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Abstract: This paper presents a comparison of different finite element approaches
to modelling polymers reinforced with wavy, hollow fibres with the aim of predict-
ing the effective elastic stiffness tensors of the composites. The waviness of the
tubes is described by sinusoidal models with different amplitude-to-wavelength pa-
rameters. These volume elements are discretized by structured volume meshes onto
which fibres in the form of independently meshed beam, shell or volume elements
are superimposed. An embedded element technique is used to link the two sets
of meshes. Reference solutions are obtained from conventional three-dimensional
volume models of the same phase arrangements. Periodicity boundary conditions
are applied in all cases and fibre volume fractions of up to a few percent are consid-
ered. The results indicate that embedded element techniques using shell elements
for discretizing the fibres may provide an attractive combination of accuracy, com-
putational cost and flexibility for modelling composites reinforced by arbitrarily,
three-dimensionally curved nanotubes.

Keywords: Carbon nanotubes, Wavy tubes, Embedded element technique, Finite
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1 Introduction

The mechanics of nanocomposite materials is highly complex, consideration of a
number of different length scales being required for obtaining a solid understand-
ing. Modelling approaches based on the Molecular Dynamics simulations are too
expensive computationally and are limited to nanoscales. With an appropriate link-
ing between computational chemistry and solid mechanics, structure-property rela-
tionships in nanocomposites can be analysed on micro/meso/macro-length scales.
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Odegard [Odegard, Pipes and Hubert (2004); Odegard, (2002)] replaced discrete
molecular structures with equivalent-continuum models, therefore representing the
nanoscale interactions between polymer and nanoparticles and in the same time
determining continuum effective properties for the composite. A review of similar
methodologies applicable to a hierarchical approach to modelling the macroscopic
behaviour of nanostructured materials can be found in [Buryachenko, Roy, Lafdi,
Anderson and Chellapilla (2005)]. Due to the relative simplicity of the microme-
chanical models, they provide the ability to assess the key factors, .e.g. volume
fraction, orientation, diameter and length distributions, controlling the effective
elastic behaviour. For such modelling approaches, accounting for the twisted, tan-
gled and clustered geometries of the reinforcements has proven to be a difficult
issue. Continuum-based modelling approaches, typically based on the Finite El-
ement Method (FEM), are more suitable for studying the interactions in arrange-
ments of a number of reinforcing nanoparticles or nanotubes that are embedded
in the matrix material [Bhuiyan, Pucha, Worthy, Karevan and Kalaitzidou (2013);
Spanos and Kontsos (2008); Pantano, Modica and Cappello (2008)].

To characterize the CNTs’ waviness, orientation, length and diameter distributions
AFM, TEM or SEM techniques can be utilised. One of the methodologies for
determining the straightness of CNT comes from experimental investigations of
collagen waviness and orientation [Rezakhaniha, Agianniotis, Schrauwen, Griffa,
Sage, Bouten, Vosse, Unser, Stergiopulos (2012)]. Spatial distributions of nanopar-
ticles and their dispersion can be obtained with light optical microscopy techniques
[Pegel, Villmow and Pötschke (2011); Brooker, Guild, and Taylor (2011)]. In prin-
ciple, this information allows setting up synthetic volume elements that satisfacto-
rily describe such microgeometries. However, the geometrical complexity of the re-
sulting volume meshes taxes standard approaches to FEM-based micromechanical
models, in which all phase regions are discretized by volume elements, the meshes
of the phase boundary surfaces being identical in matrix and reinforcement. De-
tailed models obtained this way are expensive in terms of computational resources
and manpower. Accordingly, simplified procedures are of considerable practical
interest. One such approach showing considerable potential are superposition tech-
niques in which matrix and reinforcements are discretized independently and tied
together by suitable constraint equations to make up the full model. Embedding
options are typically available in major finite element codes, e.g., for modelling
rebars. Checking the suitability of such techniques for handling the curved fibre
geometries prevalent in nanocomposites is the main goal of the present contribu-
tion.

Numerical and experimental investigations of microgeometrical parameters such
as orientation [Lusti and Gusev (2004); Pujari, Rahatekar, Gilman, Koziol, Win-
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dle and Burghardt (2009)], aspect ratio [Martone, Faiella, Antonucci, Giordano,
Zarrelli (2011); Thostenson and Chou (2003); Wang, Liang, Wang, Zhang (2006)],
concentration, agglomeration [Pegel, Pötschke, Petzold, Alig, Dudkin, Lellinger
(2008); Song and Youn (2005); Shi, Feng, Huang, Hwang and Gao (2004); de
Villoria and Miravete (2007)], waviness [Bradshaw (2003); Fisher (2003); Joshi,
Sharma and Harsha (2011); Karami and Garnich (2005)], etc. of carbon nan-
otubes (CNT) are available in the literature. It was found that waviness and CNT
agglomeration are among the strongest factors determining the mechanical be-
haviour of polymeric nanocomposites. At present, accounting for the complex,
three-dimensional arrangements of CNTs evident in TEM/SEM images remains an
unsolved issue. In previous work of the authors [Matveeva, Pyrlin, Ramos, Böhm,
van Hattum (2014)] it was shown that for very small reinforcement volume frac-
tions, wavy and curly nanotubes meshed with beam elements, which are embedded
in a matrix discretized with continuum elements, can provide essentially the same
mechanical responses as do “classical” (or, in the parlance of [Tabatabaei, Lomov
and Verpoest (2014)], “full”) FE models in which both constituents are meshed
compatibly with 3D solid elements. In this dilute regime good agreement was also
obtained with MD simulations of a polycarbonate matrix reinforced with curved
single-walled nanotubes.

