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Abstract: This paper presents fracture mechanics based Artificial Neural Net-
work (ANN) model to predict the fracture characteristics of high strength and ul-
tra high strength concrete beams. Fracture characteristics include fracture energy
(G f ), critical stress intensity factor (KIC) and critical crack tip opening displace-
ment (CTODc). Failure load of the beam (Pmax) is also predicated by using ANN
model. Characterization of mix and testing of beams of high strength and ultra
strength concrete have been described. Methodologies for evaluation of fracture en-
ergy, critical stress intensity factor and critical crack tip opening displacement have
been outlined. Back-propagation training technique has been employed for updat-
ing the weights of each layer based on the error in the network output. Levenberg-
Marquardt algorithm has been used for feed-forward back-propagation. Four ANN
models have been developed by using MATLAB software for training and predic-
tion of fracture parameters and failure load. ANN has been trained with about 70%
of the total 87 data sets and tested with about 30% of the total data sets. It is ob-
served from the studies that the predicted values of Pmax, G f , failure load, KIc and
CTODc are in good agreement with those of the experimental values.
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1 Introduction

Concrete has been one of the most commonly used construction materials in the
world. One of the major problems civil engineers face today is concerned with
preservation, maintenance and retrofitting of structures. The historical develop-
ment of concrete material may be marked and divided into several stages. The first
is the traditional normal strength concrete followed by high strength concrete, high
performance concrete and reactive powder concrete/ Ultra high strength concrete
(UHSC). Since UHSC is a relatively new material, the fracture behaviour of this
material is not well understood [Richard and Cheyrezy (1994, 1995); Mingzhe et
al. (2010); Goltermann et al. (1997)]. Concrete is a quasi-brittle material, which
means its fracture process zone (FPZ) size is not small compared with the typi-
cal specimen or structural dimension. Classical linear elastic fracture mechanics
(LEFM) approach is unable to predict the progressive failure of concrete speci-
mens due to the presence of large FPZ of variable size ahead of the crack tip and
the cohesive stress transferred within FPZ of the quasi-brittle materials like con-
crete [Bazant (2000)]. The LEFM based modeling approach assumes that once a
crack propagates by a distance, this part of the material loses its load carrying ca-
pacity suddenly and completely. The complex nonlinear phenomena that take place
in FPZ can be idealized and approximated using nonlinear fracture approaches to
predict the localized physical behaviour in the vicinity of a crack and at the crack
tip. Nonlinear fracture mechanics based approach recognizes that FPZ exists in
front of the crack tip, in which the material can still carry loadings by mechanisms
such as aggregate interlocking, surface friction and material bonding. As the crack
propagates and opens, the material in FPZ softens with gradual energy dissipation,
which can be accurately modeled by the fictitious crack model. The crack prop-
agation direction is assumed to be perpendicular to the direction of the maximum
stress at the cohesive crack tip. The cohesive crack model is one of such simplified
nonlinear fracture models that can simulate satisfactorily the behaviour of concrete
fracture. Inspired by the early stage of development of the fracture models [Baren-
blatt (1959); Dugdale (1960); Hillerborg et al. (1976)] initially applied cohesive
crack method (or fictitious crack model) as a suitable nonlinear model for mode I
fracture to simulate the softening damage of concrete structures.

An artificial neural network (ANN) is a mathematical model developed from the in-
spiration of biological neural networks. ANN consists of group of artificial neurons
interconnected to each other, and it processes information using a connectionist
approach to computation. ANN model for predicting fracture toughness and ten-
sile strength was successfully demonstrated by Mohammed and Sudhakar (2002).
Ince (2004) predicted facture parameters of concrete by artificial neural networks
and compared the results of two-parameter model (TPM) and ANN. ANN was
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proven to predict the evaluation of parameters affecting failure load and displace-
ment of RC buildings [Hakan Arslan (2009)]. Back propagation training method
was found to be appropriate when non-linear variables are involved [Rafat et al.
(2011)]. Dayal and Choudhury (2011) discussed the aspects of smart crack detec-
tion methodologies in various structures using ANN, fuzzy logic neural network,
fuzzy system, hybrid neuro genetic algorithm and artificial intelligence. In esti-
mation of the seismic-induced demands on column splices, neural network mod-
els were used to predict the response behaviour satisfactorily [Bulent Akbas et al.
(2011)]. This paper presents the details of characterization and casting of high
strength and ultra high strength concrete beams, formation of ANN model to eval-
uate fracture characteristics and failure load has been described.

