
Copyright © 2014 Tech Science Press CMC, vol.41, no.1, pp.37-53, 2014
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Abstract: The present work is to investigate the failure mechanisms in the defor-
mation of silicon carbide (SiC) particle reinforced aluminum Metal Matrix Com-
posites (MMCs). To better deal with crack growth, a new numerical approach:
the MLPG-Eshelby Method is used. This approach is based on the meshless local
weak-forms of the Noether/Eshelby Energy Conservation Laws and it achieves a
faster convergent rate and is of good accuracy. In addition, it is much easier for this
method to allow material to separate in the material fracture processes, comparing
to the conventional popular FEM based method. Based on a statistical method and
physical observations, the hard SiC particles are distributed randomly over the cu-
bic space of the matrix. Four failure mechanisms are found to be critical to the
accurate prediction of the mechanical properties of MMCs: a) the failure inside the
matrix; b) the failure between the interface of aluminum matrix and the SiC parti-
cles; c) the fracture of the SiC particles; and d) the separation of two neighboring
SiC particles. Plastic work is used as a failure criterion. It is found that the current
approach can accurately predict the mechanical behavior of MMCs, including Y-
oung’s moduls, stress strain curve, tensile strength, and limit strain. When the SiC
volume fraction is low, the interface failure is more important; while for the case of
high SiC volume fraction, all the four failure mechanisms work together to affect
the mechanical property for the composite structure.

Keywords: computational micromechanics, particle-reinforced composites, debond-
ing, MLPG-Eshelby Method.

1 Introduction

Aluminum Metal Matrix Composites (MMCs) are a class of materials, in which an
aluminum alloy is dispersed randomly with SiC particles, and they have become
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more and more popular due to their light weight, greater strength and stiffness,
and are potentially valuable in aerospace and transportation applications. The me-
chanical behavior of MMCs depends on the characteristics of the reinforced SiC
particles, including the particle sizes, shapes and distribution. The design and de-
velopment of high performance materials requires a thorough understanding and
careful control of microstructure and its effect on properties. This is particularly
challenging given the multiphase and heterogeneous nature of most high perfor-
mance composite materials. It is expensive and time-consuming to perform ex-
perimental analysis to find the optimized parameters in the composite structures.
Analytical and numerical methods have been extensively used in the prediction of
mechanical behavior of particle reinforced MMCs.

Analytical techniques have been developed to understand the behavior of particle
reinforced composites and they provide an effective means of understanding the
deformation mechanism for particle-reinforced MMCs. However, analytical mod-
els are unable to accurately predict the properties of particle reinforced composite
material, since the simplifications assumed in analytical method make it difficult
to study the detailed deformation behavior, and these models do not account for
the microstructural factors that influence the mechanical behavior of the material
[Chawla and Chawla (2006)]

Due to its simplicity and efficiency, unit cell has long been used in the study of
MMCs. Bao et al (1987) used axisymmetric finite element cell models to represen-
t a uniform particle distribution within an elastic-plastic matrix. Schmauder, etc.
(2011) used a self-consistent unit cell model to study an Al/TiO2 composites and
iterative approach was used to obtain realistic stress–strain curve. They considered
the maximum shear stress criterion for the metal phase and the maximum principal
stress for the ceramic phase. In general, when the particle fraction is less than 0.2,
the simple unit-cell method shows reasonable accurate results for the elastic re-
sponse. At higher particle fraction, this method will become less accurate [Chawla
and Shen (2001)]

While these methods have shed valuable insight into the deformation behavior, they
also simplify the heterogeneous microstructure of the composites. These simplifi-
cations make modeling and analysis more efficient and straightforward. Neverthe-
less, it is well known that microstructural complexities, such as the inhomogeneous
spatial distribution of particles, irregular morphology of the particles, significantly
affect deformation behavior. Thus, while conventional models can provide general
knowledge of damage, they are unable to accurately predict the detailed deforma-
tion.

The above mentioned researches were based on hypothetical microstructures. Ac-
tual microstructures, from optical or scanning electron microscopy (SEM) can be
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used as direct input to the numerical analysis. Recently, Su et al (2014) used statis-
tic method and studied the effect of the randomly distributed reinforced SiC parti-
cles, and they systematically studied the effect of particle size, shapes, position and
the volume fractions on the final macro-mechanical behavior. They also considered
interface failure between the particle and matrix by using adhesion interface, co-
hesive interface, and friction interface, respectively. In their study, they found that
with the use of adhesion interface, they can predict very accurate Young’s modulus,
but overestimate the stress in plastic region; with the use of cohesive interface, they
can provide more reasonable prediction of stress in plastic region, but under predict
the Young’s modulus.