The models used in [Matveeva, Pyrlin, Ramos, Böhm, van Hattum (2014)] are re-
lated to the domain superposition technique (DST) introduced by Jiang [Jiang, Hal-
lett and Wisnom (2008)] for simplifying the discretisation of 3D models of woven
fabric composites. In the DST the phase regions are meshed separately, the inho-
mogeneity mesh is embedded in the matrix mesh, and the two meshes are linked by
suitable coupling equations. To counteract effects of the geometrical overlapping
between inhomogeneites and matrix, the material properties used for the latter are
chosen as the excess stiffness of the fibres compared to the matrix. This concept
has been extended to nonlinear matrix behaviour [Jiang (2012)], whereas Biragoni
and Hallett [Biragoni and Hallett (2009)] reported employing such a technique for
evaluating the full stiffness tensors of weaves.

Tabatabaei [Tabatabaei, Lomov and Verpoest (2014)] used a DST-like method that
applies the “embedded element” (EE) constraints available in the FE package ABA
QUS to the mesoscopic-FEM analysis of fibre reinforced composites. A quanti-
tative assessment of the differences in the stress fields and macroscopic stiffness
tensors predicted by the full and EE models was presented and good correlation
was reported for several case studies: a single cylindrical carbon fibre, irregularly
distributed unidirectional carbon fibres, a single crimped yarn with carbon fibres
as filaments inside a polymeric matrix, and a 5H satin reinforced composite. Their
approach, in which both matrix and fibres are modelled by volume elements, ap-
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pears applicable to arbitrarily curved nanotubes, too. However, meshing thousands
of nanotubes of high aspect ratio with 3D solid elements and coupling them with
the matrix tends to constitute a rather complex task [Romanov, Lomov, Verpoest
and Gorbatikh (2014)].

Methods that use beam elements for studying the mechanical responses of CNT
based composites can significantly reduce computational cost. Gorski [Gorski
(2011)] combined beam Finite Elements for representing straight or sinusoidally
curved, parallel nanotubes with a matrix described by a Boundary Element method,
the resulting two-dimensional models requiring no embedding. Harper [Harper,
Qian, Turner, Li, Warrior (2012)] applied beam elements embedded into a ma-
trix to investigating volume elements of composites reinforced with discontinues
straight carbon fibres, also in two dimensions.

Johnson [Johnson (2013)] modelled arrays of vertically aligned carbon nanotubes,
individual CNTs being meshed with linear or quadratic shell elements. In a conver-
gence study of the Young’s modulus, quadratic 8-node elements showed the most
consistent behaviour upon increasing the numbers of nodes and elements. Ghasemi
[Ghasemi, Rafiee, Zhuang, Muthu and Rabczuk (2014)] investigated the influence
of discretisation and approximation errors on the macroscopic behaviour for one
type of shell element.

The present work aims at providing quantitative comparisons between predictions
for the homogenized behaviour of a polymer matrix reinforced by curved nanotubes
when the latter are discretized by beam, shell or solid elements that are coupled to
the matrix by multi-point constrains. Solid models with conventionally meshed
matrix and fibres are used for providing reference data, different phase volume
fractions and levels of fibre waviness being considered.

2 Case studies

The motivation for this work comes from studying CNT based composites. Carbon
nanotubes can show straight, twisted, or curved shapes, can be either single-walled
or multi-walled, can have different radii and lengths, and may have a wide range of
orientation and spatial distributions in the matrix. All these factors complicate sim-
ulations of the effective mechanical responses of CNT composites. The concepts
of statistical and representative volume elements allow investigating these param-
eters one by one or in groups by choosing appropriate unit cells. In this work,
periodic arrangements of hollow Multi-Walled Carbon Nanotubes (MWCNT) em-
bedded in a polymeric matrix are modelled by unit cells containing one CNT or a
square arrangement of CNTs and applying proper boundary conditions. The nan-
otubes are assumed to show a ratio of 2 between outer and inner diameters and
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infinite length (for comparison, amino-modified Multi-Walled Carbon Nanotubes
(MWCNTs-NH2) were found to have an outside diameter of 8-15 nm, an inside
diameter of 3-5 nm and an average length of 50 um1). Following Eq. (1) nanotubes
are represented as sine-like fibres of various amplitudes described by the parametric
equation

x = t, y = 0, z = Acos
2πt
H

, t ∈ [−1,1] (1)

Here, A stands for the amplitude and H for the wave length of the sine. Such shapes
may be described by a waviness parameter defined as w = A/H.

Several configurations are considered, which are characterised by different values
of the waviness parameter, the radii of the CNT and the reinforcement volume
fraction. Different ways of discretising CNT and matrix are compared in each
case in order to elucidate trade-offs and identify approaches suitable for modelling
composites reinforced by curved fibres at good accuracy and low cost.

The first case study concentrates on single, wavy, hollow nanotubes which are not
embedded in a matrix and are subjected to tensile loading. The aim is to analyse
the influence of different values of slenderness of the tubes on models utilizing
beam, shell, or solid elements. Since models of this type do not have an absolute
length scale, actual units of length do not play a role. The waviness parameter was
maintained at a value of w=0.125, the wavelength being 2 length units, as stated
in Eq. (1), and the amplitude 0.25 units. Outer radii of 0.08, 0.12, 0.16 and 0.2
units were used for varying the tubes’ slenderness, the inner radii taking half these
values. The material properties are listed in Tab 1.

Table 1: Material properties used for simulations.

Property MWCNT(Hollow Cross section) Matrix
E(GPa) Er=400 GPa Em=2.4 GPa

vr=0.3 vm=0.3

Er,Em,vr and vm being the Young’s moduli and Poisson coefficients of the rein-
forcement and matrix phases, respectively.