2 Experimental Investigations

Three different mixes designated as HSC, HSC1 and UHSC are characterized and
their mix proportions have been derived by using appropriate method and several
trials. For HSC, the ingredient materials are Portland cement, coarse aggregate,
fine aggregate and water, whereas for HSC1, the materials are Portland cement,
silica fume, quartz sand, high range water reducer, water and steel fibers. Further,
for UHSC, the materials are Portland cement, silica fume, quartz sand, quartz pow-
der, high range water reducer, water and steel fibers. The main difference between
HSC1 and UHSC is the absence of quartz powder in the case of HSC1 mix. Bu-
reau of Indian Standard code (IS: 10262-2009) has been used for HSC mix design,
whereas HSC1 and UHSC mixes have been designed based on the limited literature
available and several trials. Several trials have been attempted before arriving at a
final mix design. The final mix proportions and ratio obtained are given in Tables
1 and 2.

2.1 Specimen Preparation

Preparation, demoulding and curing of HSC specimens is as usual, whereas the
procedure for specimen preparation for HSC1 and UHSC is outlined below.

• A Hobart mixer machine (15 kg capacity) or Eirich type mixer (150 liter
capacity) is used to mix the concrete mixtures.

• Well mixed dry binder powder is then slowly poured in to the bowl while the
mixer is rotating at a slow speed.

• The speed of the mixer is increased and the mixing process is continued for
about two to three minutes.
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Table 1: Mix Proportions for HSC, HSC1 and UHSC.

Property HSC HSC1 UHSC
Water/cement ratio 0.45 0.33 0.23

Cement, kg/m3 452.44 811.7 838.93
Silica fume, kg/m3 - 202.9 209.73
Quartz sand, kg/m3 - 1217.5 922.82

Quartz powder, kg/m3 - - 335.57
Fine aggregate, kg/m3 565.55 - -

Coarse aggregate, kg/m3 1127.01 - -
Water, kg/m3 203.6 267.9 192.95

Steel Fiber, kg/m3 157.20 158.50
Superplasticizer(SP), (% weight

of cement content in mix)
- 2.5% 3.5 %

Table 2: Mix of HSC, HSC1 and UHSC.
Mix Cement Fine

Aggre-gate
Coarse

aggre-gate
Silica
fume

Quartz
sand

Quartz
powder

Steel
fiber

Water SP
%

HSC 1 1.25 2.48 - - - - 0.45 -
HSC1 1 - - 0.25 1.5 - 2% 0.33 2.5
UHSC 1 - - 0.25 1.1 0.4 2% 0.23 3.5

• Water is then added.

• Additional mixing is performed at this speed until a uniform mixture is ach-
ieved.

• Fibers are added after mixing all the ingredients such as cement, quartz sand,
quartz powder and silica fume with water and superplasticizer.

• Fresh mixture is poured in to the moulds using a steel scoop.

• Compaction is done by placing the filled moulds on a laboratory table vibra-
tor for about 2 minutes.

• The specimens are demoulded after a lapse of 24 hours.

• Immediately after demoulding, the specimens are fully immersed in potable
water at room temperature for 2 days. After 2 days of normal water curing,
the specimens are placed in a autoclave and maintained at 90˚C for 2 days.
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Further, the specimens are placed in oven and maintained at 200˚C for 1 day
followed by autoclave curing.