While the previous studies in this field have made significant advancement in pre-
dicting the mechanical properties of particle reinforced MMCs, seldom do they
pay enough attention to the different failure mechanisms and their interactions in
the deformation process.

In the present paper, a systematic study is carried out to investigate the failure
mechanism during the deformation of SiC particle reinforced MMCs, by using
the newly developed MLPG-Eshelby Method [Han and Atluri (2014a,b)]. Unlike
FEM method, in which the deformable part will be represented with many finite
elements, in this new algorithm, the whole deformable part will be represented
with many small sphere elements, and neighboring sphere elements are connected
with bondings. The strength of the bonding depends on the material property of two
sphere elements. This algorithm has been implemented into LS-DYNA®, which is
used in this study. Four different failure mechanisms were employed to predict the
mechanical behavior of the corresponding MMCs with different volume fraction
ratios. It is found that interfacial failure between the SiC particle and the aluminum
matrix is critical to the deformation of both low and high volume fraction, and the
fracture of the SIC particle and the separation of neighboring hard particles are
more important for high volume fraction.

2 MLPG-Eshelby Method

2.1 Energy Conservation Laws

The MLPG-Eshelby method is based on the meshless local weak-forms of the
Noether/Eshelby Energy Conservation Laws. With the MLPG-Eshelby Method,
the satisfaction of the geometric identity for any finite deformation is guaranteed,
within a local sub-domain, as

∂

∂XI

(
J

∂XI

∂xk

)
= 0 (1)
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where XI and xk are the initial and deformed configurations, respectively. Hence
incompatibilities between the shape functions can be eliminated to avoid various
locking. The “weighted” momentum balance laws can be introduced based on the
energy conservation laws [Han and Atluri (2014a, b)], as

(PIk,I +ρ0 fk)FkJ = 0 (2)

where PIk is the first Piola-Kirchhoff stress, and FkJ is the deformation gradient ten-
sor. For continuous deformations, Eq. (2) is equivalent to the original momentum
balance laws, as

PIk,I +ρ0 fk = 0 (3)

For discontinuous deformations, a gap is developed between neighboring sub-domains
and FkJ is utilized to weight the gap in term of the work done over the gap. Thus,
Eq. (2) leads to the energy conversation laws. Eqs (2)&(3) can be applied to any
local sub-domains independently. In other words, each local sub-domain may have
its own material properties for modeling heterogeneous materials. For more details,
we refer the readers to [Han and Atluri (2014a, b)].

 
Figure 1: Sphere elements represent a composite structure [by Voro++ at
http://math.lbl.gov/voro++]
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In the present study, the 3-dimensional composite structure is discretized into many
polydisperse elements, as the non-overlapping sub-domains, instead of the classic
finite element mesh. Each polydisperse element is further simplified as one sphere
element with the same volume placed at the centroid of volume, as shown in Fig.
1.

For heterogeneous MMCs, the polydisperse elements are created to match the sta-
tistical distributions of the size, shape, and orientation of the SiC particles, as well
as the volume fraction. A typical microstructure obtained from SEM is shown in
Fig. 2. In order to simulate the strength within one SiC particle, the element size
is about one third of the particle size which is fine enough to capture the localized
features. A 2-diminsional illustration is given in Fig. 3. Comparing to the finite
element method, the mesh size usually needs to be one order lower than the particle
size in order to capture the stress distribution within the particle [Su et al. (2014)].

 

Figure 2: A SiC/Al Metal Matrix Composite.

All sphere elements are connected to their neighboring heterogeneous sphere ele-
ments The stiffness matrix between all neighboring elements are computed through
the weak-forms of Eq. (2) over its neighboring region. The deformation within each
element is computed within its neighboring region, and the mechanical behavior of
each element is determined by its own material properties, through the LS-Dyna
standard material library. Thus, each element is complexly independent from its
neighboring particles.