The models of the second case study are wavy, hollow nanotubes embedded in ma-
trix material, the cube-shaped volume elements having an edge length of two units,

1 http://www.nanoamor-europe.com/nanomaterials/carbon-nanotubes-nanofibers/carbon-
nanofibers-special-cnts/amino-modified-mwnts/mwnt-nh2-1562yjf.html
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which also equals the wavelength of the tubes’ curviness. Constant outer and in-
ner radii, RCNT =0.04 and rCNT = 0.02, are considered, the amplitude of the sine
being varied to give waviness parameters of 0.08, 0.125, 0.2. For the superposi-
tion models the nanotubes were meshed with solid, shell and beam elements and
multi-point constraints were used to embed the reinforcements in the matrix. In ad-
dition, conventional, “full” 3D solid models were created for providing reference
solutions. Different fibre volume fractions were obtained by changing the number
of nanotubes within the unit cell, 1, 2, 4 or 16 nanotubes being arranged evenly
in a square pattern, see Tab.2. For straight nanotubes (waviness parameter of 0.),
different volume fractions were obtained by changing radii of nanotubes, see Tab.
3. The reinforcement volume fraction was evaluated as

cr =
πNR2

CNT
Acell

(2)

where N is the number of nanotubes in the unit cell and Acellstands for the cross-
sectional area of the unit cell transverse to the nanotube axis. In actual nanocom-
posites, the polymer matrix does not penetrate to the CNTs and an interphase layer
is present. The thickness of this interphase layer may be approximated by half
the equilibrium van der Waals separation distance between CNT and matrix, and
subsumed into the fibre volume, compare Han and Elliot [Han and Elliot, (2007)].
Such a model would require adapting the nanotubes’ stiffness to include interphase
contributions and is not used in the present work.

Table 2: Values of volume fraction cr and waviness parameter w covered in the
present study for wavy fibres (RCNT =0.04).

Number of CNTs in unit cell w=0.08 w=0.125 w=0.2
N = 1 cr=0.13 % cr=0.14 % cr=0.16 %
N = 4 cr=0.53 % cr=0.57 % cr=0.66 %
N = 9 cr=1.19 % cr=1.28 % cr=1.49 %
N = 16 cr=2.13 % cr=2.29 % cr=2.65 %

The material parameters used for the simulations are presented in Tab.1. The ap-
proach of assigning material parameters corresponding to the difference between
the elasticity tensors of nanotubes and matrix - as proposed in Jiang [Jiang, Hal-
lett and Wisnom (2008); Jiang (2012)] is not followed in the present work because
its consistent extension to the bending and torsion stiffnesses associated with the
rotational degrees of freedom of beam and shell elements does not appear feasible.
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Table 3: Values of volume fraction cr for straight nanotubes.

Outer radius of nanotubes RCNT w=0.0
RCNT = 0.08 cr=0.5 %
RCNT = 0.12 cr=1.13 %
RCNT = 0.2 cr=3.14 %

Detailed discussions of experimental findings as well as theoretical and compu-
tational models for the mechanical properties of carbon nanotubes can be found
in [Yakobson and Avouris (2001)]. A wide range of Young’s moduli have been
reported for different types of CNTs, which is partly due to the presence of dislo-
cations, voids, point defects, etc. Young’s moduli obtained by experimental inves-
tigations of MWCNT produced by the CVD method varied from 10 GPa to 450
GPa for ordered and disordered multi-walled carbon nanotubes [Salvetat, Kulik,
Bonard, Andrew, Briggs, Stockli , Méténier, Bonnamy, Béguin and Forro (1999);
Xie, Li, Pan, Chang and Sun (2000)]. For the present work, a value of Er=400 GPa
is chosen for describing the material behaviour of MWCNTs modelled as isotropic
hollow tubes. In future work anisotropic properties of CNT may be used, e.g.,
by following the approach of Papanikos [Papanikos, Nikolopoulos and Tserpes
(2008)], who evaluated the equivalent properties of beams by relating the tensile,
bending and torsional stiffness with the chiral number of nanotubes.

3 Finite Element Model

The FE code ABAQUS/Standard (3DS, Dassault Systèmes, Waltham, MA) and the
associated pre-processor ABAQUS/CAE were used for numerically computing the
effective elastic properties for the two case studies described above.

The nanotubes in case study 1 were modelled as hollow wavy tubes of fixed wave-
length and amplitude but different radii, beam, shell and solid elements being used
to discretize them. Three-node Timoshenko beam elements (ABAQUS element
B32) and Mindlin-Reissner thick shell elements with quadratic interpolation (S8R)
were chosen to handle transverse shear flexibility, the outer surface of the nan-
otubes being used as the reference surface in the latter case. Both shells and
beams carry transverse loads by bending or shearing action; the main difference
in their behaviours being due to the shells’ better capabilities of modelling changes
in tube cross section. Quadratic brick elements (C3D20) were chosen for the solid
models as they are known to be the best elements for linear elastic calculations
[Zienkiewicz (2013)].
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The single sine-like hollow nanotubes investigated in case study 1, compare Fig.3,
were solely loaded in their longitudinal x- direction and fixed on one end by suitable
boundary conditions:

For fibres meshed with beam elements, all translational degrees of freedom of the
node on the “back face” (x = 0) and the translational degree of freedom in z- direc-
tion of the node on the “front face” (x = H) are fixed, with the rotational degrees
of freedom of all nodes remaining free. For fibres meshed with shell and solid ele-
ments the translational degrees of freedom in x- direction of all nodes on the “back
face” are fixed, node (0.,0.,0.) is completely fixed and node (0.,0.,DCNT ) is not
allowed to move in y−direction. The translational degrees of freedom in longitudi-
nal x- direction of all nodes on the “front face” are constrained to the corresponding
degree of freedom of node (H, 0., 0.), which is loaded in longitudinal x- direction.
Here, H stands for the wave length of the sine and DCNT for the diameter of the
nanotube. Additionally, node (H, 0., 0.) is fixed in y− and z− directions. The rota-
tional degrees of freedom of the shell elements remained free. With such boundary
conditions the fibres are prevented from twisting and the cross section is allowed to
change.