Mechanical Properties

Various mechanical properties such as compressive strength, spilt tensile strength
of HSC, HSC1 and UHSC mix at 28 days are shown in Table 3. From Table 3, it can
be observed that the split tensile strength for the case of HSC is 4.0 MPa. It is about
7% of compressive strength. In the case of HSC1, the split tensile strength is about
18% of compressive strength. The increase in strength is large compared to HSC.
The increase in strength may be due to various sizes of ingredients and steel fibres.
Further, it can be observed from Table 3 that UHSC has high compressive strength
and tensile strength. The high strengths can be attributed to the contribution at
different scales viz., at the meso scale due to the fibers and at the micro scale due
to the close packing of grains, which is on account of good grading of the particles.

Table 3: Mechnanical properties of HSC, HSC1 and UHSC.

S. No Mix ID Compressive
Strength
(MPa)

Split tensile
Strength
(MPa)

Modulus of
elasticity

(MPa)
1. HSC 57.14 3.96 35,780
2. HSC1 87.71 15.38 37,890
3. UHSC 122.52 20.65 42,987

Casting of Beams

Different beams, namely, small, medium and large size with various notch depths
have been cast to study the fracture behaviour. The experimental setup consists of
MTS 2500 kN capacity servo hydraulic UTM with online data acquisition system.
All the specimens have been tested under displacement control at a rate of 0.02
mm/min. The mid-span downward displacement is measured using linear variable
displacement transducer (LVDT), placed at center of the specimen under bottom of
the beam. A clip gauge is used to measure the crack mouth opening displacement
(CMOD). The data acquisition records load, CMOD, mid-span displacement and
time. Appropriate load cells have been used for testing.
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3 Fracture Characteristics

Fracture characteristics such as fracture energy (GF) based on work-of fracture,
fracture toughness (KIC) and CTODc - Crack tip opening displacement for HSC,
HSC1 and UHSC specimen have been estimated based on the experimental ob-
servations. Brief description on the evaluation of GF , KICand CTODC has been
outlined below.

3.1 Fracture energy (GF )

In general, concrete structures contain voids and flaws. These flaws grow and prop-
agate leading to failure. The fracture energy is one of the important parameter in the
analysis of cracked concrete structures. Fracture energy, GF is an important frac-
ture mechanic parameter to describe the resisting properties of concrete fracture.
In fact the fracture energy can be seen as a measure for the ductility of concrete
and it is considered as a material parameter. The fracture energy, GF is defined as
the amount of energy necessary to create a crack of unit surface area projected in a
plane parallel to the crack direction.

The area under the load-displacement plot is considered as the work of fracture
(WF) and is defined as

WF(w) =
w∫

0

Pdw (1)

where “w” is the crack mouth opening displacement, WF is the work of fracture, P
is the applied load.

According to RILEM method of Hillerborg, the fracture energy GF is the average
energy given by dividing the total work of fracture by the projected fracture area
(RILEM 1985, Karihaloo 1995). In case of a specimen of depth d and initial crack
length a0, the fracture energy is given by

GF =
WF

(d−a0)t
(2)

d = Depth of the beam, a0 = Initial crack length, t = Thickness of the beam,

WF = Area below the measured total load- displacement plot

3.2 Fracture toughness (KIC) and CTODc - Crack tip opening displacement

Critical stress intensity factor (KIC) and critical crack tip opening displacement
CTODc have been derived from Jenq and Shah effective elastic crack model called
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the two parameter fracture model (TPFM) (Jenq and Shah 1985). The details are
given below:

The TPFM requires at least one cycle to obtain the loading (Ci) and unloading (Cu)
compliances, and also the peak load (Pc). The self-weight (P0) of the specimen
is also included. The critical effective elastic crack length (ac) at the peak load is
calculated from the modulus of elasticity obtained with the loading and unloading
compliance, E1 and E2, respectively.