In the present study, the stiffness between any two elements is considered as an in-



42 Copyright © 2014 Tech Science Press CMC, vol.41, no.1, pp.37-53, 2014 

 

 

 

SiC Particle C 

SiC Particle B 

Al Matrix A 

Al Matrix A 

Figure 3: Illustration of discretization of Metal Matrix Composite.
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Figure 4: Bonds between elements of Metal Matrix Composite.

dividual “bond” between these two sphere elements and assembled into the global
system matrix. Such bonds are defined between any two elements which are within
the influence distance, as shown in Fig. 4. There are 4 kinds of bonds defined in the
MMCs, i) bonds between two sphere elements of the matrix material A; ii) bonds
between one element of the matrix A and another element of the SiC particles B or
C; iii) bonds between two sphere elements of one SiC particle, B or C; iv) bonds
between two sphere elements of two separated SiC particles. Various combinations



A Numerical Modeling of Failure Mechanism 43

form the heterogeneous bonds, as illustrated in 2.2. For “perfectly bonded” ele-
ments, the initial stiffness is applied for simulation. Various damage/failure models
can be defined for each case independently, and the stiffness may be reduced by a
scalar factor once the damage/failure is developed during simulation. In the present
study, the energy release rate is used to simulate the initialization, growth and in-
teraction of micro-cracks between elements.

 Heterogeneous bonds 

i) within the Al matrix 

 

 

ii) between the matrix 

and the SiC particle  
  

iii) within one SiC 

particle 
  

iv) between two SiC 
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Figure 5: Various bonds between elements of Metal Matrix Composite.
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Figure 6: A 3D model of Metal Matrix Composite.
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2.2 Comments on the present method

In the computation of mechanical behavior of MMC, the present approach has ob-
vious advantages over the conventional finite element method. When a composite
structure is undergone deformation, the deformation is not homogeneous through-
out the structure, and the elements along the interface of SiC particles and the alu-
minum matrix can have significant distortion, which will result in bad aspect ratio
or bad mesh quality in some local areas. As a result, the computation accuracy can
be negatively affected. However, with the current approach, no element is needed,
and the bond stiffness is calculated by two neighboring sphere elements.

Furthermore, the present approach can better deal with material separation or frac-
ture propagation. With conventional finite element method, element deletion is
commonly used after the material fails, and it can cause an artificial void inside the
structure. In fact, when the material fails in one direction, it can still bear compres-
sive load and still has strength in the other directions. To avoid element deletion,
some researches used special interface treatments, such as using cohesive interface
or adhesion interface. Those special interfaces have to be pre-defined within a cer-
tain region, such as along the SiC particle and aluminum matrix interface. Then the
fracture can only grow along the predefined interface and cannot propagate into the
matrix or the SiC particle. Accordingly, it will not be able to catch all the detailed
failure behavior during the deformation process and the predicted accuracy will be
negatively affected. Under the framework of the present approach, if the material
fails in some areas, it is easy to break the corresponding bond between two sphere
elements, and the propagation of fracture into any direction becomes easier. Ac-
cordingly, it is more suitable to study the detailed failure mechanisms during the
deformation of SiC particles MMCs.

2.3 Failure Mechanism

When the composite is undergone loading, the load is transferred from the weaker
matrix, across the matrix/reinforcement interface, to the hard reinforcement parti-
cles. Since the SiC particles are much stronger than the matrix and should have
much smaller deformation. Accordingly, the hard particles are bearing more load-
s and it is the mechanism for the strengthening of the particle reinforced MMCs.
With an increase in volume fraction of SiC particles, higher yield stress and tensile
strength were observed, coupled with lower ductility.

The initiation and progress of material failure in particle reinforced MMCs subject-
ed to mechanical loading can happen through three basic processes, matrix failure,
reinforcement failure and interfacial decohesion. The three failure mechanisms
can act independently or interact with other failure mechanisms depending on the
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strength and stiffness of the matrix and the SiC particles, as well as the shape, distri-
bution and their volume fraction of the SiC particles. Modeling of material failure
in MMCs must take into consideration the fracture of the hard particles, debonding
of the interface between the hard particle and the aluminum matrix, and the failure
of the matrix. Of all of these mechanisms, the interface failure has undergone con-
siderable studies, while the crack of the reinforced hard particle has gained relative
less attention.

Matrix-reinforcement decohesion, one of the main damage mechanisms in particle-
reinforced composites, leads to significant reductions in strength, ductility. During
the deformation, strong strain concentration happens between the interfaces. In-
terface fracture initiates as the stress exceeds the interfacial strength limit. Then
fracture propagates. After the fracture initiates, it can grow along the interface and
through the matrix. After the matrix fails, it will result in the final fracture of the
materials.

In certain situations, the crack of the SiC particle reinforcement tends to be the
primary microscale damage mechanism [LLorca and GonZalez (1998)]. When
the volume fraction of the SiC particles is high, the spacing between neighboring
particles decreases and the deformation concentration becomes more severe. The
interactions of neighboring particles cause significant high stress, which can result
in the fracture of the hard particles. After the crack of the SiC particles, their
capabilities to strengthen the composite decreases and the composites can no longer
bear higher strengths.