Results for wavy tubes (w = 0.125) of different radius were evaluated in terms of
the longitudinal stiffness k, which takes the form

k =
F
u1

(3)

where, F is the force applied to the body and u1 is the computed displacement along
the first degree of freedom.

In case study 2 infinitely long, hollow, wavy tubes perfectly bonded within a matrix
material were modelled by unit cells containing one wavelength of the fibres, see
Fig. 1.

In the “full” three-dimensional finite element model, where both fibres and matrix
are described by solid elements, quadratic 20-node brick elements (C3D20) were
used wherever possible and 15-node quadratic triangular prism elements (C3D15)
were inserted where required by the automatic hexahedral mesher.

For the superposition models a regular, structured mesh of 20-node hexahedra was
employed for the matrix. Beam, shell or solid elements were used for independently
meshing the nanotubes, which were then embedded in the matrix “host” mesh.
The translational degrees of freedom of the embedded nodes are constrained to the
interpolated values of the corresponding degrees of freedom of the appropriate host
elements, whereas the rotational degrees of freedom of the beam and shell elements
are not constrained by the embedding.

This representation of the nanotubes introduces symmetries that support using pe-
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Figure 1: Sinusoidal fibre meshed with solid elements (“full model”).

riodic models. For the purpose of determining the composite’s effective stiffness
tensor, periodicity boundary conditions (PBC) are applied in the FE analysis by
subjecting pairs of homologous nodes, which occupy corresponding positions ξξξ on
pairs of opposite faces of the volume element, to constraint conditions of the type

k+u(ξξξ )− k−u(ξξξ ) = 0
ε∆

k
ξξξ (4)

Here, u is the displacement vector, 0εεε is a constant strain tensor describing the
macroscopic behaviour of the volume element, and ∆kξξξ is a constant distance vec-
tor between pairs of opposite surfaces k+ and k−. For periodic homogenization us-
ing the method of macroscopic degrees of freedom [Michel, Moulinec and Suquet
(1999)], the macroscopic displacement field within the unit cell is completely de-
fined by the displacements of characteristic vertices, so called master nodes [Pahr
and Rammerstorfer (2006)]. Node SWB, compare Fig.2, is locked, nodes SEB,
NWB and SWT control the macroscopic displacements of the East, North and Top
faces, respectively, and the boundary conditions of the other surface nodes follow
equation (4), ensuring that opposite faces of a given unit cell deform in a compatible
way.

Loading by normal stresses is implemented by applying normal concentrated forces
in the 1-, 2- and 3-directions to the master nodes SEB, NWB and SWT. In addition,
three simple shear load cases are set up by subjecting the master nodes to suitable
tangential concentrated forces. Relations between master node forces/displacements
and volume average stresses/strains are given in [Pahr and Rammerstorfer (2006)].
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Figure 2: Notation of the faces (North, South, East, West, Top, Bottom) of a volume
element [Pahr and Zysset (2008)].

The solutions of the above six linearly independent load cases provide six pairs
of phase averaged stress and strain tensors. These allow setting up 36 equations,
from which the 36 elastic constants making up the macroscopic elasticity tensor
can be obtained. The ILSB in-house software MedTool was used, on the one hand,
for generating the boundary conditions and load cases and, on the other hand, for
extracting the elastic tensors.

4 Results

The effects of different mesh types, waviness and volume fractions on the effective
elastic properties of free and embedded nanotubes are discussed in this section.

4.1 Case study 1: Single nanotube without matrix

The effects of discretization by different element types on the axial displacements
u1 and the longitudinal stiffness k1 of free nanotubes are presented in Tab. 4.
Keeping the wavelength as well as the amplitude, and thus the waviness param-
eter (w=0.125), of the sine fixed while varying the radii of the nanotubes, these
results probe interactions between the slenderness of the fibres and the different
discretisations.

Here the applied force was F = 4N. Displacements are given in units of length and
stiffness in units of N per unit of length. The wavelength of the sine equals 2 length
units, and the error pertains to the axial stiffness, see Eq. (5).

As expected the stiffness increases markedly with increasing tube radius. To assess
the efficiency of the different mesh element types, the relative error in stiffness with
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Table 4: Comparison of the stiffness of single, free, sine-like tubes (waviness pa-
rameter w=0.125) of different radius, meshed with different types of element.