E1 =
6Sa0g2 (α0)

CiD2t
, (3)

E2 =
6Sacg2 (αc)

CuD2t
, (4)

α0 =
(a0 +HO)

(D+HO)
, αc =

(ac +HO)

(D+HO)
, (5)

g2 (α) = 0.76−2.28α +3.87α
2−2.04α

3 +
0.66

(1−α)2 (6)

where, ao= initial crack depth, D = depth of the beam

By equating E1 and E2, the critical effective elastic crack length ac can be obtained.

Using the following LEFM relationship, KIC and CTODc can be calculated given
the geometric function (g1) for the TPB specimen.

KIC = 3(Pc +0.5P0S/L)
S
√

πacg1 (ac/D)

2D2t
, (7)

where

g1

(ac

D

)
=

1.99− (ac/D)(1−ac/D)
[
2.15−3.93(ac/D)+2.70(ac/D)2

]
√

π [1+2(ac/D)] [1− (ac/D)]3/2 (8)

(for S/D = 4.0)

CTODc = 6(Pc +0.5P0S/L)
Sacg2 (ac/D)

ED2t[
(1−β0)

2 +
[
1.081−1.149

(ac

D

)](
β0−β

2
0
)]1/2

,

(9)

where, β0 =
ao

ac
(10)
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4 Artificial Neural Network

ANNs learn through the example problems rather than programming. Although
detailed methodology of ANN has been reported in literature [Kamarthi and Pittner
(1999); Mohammed and Sudhakar (2002, Ince 2004)], a brief description towards
development of model is described below.

4.1 Feed Forward- Back Propagation Neural Networks

In Feed-Forward Networks (FFNs), the signals from the input neurons to the output
neurons flow only in one direction. There is no feedback (loops) i.e. the output of
any layer does not affect that same layer. Feed-forward ANNs are straight forward
networks that associate inputs with outputs. They are extensively used in pattern
recognition. This type of organisation is also referred to as top-down. The infor-
mation distribution is parallel for all the nodes of the succeeding layer. Figure.
1 describes the FFNs, typical three-layer feed-forward multi-layer perceptron net-
work architecture with i, j, and o neurons in the input, hidden, and output layers
respectively. fi represents the activation function, ‘w’ stands for the weights, Xi

represents the input variables and Yk stands for the output variables (André Bian-
coni et al. 2010).
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Figure 1: Typical Feed forward network  

Back-propagation neural networks are adopted in the present study, as they have a high 

capability of data mapping (Hecht-Nielsen 1990). Back-propagation neural networks were 

applied to a wide range of areas including classification, estimation, prediction, and functions 

synthesis and they are currently the most widely used neural network.  
The back-propagation learning is based on the gradient descent along the error surface 

(Gallant 1988, Kamarthi and Pittner 1999, Haykin 2001). The weight adjustment is 

proportional to the negative gradient of the error with respect to the weight. In mathematical 

representation 

kk1k ηdWW 
                                             (11) 

where, wk  is an individual weight at epoch k; 

   is the learning rate 

And the direction vector dk is negative of the gradient of the output error function ‘E’ and is 

given by the equation 12 

 )E(wd kk                                            (12) 

 
 

 

X1 

X2 

w11,1 

X3 

Xi 

w1 i,j 

H1 

Hj 

w2 i,j 

w2 1,1 

Y1 

Y2 

Yk 

Input 

Layer 
Hidden 

 Layer 

Output 

 Layer 

Figure 1: Typical Feed forward network.
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Back-propagation neural networks are adopted in the present study, as they have a
high capability of data mapping [Hecht-Nielsen (1990)]. Back-propagation neural
networks were applied to a wide range of areas including classification, estimation,
prediction, and functions synthesis and they are currently the most widely used
neural network.

The back-propagation learning is based on the gradient descent along the error
surface [Gallant (1988); Kamarthi and Pittner (1999); Haykin (2001)]. The weight
adjustment is proportional to the negative gradient of the error with respect to the
weight. In mathematical representation

Wk+1 =Wk +ηdk (11)

where, wk is an individual weight at epoch k; η is the learning rate.

