditions on the gener-
alized Rayleigh wave propagation velocity has been studied through the influence
of the parameter F on this velocity.

The numerical results are obtained and discussed for the pair of the Poisson mate-
rials by Tolstoy and Usdin (1953), and four pairs of materials composed from the
materials the values of the mechanic constants of which are given in Tab. 1. From
these discussions the following main conclusions are derived:

• The imperfectness of the contact conditions cause to decrease of the wave
propagation velocity of the generalized Rayleigh waves.

• The dispersion curve constructed for each value of the parameter F is limited
with corresponding ones obtained at F = 0 (upper limit) and F = ∞(lower
limit).

• The low wavenumber and high wavenumber limit values of the wave propa-
gation velocity do not depend on the imperfectness of the contact conditions.
However, the cut off values of the dimensionless wavenumber kh of the first
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and second branches of the second modes for the pair of materials used by
Tolstoy and Usdin (1953) and for the IV pair of materials depend signifi-
cantly on the parameter F .

• In the case where the complete contact conditions are satisfied between the
constituents the wave propagation velocity decrease monotonically with the
dimensionless wavenumber kh, however in the case where there exists the
shear-spring type imperfect conditions between the constituents the depen-
dence between the wave propagation velocity and the dimensionless wave-
number kh may become non-monotonic for some pair of materials. Conse-
quently, the imperfectness of the contact conditions acts on the dispersion
curves and, in general, on the dynamics of the system under consideration
not only quantitatively, but also qualitatively.

Note that the foregoing conclusions are made for the case where the initial stresses
in the constituents are absent. In the paper the numerical results related to the action
of the initial stresses in the constituents under the influence of the imperfectness
parameter F on the wave propagation velocity are also presented and discussed for
four pairs of materials (Tab. 1). Throughout these discussions the magnitude of
the initial stresses is estimated by the parameters ψ(1) and ψ(2) (30), and four cases
indicated in (31) with respect to the signs of the ψ(1) and ψ(2)are considered, but
the change in the values of the wave propagation velocity is estimated through the
parameter η (32). We can make the following main conclusions related to the action
of the parameter F on the influence of the initial stresses on the wave propagation
velocity:

• The imperfectness of the contact conditions causes to increase the influence
of the initial stress in the covering layer on the wave propagation velocity
related to the first branch of the first mode and to the second branch of the
second mode of the I pair of materials. However, the character of the effect
of the imperfectness of the contact conditions, i.e. of the parameter F on the
influence of the initial stress in the covering layer on the wave propagation
velocity related to the second branch of the first mode and to the first branch
of the second mode depends on the values of the dimensionless wavenumber
kh.

• As a result of the initial compression of the half-plane the wave propagation
velocity related to the II (or III) and IV pairs of materials in Case 2 increase
monotonically with the absolute values of the parameter ψ(2). In this case
before (after) a certain value of the kh, the influence of the parameter F
causes to increase (decrease) the wave propagation velocity related to the
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first branch of the first mode of the II pair of materials. At the same time, as
a result of the influence of the parameter F the wave propagation velocities
related to the second branch of the first mode, the first and second branches
of the second mode of the II pair of materials decrease. The magnitude
of this decreasing depends significantly on the values of the dimensionless
wavenumber kh.

• In general, the graphs of the dependence between the parameters η and kh,
i.e. the influence of the initial stresses on the wave propagation velocity ob-
tained for each value of F cannot be limited with the corresponding ones
obtained at F = 0 (complete contact) and F = ∞ (full slipping). This con-
clusion rises again the significance of the investigations carried out in the
present paper.

• Numerical results obtained for the IV pair of materials under complete con-
tact conditions are validated with the corresponding experimental ones which
were detailed in the paper by Lu; Zhang and Wang (2006).

• The character of the influence of the imperfectness of the contact between the
covering layer and half plane on the generalized Rayleigh wave propagation
velocity in the qualitative sense is validated with the experimental ones given
by Zurn and Mantell (2001) and Castaings; Hosten and Francois (2004).

• Dispersion curves for the pair of materials considered in the paper by Lakestani;
Coste and Denis (1995) are also obtained and the possible application of the
numerical results under determination of the structural parameters and resid-
ual stresses in the coated materials is proposed.

• The possible application of the numerical results which are similar to the ob-
tained ones and relate to the determination of the soil structure and stiffness
in the geophysical and geotechnical engineering is also discussed and corre-
sponding numerical results are presented for the case considered in the paper
by Foti (2002).

Many other details of the results obtained for the initially stressed cases are dis-
cussed in the text of the paper.

Appendix A:

The expressions of the components αi j (i; j = 1,2,3,4,5,6) in (23) are:

α11=−
R(1)

1

c(1)22

−
b(1)22

R(1)
1 c(1)22

, α12=
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+
b(1)22

R(1)
1 c(1)22

,
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