Solid elements Beam Elements Shell elements Relative
error

Beam vs.
Solid

Relative
error

Shell vs.
Solid

RCNT =0.08,
rCNT =0.04

u1 = 2.49 ·10−2

k1 = 160.64
u1 = 2.471 ·10−2

k1 = 161.943
u1 = 2.284 ·10−2

k1 = 175.13
0.80% 9.02%

RCNT =0.12,
rCNT =0.06

u1 = 5.46 ·10−3

k1 = 732.6
u1 = 5.52 ·10−3

k1 = 724.63
u1 = 5.28 ·10−3

k1 = 757.57
-1.09% 3.4%

RCNT =0.16,
rCNT =0.08

u1 = 1.928 ·10−3

k1 = 2074.043
u1 = 2.03 ·10−3

k1 = 1969.54
u1 = 1.959 ·10−3

k1 = 2041.85
-5.03% -1.55%

RCNT =0.2,
rCNT =0.1

u1 = 8.99 ·10−4

k1 = 4444.59
u1 = 9.81 ·10−4

k1 = 4076.308
u1 = 9.39 ·10−4

k1 = 4259.85
-8.28% -4.16%

reference to solid elements is evaluated,

error =
kbeam,shell

1 − ksolid
1

ksolid
1

(5)

Compared to the full solid model, both beam and shell models overestimate the ax-
ial stiffness for the lower fibre radii considered and underestimate it for the higher
radii. The tendency is for the beam models to do better for more slender tubes,
and for the shell models for large fibre diameters. One of the reasons for this
behaviour lies in the response of the cross sections. Fig.3 presents comparisons be-
tween displacements and stress states obtained with solid, beam and shell-models,
respectively, pertaining to an outer fibre radius of RCNT =0.16. Ovalisation of the
tubes’ cross section is evident for the solid and shell models, but is not included in
the beam elements’ formulation. This leads to a higher stiffness of the latter models
for the case considered.

With decreasing tube radii, the influence of changes to the cross section decreases
and the stiffness of the beam model approaches that of the solid model. The shell
model, however, is clearly too stiff in this regime. For the simulations in the second
case study, a small outer radius is used, RCNT =0.04, for a unit cell length of 2 units.

4.2 Case study 2: Nanotubes embedded in the matrix

This subsection focuses on the assessment of the embedded element technique with
different types of mesh element being constrained to the matrix.
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Figure 3: Wavy hollow sine-like tubes with a outer fibre radius of RCNT =0.16,
meshed with solid (a), beam (b) and shell (c) elements. a1,b1,c1 present longitu-
dinal displacements and a2, b2, c2 distributions of the longitudinal normal stress
component , a cut being made with an x=const plane in the middle of the tube. The
deformation scale factor is set to 500.

Fig. 4 presents comparisons between stress profiles obtained with unit cells con-
taining 4×4 tubes of waviness parameter w=0.125 in a regular, square arrangement
for 4 different models (3D solid full model and 3 models with beam, shell and solid
elements embedded in the matrix). Part of a longitudinal section of the unit cell,
measuring 2×1 length units, is shown.

Generally, the embedding technique captures the stress distribution quite well,
though for the model using embedded beams the compressive axial stresses are
considerably more strongly concentrated, with small regions showing elevated neg-
ative values of σ11. This is due to the one-dimensional nature of the beam elements,
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3D full solid model 

 

Embedded beam elements 

 

Embedded shell elements 

 

Embedded solid elements 

 

 Figure 4: Distribution of axial normal stress in detail of longitudinal section of
arrangement of 16 tubes, w=0.125.

which do not have proper volume and interact with a smaller number of elements
in the matrix. The stress distributions predicted by the embedding models using
solid and shell elements are quite similar, differences being apparent mainly in the
regions of maximum curvature of the tubes.

Quantitative comparisons of the Young’s moduli obtained for models with differ-
ent waviness parameters are presented in Fig.5. The identifiers ”EmbBeam”, ”Em-
bShell”, ”EmbSolid” indicate models that use the embedding technique in super-
imposing matrix and tube meshes, the latter using beam, shell and solid elements,
respectively. “Solid” refers to the conventional 3D full solid model.

Different fibre volume fractions were obtained by changing the number of nan-
otubes within the unit cell for wavy fibres with RCNT =0.04 (Tab.2) and by changing
the radius for straight fibres (Tab. 3).

For straight nanotubes (w=0.0), the linear dependence between volume fraction and
axial Young’s modulus is evident and the models give fairly similar results. For the
non-zero waviness parameters, the axial Young’s moduli obtained with the super-
position method tend to underestimate the results obtained with the full 3D solid
model, but are much more efficient in terms of computational and modelling effort.
For all cases, the beam models show the softest behaviour, whereas the shell mod-
els are considerably closer to the embedded solid models. For waviness parameters
of w = 0.125 and w = 0.2 the embedded shell predictions give better agreement
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with the full 3D model results than do the ones generated with the embedded solid
model. As expected, waviness can be seen to reduce the effective longitudinal elas-
tic modulus. At a reinforcement volume fraction of 2% a waviness parameter of
w = 0.2 is predicted to give rise to a reduction of the Young’s modulus from 8 GPa
to 2.8 GPa, which corresponds to a loss of 65% in stiffness.

w=0.0 

 

w=0.08

 

w=0.125 

 

w=0.2

 

 Figure 5: Longitudinal elastic modulus predicted for fibres with different waviness.

In terms of the longitudinal Young’s modulus, the responses generated with em-
bedded solid and, especially, the embedded shell models in Fig. 5 are promising.
When comparing these results with the ones obtained in case study 1, a much more
favourable behaviour of the shell models is evident. This appears to be due to can-
celling out of errors from the discretization of the CNT and from the embedding
procedure.

Since the periodic homogenization approach can provide full elastic tensors rather
than just the longitudinal Young’s modulus, the influence of the discretization strat-
egy on the other effective elastic constants can also be assessed. When realistic
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geometries with twisted and tangled CNTs are to be considered, of course, the in-
teractions between fibres and matrix must be described sufficiently well for all local
loading conditions, translating into a requirement for good quality approximations
for all moduli. Fig. 6 shows plots of the relative error in 6 of the 9 elastic moduli
relevant to macroscopically orthotropic behaviour. The data is given as functions of
the reinforcement volume fraction and the waviness parameters, the fibres having
the shape of sine waves in the x− z plane. E11 stands for the longitudinal macro-
scopic Young’s modulus, E22 as well as E33 for the transverse macroscopic Young’s
moduli, G12 and G13 for the longitudinal and G23 for the transverse macroscopic
shear moduli of the composite.