And the direction vector dk is negative of the gradient of the output error function
‘E’ and is given by the equation 12

dk =−∇E(wk) (12)

4.2 Transfer Function

Depending upon the type of input data and the output required, there are five types
of activation functions used to transform input signal into output viz., linear func-
tion, threshold function, sigmoid function, hyperbolic tangent function and radial
basis function (Roshan 2007). The sigmoid transfer functions are used in this work.
Figure. 2 shows the log and tan sigmoidal functions used for squashing the weights
between the layers

 

(a) Log-sigmoidal               (b) Tan -sigmoidal 

 

a = logsig(n) a = tansig(n) 

Figure 2: Transfer Functions.
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To construct a neural network that performs some definite task, one must choose
how the units are connected to one another and must set the weights on the connec-
tions appropriately. The connections conclude whether it is possible for one unit to
influence another. The weights specify the strength of the influence.

5 ANN based analysis

The purpose of this investigation is to check the applicability of the ANN –based
methodology to predict the failure load (Pmax) and fracture characteristics (GF , KIC

and CTODC) of High strength and Ultra high strength concrete beams. MATLAB
software is used in developing the ANN robust models.

5.1 Input and Output

The following parameters are considered as the input parameters for the ANN
model. Length (L) of the beam, since the width of the beam is same for all the
tested beams the cross section area (A), notch depth (a0), water- cement ratio (w/c),
compressive strength (fck), split tensile strength (σt), and modulus of elasticity (E).
These seven parameters are used as input terminals in the input layer. The outputs
of the ANN is fracture energy (GF ), critical stress intensity factor (KIC), critical
crack tip opening displacement (CTODc) and failure load (Pmax). Totally 87 data
sets obtained from the results of three-point bending test HSC, HSC1 and UHSC
beams are used in development and validation of the ANN model.

5.2 Architecture on ANN

Back – propagation ANN architecture is used in the present study. The input layer
is used as described in previous section. The first hidden layer consists of four neu-
rons and the second hidden layer consists of three neurons. Thus four individual
models are developed for four outputs (GF , KIC, CTODC and Pmax). In the present
study, four layers have been used that includes one input layer, two hidden layers
and one output layer. Sigmoidal transfer functions are generally used in civil en-
gineering problems and hence, the transfer functions ‘tansig’ is used in between
the input and first hidden layers; ‘logsig’ is used in between the first hidden layer
and second hidden layer; ‘logsig’ is again used in between second hidden layer
and output layer. The transfer functions and the number of nodes in all the layers
remain same for all the four models. The algorithm of the transfer functions used
in MATLAB for tan and log sigmoidal functions are shown in equations 3 and 4
respectively [Demuth et al. (2006); Mark et al. (2011)]

Tansig(n) = 2/(1+ exp(−2∗n))−1 (13)
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Logsig(n) = 1/(1+ exp(−n)) (14)

5.3 Training of ANN

About 70% of the total data sets are presented to the ANN for training and remain-
ing data sets are used for the validation of the trained model. Thus, 61 data sets are
used for training and 26 for testing. The architecture of the ANN is described in
Figure.3. The data that form an input vector have different quantitative limits and
hence normalization of the data is required before presenting the input patterns to
the ANN. Thus, equation 15 is used for the linear normalization of the data to the
data values between 0 and 1.

xn
i =

xa
i − xmin

i

xmax
i − xmin

i
(15)

where, xa
i and xn

i are the ith component of the input vector before and after normal-
ization, respectively, and xmax

i and xmin
i are the maximum and minimum values of

all the components of the input vector before the normalization.

all the four models. The algorithm of the transfer functions used in MATLAB for tan and log 

sigmoidal functions are shown in equations 3 and 4 respectively (Demuth et al. 2006, Mark et 

al. 2011) 

Tansig (n) = 2/(1+exp(-2*n))-1                                              (13) 

Logsig(n) = 1 / (1 + exp(-n))                                                  (14) 

 

 

5.3 Training of ANN 

About 70% of the total data sets are presented to the ANN for training and remaining data sets 

are used for the validation of the trained model. Thus, 61 data sets are used for training and 26 

for testing. The architecture of the ANN is described in Figure.3. The data that form an input 

vector have different quantitative limits and hence normalization of the data is required before 

presenting the input patterns to the ANN. Thus, equation 15 is used for the linear 

normalization of the data to the data values between 0 and 1. 

minmax

min

ii

i

a

in

i
xx

xx
x






                                                  (15) 

where, 
a

ix
and 

n

ix
  are the i

th 
component of the input vector before and after normalization, 

respectively, and 

max

ix
and 

min

ix
are the maximum and minimum values of all the 

components of the input vector before the normalization. 

 

  

 

 

 

 

Figure 3: Typical Architecture of ANN 

 

The training phase of the ANN converged  at about 1000 iterations or epochs for Pmax and GF; 

800 epochs in case of KIC and CTODC. The variation of the mean square error aginst the 

L 

A 

ao 

w/c 

fck 

σt 

E 

Input  

Layer 

Hidden 

 Layer1 

Output 

Layer 

Hidden 

 Layer2 

Tansig Logsig Logsig 

GF/ KIC/ 

CTODC/

Pmax 

Figure 3: Typical Architecture of ANN.



204 Copyright © 2014 Tech Science Press CMC, vol.41, no.3, pp.193-213, 2014

The training phase of the ANN converged at about 1000 iterations or epochs for
Pmax and GF ; 800 epochs in case of KIC and CTODC. The variation of the mean
square error aginst the number of iterations for the fracture characteristics training
models are shown in Figures. 4 to 7.

 

Figure 4: Training performance for Pmax.

From Figures 4 to 7 it can be noted that the ANNs prediction is very good and it
is able to establish the relationship between the input parameters and the output
parameters (GF , Pmax, KIC, CTODc).

5.4 Testing of ANN

On successful completion of ANN training with 61 dataset, the model is verified
with remaining 26 dataset. The results are presented in Tables 2 and 3. The output
vector obtained from the ANN model is a normalized data and hence, the normal-
ized data is reverted to its actual value by using equation 16.

xa
i = xn

i
(
xmax

i − xmin
i
)
+ xmin

i (16)

where, xn
i is the normalized result obtained after the test for the ith component. xa

i is
the actual result obtained for ith componenet, and xmax

i and xmin
i are the maximum

and minimum values of all the compoents of the corresponding input vector before
the normalization.
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Figure 5: Training performance for GF .

 

Figure 6: Training performance forKIC.



206 Copyright © 2014 Tech Science Press CMC, vol.41, no.3, pp.193-213, 2014

 

Figure 7: Training performance for CTODC.

Note:

L- length, A- c/s area, a0- Notch depth, w/c-Water- cement ratio, fck-compressive
strength, σ t-Split tensile strength, E- modulus of elasticity, Pmax- Failure load,
GF - Fracture energy, KIC- critical stress intensity factor, CTODC- Critical crack
tip opening displacement.

The average percentage error in the prediction of testing dataset is found to be -
0.47%, -0.41%, 14.94% & -2.73% for Pmax, GF, KIC and CTODC respectively.
The negative value indicate the under prediction and the positive values indicate
over prediction.The value of coefficient of correlation (R) is determined by using
the following formula

R =

n
∑

i=1

(
Eai−Ea

)(
Epi−E p

)
√

n
∑

i=1

(
Eai−Ea

)√ n
∑

i=1

(
Epi−E p

) (17)

Where Eai and Epi are the actual and predicted values, respectively, Ea and E p are
mean of actual and predicted E values corresponding to n patterns.

Figures. 8 to 11 show the comparison of predicted and the corresponding experi-
mental values of Pmax, GF , KIC and CTODC. It can be observed that the predicted
values of failure load, facture energy, stress intensity factor and critical crack tip
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Table 4: Test results of ANN model (Pmax & GF).