Errors in excess of 5% can be seen to occur for the axial Young’s modulus, E11,
predicted by the embedded shell models for small waviness parameters and for
the longitudinal shear modulus in the plane of waviness, G13, for both solid and
shell embedded models at high waviness parameters. In the case of the transverse
Young’s modulus, E22, which describes the response normal to the plane of wavi-
ness, the errors of both models approach 4%, with the embedded shells being su-
perior for small waviness parameters. For the other moduli the embedded shell
approach gives errors of less than 2% and shows a more favourable behaviour than
the embedded solid models.

For the whole range of waviness and concentration the beam models show much
softer behaviour for all elastic moduli. As example, the relative differences in the
predicted 6 elastic moduli between the conventional 3D solid model and the em-
bedded beam model are shown in Tab 5.

Table 5: Relative difference in the predicted six elastic moduli between conven-
tional 3D solid model and embedded beam model.

w=0.2, N=16, cr= 2.65 %
Relative error

between
E11 E22 E33 G23 G13 G12

EmbBeam and Solid
models

-7.94% -4.63% -5.9% -4.49% -13% -4.69%

The embedding technique is subject to limitations in correctly representing phase
volume fractions and total solid volume, the shell and solid elements describing
the nanotubes being overlaid on the solids making up the matrix. Thus, correc-
tions by volume fraction must be considered. As mentioned before, this can be
achieved for straight nanotubes by assigning the difference between the elasticity
tensors of reinforcement and matrix to the latter, compare [Jiang, Hallett and Wis-
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Figure 6: Relative difference in the predicted three Youngs’s moduli and three shear
moduli between, on the one hand, the conventional 3D solid model and, on the other
hand, the embedded shell and embedded solid models, respectively.
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nom (2008); Jiang (2012)]. For beam and shell models describing more complex
nanotube geometries, where fiber bending plays an appreciable role, however, this
approach requires verification, which is outside the scope of the present contribu-
tion. Table 6 shows that overlaying the volumes of matrix and reinforcement does
influence the predicted macroscopic moduli. The results labeled “EmbShell model
with corrected volume” were obtained by removing the equivalent volume of the
nanotubes from the matrix, followed by superposing the fiber mesh and connect-
ing it to the matrix with the standard embedding constraints provided by ABAQUS.
The positive sign in the relative difference means that embedded models give stiffer
responses than the conventional model.

Table 6: Correction by volume fraction. Relative difference in longitudinal Young’s
modulus between embedded beam/shell/solid models and conventional full 3D
solid model.

Volume
fraction

[%]

EmbShell with
corrected
volume vs.

Solid

EmShell
vs. Solid

EmbSolid
vs. Solid

EmbBeam
vs. Solid

0.16532 0.21161 0.36624 -0.691788
0.65784 0.69543 1.08517 1.23801 -2.479844
1.48221 1.70376 2.52566 2.65618 -4.733853
2.63693 2.35981 3.69206 4.50891 -7.555916

Such volume-corrected shell models, of course, are mainly useful for comparisons,
because their use negates most of the advantages in terms of modelling effort that
led to studying embedded models in the first place.

5 Conclusions

The performance of composites reinforced by CNT depends strongly on the geo-
metric parameters of the nanotubes, including aspect ratio, waviness, orientation,
spatial distribution plus many other factors. Existing quantum mechanical and
molecular dynamics methods have only limited applicability to analysing this issue,
mainly because the volume elements to be studied are relatively big. The objec-
tive of the present work is assessing efficient numerical continuum-level modelling
procedures that may be used for studying the mechanical responses of composites
reinforced with arbitrarily curved nanotubes at various levels of concentration. Due
to computational requirements and difficulties in meshing, the use of conventional
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full 3D solid models, in which reinforcement and matrix are meshed compatibly
with volume elements, is a challenging task. A superposition model is proposed
for describing nanotubes embedded into polymer matrices, the nanotubes being
meshed separately from the matrix using beam, shell or solid elements and then
coupled to the matrix.

For this assessment CNTs are modelled as sine-like hollow tubes or shells with
predefined thickness. Beam and shell models of curved tubes without a matrix are
first compared to solid models in order to study the influence of the fibre radius of
the individual carbon nanotubes on the choice of element type. It is observed that
the predictions for the longitudinal stiffness of single nanotubes in the absence of a
matrix are sensitive to the discretisation of tubes.

In a second step nanotubes were meshed independently with beam, shell or solid
elements and embedded into a matrix by linking the translational degrees of free-
dom. Unit cells discretised this way were subjected to 6 linearly independent load
cases to evaluate the effective elastic tensor. Results were compared with calcula-
tions obtained with conventional 3D full solid models. For all models the effective
Young’s and shear moduli increase markedly with increasing reinforcement volume
fraction and decrease with increased waviness of the nanotubes.

The relative difference in the Young’s and shear moduli between conventional full
solid models and embedded beam/shell/solid models is largest for the beam models,
resulting in a much more compliant macroscopic behaviour. In addition, embed-
ded beam models are not very accurate in describing the mechanical responses in
the transverse directions and under shear loading, especially at increased volume
fraction.