L (mm) A (cm2) a0 (mm) w/c fck (MPa) σ t (MPa) E (GPa)
Pmax (KN) GF (N/m)

Exptl. ANN Exptl. ANN
250 25 4 0.45 57.14 3.96 35.78 2.412 2.583 114.9 92.1
250 25 17 0.45 57.14 3.96 35.78 1.321 1.255 47.4 92.1
500 50 29 0.45 57.14 3.96 35.78 2.575 2.524 96.2 92.1
500 50 28 0.45 57.14 3.96 35.78 2.321 2.642 100.3 92.1
500 50 10 0.33 87.71 15.38 37.89 8.102 8.139 4142.2 4364.2
1000 100 40 0.45 57.14 3.96 35.78 6.278 5.966 110.2 120.4
500 50 10 0.45 57.14 3.96 35.78 4.312 4.408 137.0 92.1
250 25 10 0.33 87.71 15.38 37.89 3.121 3.405 3763.1 3600.7
650 65 51 0.23 122.52 20.65 42.987 7.312 7.444 5806.5 5710.8
500 50 30 0.33 87.71 15.38 37.89 3.991 3.676 4623.5 3646.7
250 25 9 0.23 122.52 20.65 42.987 7.667 7.769 8155.0 7859.8
250 25 14 0.23 122.52 20.65 42.987 6.128 6.237 6844.0 7072.8
400 40 8 0.23 122.52 20.65 42.987 14.08 13.964 11435.2 11289.5
400 40 16 0.23 122.52 20.65 42.987 10.514 10.497 8613.2 8933.1
650 65 24 0.23 122.52 20.65 42.987 13.498 13.852 8155.1 8375.9
650 65 13 0.23 122.52 20.65 42.987 19.126 19.480 11829.1 11619.4
650 65 39 0.23 122.52 20.65 42.987 10.013 9.910 6889.1 6760.6
250 25 5 0.23 122.52 20.65 42.987 10.136 9.968 10504.7 9913.4
250 25 20 0.33 87.71 15.38 37.89 2.102 1.855 2894.0 2822.0
400 40 31 0.23 122.52 20.65 42.987 5.312 5.423 4797.2 4788.3
250 25 5 0.33 87.71 15.38 37.89 4.101 4.093 4056.4 4031.9
500 50 40 0.33 87.71 15.38 37.89 3.194 2.921 2897.9 3600.7
1000 100 58 0.45 57.14 3.96 35.78 4.412 4.496 111.9 92.1
400 40 25 0.23 122.52 20.65 42.987 7.31 7.259 6887.1 6722.9
500 50 18 0.45 57.14 3.96 35.78 3.87 3.678 105.3 92.1
250 25 15 0.33 87.71 15.38 37.89 2.841 2.803 3685.1 3249.6

opening displacement are in good agreement with those of the experimental val-
ues. The result is converged at 1000 epochs in all cases with error value of 5.44e-5,
1.98e-4, 1.90e-5 and 1.05e-4 for Pmax, GF , KIC and CTODC respectively. The co-
efficient of determination, R2 is 0.99908 for Pmax, 0.99676 for GF , 0.99539 for KIC

and 0.99503 for CTODC

6 Summary and Conclusion

Fracture mechanics based Artificial Neural Network (ANN) model has been devel-
oped to predict the fracture characteristics of HSC and UHSC. Fracture character-
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Figure 8: Predicted Vs experimental failure load (Pmax) ; R2 = 0.99908.

 

Figure 9: Predicted Vs experimental fracture energy (GF); R2 = 0.99676.
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Figure 10: Predicted Vs experimental critical stress intensity factor (KIC); R2 =
0.99503.

 

Figure 11: Predicted Vs experimental Critical crack tip opening displacement
(CTODC); R2 = 0.99503.
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Table 5: Test results of ANN (KIC& CTODC).

L (mm) A (cm2)
a0 w/c fck (MPa) σ t (MPa E (GPa)

KIC (Mpa
√

m) CTODC(mm)
(mm) Exptl. ANN Exptl. ANN

250 25 4 0.45 57.14 3.96 35.78 1.121 2.023 0.029 0.0305
250 25 17 0.45 57.14 3.96 35.78 0.923 0.941 0.008 0.0083
500 50 29 0.45 57.14 3.96 35.78 0.998 1.872 0.015 0.0167
500 50 28 0.45 57.14 3.96 35.78 0.979 1.881 0.015 0.0178
500 50 10 0.33 87.71 15.38 37.89 8.462 8.950 0.432 0.4494

1000 100 40 0.45 57.14 3.96 35.78 1.234 1.997 0.062 0.0537
500 50 10 0.45 57.14 3.96 35.78 1.356 2.096 0.051 0.0474
250 25 10 0.33 87.71 15.38 37.89 7.312 7.699 0.213 0.1989
650 65 51 0.23 122.52 20.65 42.987 9.601 9.709 0.091 0.0993
500 50 30 0.33 87.71 15.38 37.89 6.721 7.022 0.206 0.1899
250 25 9 0.23 122.52 20.65 42.987 11.857 11.796 0.283 0.2898
250 25 14 0.23 122.52 20.65 42.987 11.183 11.946 0.145 0.1529
400 40 8 0.23 122.52 20.65 42.987 13.655 13.498 0.494 0.4738
400 40 16 0.23 122.52 20.65 42.987 11.901 12.015 0.38 0.3571
650 65 24 0.23 122.52 20.65 42.987 11.98 12.060 0.289 0.3169
650 65 13 0.23 122.52 20.65 42.987 13.882 13.787 0.571 0.5025
650 65 39 0.23 122.52 20.65 42.987 11.201 10.898 0.162 0.1551
250 25 5 0.23 122.52 20.65 42.987 12.716 12.629 0.443 0.4127
250 25 20 0.33 87.71 15.38 37.89 6.317 5.368 0.055 0.0462
400 40 31 0.23 122.52 20.65 42.987 8.463 8.774 0.119 0.1095
250 25 5 0.33 87.71 15.38 37.89 7.912 8.332 0.33 0.3218
500 50 40 0.33 87.71 15.38 37.89 6.214 8.159 0.096 0.0758

1000 100 58 0.45 57.14 3.96 35.78 1 1.830 0.027 0.0260
400 40 25 0.23 122.52 20.65 42.987 11.198 10.933 0.25 0.2272
500 50 18 0.45 57.14 3.96 35.78 1.176 1.988 0.036 0.0341
250 25 15 0.33 87.71 15.38 37.89 6.993 7.452 0.101 0.0942

istics include fracture energy (G f ), critical stress intensity factor (KIC) and critical
crack tip opening displacement (CTODc). Failure load of the beam (Pmax) is also
predicated by using ANN model. Characterization of mix of high strength and ul-
tra strength concrete has been described. An overview of experimental details of
beams tested under static loading has been shown and methodologies for evalua-
tion of fracture energy, critical stress intensity factor and critical crack tip opening
displacement have been outlined.

Towards development of ANN model, back-propagation training technique has
been employed for updating the weights of each layer based on the error in the net-
work output. The ANN architecture consists of one input, one output and two hid-
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den layers. The sigmoidal transfer functions are used for squashing the weights be-
tween the layers. Levenberg-Marquardt algorithm has been used for feed-forward
back-propagation. Four ANN models have been developed using MATLAB soft-
ware for training and prediction of the three fracture parameters and failure load.
ANN has been trained with about 70% of the total 87 data sets and tested with
about 30% of the total data sets. It is observed that the predicted values of failure
load, facture energy, critical stress intensity factor and critical crack tip opening
displacement are in good agreement with those of the experimental values.
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