Shell and solid elements are found promising for modelling the effective properties
of composites reinforced by carbon nanotubes as they tend to give reasonable val-
ues for all considered moduli when compared with the corresponding 3D full mod-
els. Overall, embedded shell and embedded solid models exhibit a slightly stiffer
longitudinal modulus than the conventional 3D solid model, one of the reason for
this being the “doubled” volume in the superimposed models. An interesting fact
is that upon increasing the nanotube waviness, the embedded shell model gives
more accurate results for the longitudinal elastic modulus compared with embed-
ded solid model. In addition, the embedded shell models give better results than the
embedded solid models for the transverse Young’s and shear moduli independently
of waviness or volume fraction.

Thus, for the purpose of modelling arbitrarily curved nanotubes, especially when
they exhibit strong curvature and have a wide range of orientations, embedding
models using shell elements appear to be a promising approach to reducing com-
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putational effort.

Acknowledgement: The authors would like to acknowledge the support of the
Marie Curie Initial Training Network "CONTACT" for the tailored supply-chain
development of CNT-filled composites with improved mechanical and electrical
properties, funded by the European Community’s Seventh Framework Programme
(FP7-PEOPLE-ITN-2008-238363), http://www.contactproject.eu/.

In addition, this work was supported by Institute of Lightweight Design and Struc-
tural Biomechanics, Vienna University of Technology. Discussions with the mem-
bers of the institute are gratefully acknowledged.

References

Bhuiyan, M. A.; Pucha, R. V.; Worthy, J.; Karevan, M.; Kalaitzidou, K.
(2013): Understanding the effect of CNT characteristics on the tensile modulus
of CNT reinforced polypropylene using finite element analysis. Computational
Materials Science, vol. 79, pp. 368–376.

Biragoni, P.; Hallett, S. R. (2009): Finite element modelling of 3D woven com-
posites for stiffness prediction”, in 17th International Conference on Composite
Materials, Edinburgh.

Bradshaw, R. (2003): Fiber waviness in nanotube-reinforced polymer composites
- II: modeling via numerical approximation of the dilute strain concentration tensor.
Composites Science and Technology, vol. 63, pp. 1705–1722.

Brooker, R. D.; Guild, F. G.; Taylor, A. C. (2011): Quantifying the dispersion of
carbon nanotubes in thermoplastic-toughened epoxy polymers. Journal of Materi-
als Science, vol. 46, pp. 3108–3118.

Buryachenko, V.; Roy, A.; Lafdi, L; Anderson, K.; Chellapilla, S. (2005):
Multi-scale mechanics of nanocomposites including interface: Experimental and
numerical investigation. Composites Science and Technology, vol. 65, pp. 2435–
2465.

Fisher, F. (2003): Fiber waviness in nanotube-reinforced polymer composites - I:
Modulus predictions using effective nanotube properties. Composites Science and
Technology, vol. 63, pp. 1689–1703.

Ghasemi, H.; Rafiee, R.; Zhuang, X.; Muthu, J.; Rabczuk, T. (2014): Uncer-
tainties propagation in metamodel-based probabilistic optimization of CNT/polymer
composite structure using stochastic multi-scale modeling. Computational Materi-
als Science, vol. 85, pp. 295–305.

Gorski, R. (2011): Elastic properties of composites reinforced by wavy carbon



Investigation of the Embedded Element Technique 21

nanotubes, Mechanics and Control, vol. 30 (4), pp. 203–213.

Han, Y.; Elliott, J. (2007): Molecular dynamics simulations of the elastic prop-
erties of polymer/carbon nanotube composites. Computational Materials Science,
vol. 39, pp. 315–323.

Harper, L. T.; Qian, C.; Turner, T. A.; Li, S.; Warrior, N. A. (2012): Rep-
resentative volume elements for discontinuous carbon fibre composites - Part 1:
Boundary conditions. Composites Science and Technology, vol. 72, pp. 225–234.

Jiang, W. G.; Hallett, S. R.; Wisnom, M. R. (2008): Development of domain
superposition technique for the modelling of woven fabric composites. Computa-
tional Methods in Applied Sciences, vol. 10, pp. 281–291.

Jiang, W. G. (2012): Implementation of domain superposition technique for the
nonlinear analysis of composite materials. Journal of Composite Materials, vol.
47, pp. 243–249.

Johnson, J. (2013): Numerical Modeling and Characterization of Vertically Aligned
Carbon Nanotube Arrays”, Doctoral Thesis, University of Kentucky.

Joshi, U. A.; Sharma, S. C.; Harsha, S. P. (2011): Effect of waviness on the
mechanical properties of carbon nanotube based composites. Physica E: Low-
dimensional Systems and Nanostructures, vol. 43, pp. 1453–1460.

Karami, G.; Garnich, M. (2005): Micromechanical study of thermoelastic behav-
ior of composites with periodic fiber waviness. Composites Part B: Engineering,
vol. 36, pp. 241–248.

Lusti, H. R.; Gusev, A. A. (2004): Finite element predictions for the thermoe-
lastic properties of nanotube reinforced polymers. Modelling and Simulation in
Materials Science and Engineering, vol. 12, pp. S107–S119.

Martone, A.; Faiella, G.; Antonucci, V.; Giordano, M.; Zarrelli, M. (2011):
The effect of the aspect ratio of carbon nanotubes on their effective reinforcement
modulus in an epoxy matrix. Composites Science and Technology, vol. 71, pp.
1117-1123 .

Matveeva, A. Y.; Pyrlin, S. V.; Ramos, M. M. D, Böhm, H. J.; van Hattum, F.
W. J. (2014): Influence of waviness and curliness of fibres on mechanical properties
of composites. Computational Materials Science, vol. 87, pp. 1–11.

Michel, J. C.; Moulinec, H.; Suquet, P. (1999): Effective properties of compos-
ite materials with periodic microstructure: A computational approach. Computer
Methods in Applied Mechanics and Engineering, vol. 172, pp. 109–143.

Odegard, G. (2002): Equivalent-continuum modeling of nano-structured materi-
als". Composites Science and Technology, vol. 62, pp. 1869–1880.

Odegard, G.; Pipes, R.; Hubert, P. (2004): Comparison of two models of SWCN



22 Copyright © 2014 Tech Science Press CMC, vol.42, no.1, pp.1-23, 2014

polymer composites. Composites Science and Technology, vol. 64, pp. 1011–1020.

Pahr, D. H.; Rammerstorfer, F. G. (2006): Buckling of honeycomb sandwiches:
Periodic finite element considerations. CMES Computer Modeling in Engineering
and Sciences 12, pp. 229–242.

Pahr, D. H.; Zysset, P. K. (2008): Influence of boundary conditions on com-
puted apparent elastic properties of cancellous bone. Biomechanics and Modeling
in Mechanobiology, vol. 7, pp. 463–476.

Pantano, A.; Modica, G.; Cappello, F. (2008): Multiwalled carbon nanotube
reinforced polymer composites. Materials Science and Engineering: A, vol. 486,
pp. 222–227,.

Papanikos, P.; Nikolopoulos, D. D.; Tserpes, K. I. (2008): Equivalent beams for
carbon nanotubes. Computational Materials Science, vol. 43, pp. 345–352.

Pegel, S.; Villmow, T.; Pötschke, P. (2011): Chapter 9 - Quantification of disper-
sion and distribution of carbon nanotubes in polymer composites using microscopy
techniques. Polymer–Carbon Nanotube Composites, T. McNally, P. Pötschke (Ed.),
Woodhead Publishing, pp. 265–294.

Pegel, S.; Pötschke, P.; Petzold, G.; Alig, I.; Dudkin, S. M.; Lellinger, D.
(2008): Dispersion, agglomeration, and network formation of multiwalled carbon
nanotubes in polycarbonate melts. Polymer, vol. 49, 974–984.

Pujari, S.; Rahatekar, S. S.; Gilman, J. W.; Koziol, K. K.; Windle, A. H.;
Burghardt, W. R. (2009): Orientation dynamics in multiwalled carbon nanotube
dispersions under shear flow. The Journal of Chemical Physics, vol. 214903(130),
pp. 1–9.

Rezakhaniha, R.; Agianniotis, A.; Schrauwen, J. T. C.; Griffa, A.; Sage, D.;
Bouten, C. V. C.;Vosse, F. N.; Unser, M.; Stergiopulos, N. (2012): Experimental
investigation of collagen waviness and orientation in the arterial adventitia using
confocal laser scanning microscopy. Biomechanics and Modeling in Mechanobiol-
ogy, vol. 11, pp. 461–473.

Romanov, V. S.; Lomov, S. V.; Verpoest, I.; Gorbatikh, L. (2014): Can carbon
nanotubes grown on fibers fundamentally change stress distribution in a composite?
Composites Part A: Applied Science and Manufacturing, vol. 63, pp. 32–34.

Salvetat, J.-P.; Kulik, A.; Bonard, J.-M.; Andrew, G.; Briggs, D.; Stockli, T.;
Méténier, K.; Bonnamy, S.; Béguin, F. B. N.; Forro, L. (1999): Elastic Modulus
of Ordered and Disordered Multiwalled Carbon Nanotubes. Advanced Materials,
vol. 11, no. 2, pp. 161–165.

Shi, D.-L.; Feng, X.-Q.; Huang, Y. Y.; Hwang, K.-C; Gao, H. (2004): The Ef-
fect of Nanotube Waviness and Agglomeration on the Elastic Property of Carbon



Investigation of the Embedded Element Technique 23

Nanotube-Reinforced Composites. Journal of Engineering Materials and Technol-
ogy, vol. 126, pp. 250-257.

Song, Y. S.; Youn, J. R. (2005): Influence of dispersion states of carbon nanotubes
on physical properties of epoxy nanocomposites. Carbon, vol. 43, pp. 1378–1385.

Spanos, P. D.; Kontsos, A. (2008): A multiscale Monte Carlo finite element
method for determining mechanical properties of polymer nanocomposites. Prob-
abilistic Engineering Mechanics, vol. 23, pp. 456–470.

Tabatabaei, S. A.; Lomov, S. V.; Verpoest, I. (2014): Assessment of embedded
element technique in meso-FE modelling of fibre reinforced composites. Compos-
ite Structures, vol. 107, pp. 436–446, 2014.

Thostenson, E. T.; Chou, T.-W. (2003) On the elastic properties of carbon nanotube-
based composites: modelling and characterization. Journal of Physics D: Applied
Physics, vol. 36, pp. 573–582.

de Villoria, R.; Miravete, A. (2007): Mechanical model to evaluate the effect of
the dispersion in nanocomposites. Acta Materialia, vol. 55, pp. 3025–3031.

Wang, S.; Liang, Z.; Wang, B.; Zhang, C. (2006): Statistical characterization
of single-wall carbon nanotube length distribution. Nanotechnology, vol. 17, pp.
634–639.

Xie, S.; Li, W.; Pan, Z.; Chang, B.; Sun, L. (2000): Mechanical and physical
properties on carbon nanotube. Journal of Physics and Chemistry of Solids, vol.
61, pp. 1153–1158.

Yakobson, B. I.; Avouris, P. (2001): Mechanical Properties of Carbon Nanotubes.
Carbon Nanotubes, pp. 287–327.

Zienkiewicz, O. C.; Taylor, R. L.; Fox, D. D. (2013): The Finite Element Method
for Solid and Structural Mechanics, Seventh Edition. Butterworth-Heinemann.