The fourth failure mechanism, the separation of neighboring SiC particles, can also
contribute the final failure of the particle reinforced composites. When two neigh-
boring SiC particles are close to each other, their gap can be very small, for exam-
ple, they can be less than 1nm and the aluminum will be filled inside the small gap.
When conventional FEM method is used, very fine mesh has to be used to model
the very thin aluminum within the gap, the element number can be too large and
the computation cost can be prohibitively expensive. If the gap between neighbor-
ing SiC particles can not be modeled properly, then the two neighboring particles
will be considered as one large particle, which will add more constraints to the
deformation of the surrounding aluminum matrix. After the neighboring particles
separated, they no-longer contribute to load transfer or strengthening. Accordingly,
it is important to consider the separation of two neighboring SiC particles.

The onset of any of the above mentioned failure mechanism will result in lower
ductility and will play critical role in the mechanical property of particle reinforced
MMCs.

With conventional FEA method, if one element fails, the element itself has to be
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physically removed from the numerical model and forms a void; accordingly, the
element can not bear any load in the other directions, which is very unphysical.
To model the debonding between the interfaces, some researchers [Segurado and
LLorca (2005); Su et al (2014)] used adhesion interface and cohesive interface
which allow fracture to grow along the interface. However, with this method, the
crack can not grow into the matrix or the SiC particle. As a result, the predicted
stresses are higher than the test.

The modeling of the above mentioned failure mechanism becomes easier with the
newly implemented MLPG-Eshelby method. Since the model was represented by
many sphere elements, and bonds exist between neighboring sphere elements. If the
deformation between the two neighboring elements is too large, the corresponding
bond between them is broken. But it can still bear compressive load, and the bonds
with other neighboring elements are still functioning. The above four failure mech-
anisms can be represented by the break of bonds between different corresponding
pair of sphere elements. In the following, the bond failure between each pair is dis-
cussed in details. The failure of the matrix can be represented by the break of the
bond between two aluminum sphere elements; the failure of the interface between
the SiC particles and the aluminum matrix can be represented by the break of the
bond between one aluminum sphere element and one SiC sphere element; the crack
of the SiC particles can be represented by the bond break between two neighboring
SiC sphere elements; and the separation of two sphere particles can be represented
by the break of a special bond (bond between two SiC sphere elements).

A simple failure criterion is used in this study: the limit work density. As a bond
deforms, it will accumulate certain work. When the work density reaches a limit,
then the bond is assumed to fail. Accordingly, the limit work is written as

c =
∫

σi jdεi j (4)

and the above mentioned four different bonds have their own limit values, denoted
as c1, c2, c3, and c4, respectively.

3 Results and Discussions

The aluminum matrix is assumed to be elastic-plastic material with isotropic hard-
ening, and the SiC particles are assumed to be elastic. Detailed information on the
material properties can be found from [Su et al. (2014)].

A 3D cubical model of SiC/Al composites was constructed, and the SiC particle
is assumed to take the shape of cylinder and randomly distributed over the cubic
matrix. The cylinder has length of 13 nm and radius of 5nm. The cubic model has
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a size of 100 nm for each side. The sphere elements has radius of 2 nm and there
are totally 125000 sphere elements in this analysis.

The cubic model is undergone uniaxial tension deformation, and the deformation
is not homogeneous inside the MMC structure, then the homogenized stress and
strain are obtained. The tensile stress can be calculated by dividing the reaction
force with the initial cross section area. The tensile strain can be calculated by
dividing the elongation of the cubic with its initial length.

Published material testing data [Su et al. (2014)] are used in this study. There are
two different volume fractions of SiC particle reinforced MMCs of 7% and 25%.
The baseline parameters are obtained by comparing the prediction with the test
data, and the baseline c value for each failure modes are: c1= 50MPa, c2=15 MPa,
c3= 30 MPa and c4=30 MPa.

The ductility of aluminum matrix is critical to the possible elongation of the com-
posites. Fig. 7 shows the effect of matrix fracture on the predicted stress-strain
curve. In this case, three different values of c1 are chosen as, 30, 50 and 70 MPa,
and the other cis are kept constant. Fig. 7a) is for volume fraction of 7% and Fig.
7b) is for volume fraction of 25%. It is seen that the predicted stress is insensitive
to the value of c1 before fracture. For the low volume fraction (7%), small value of
c1 will result in earlier fracture of the composite structure; if c1 is large enough, the
deformation can continue for an extended strain range even after the peak stress is
reached; if c1 is too small, the load-bearing capability of the composite is totally
controlled by c1. For the case of high volume fraction (25%), it is seen that the oth-
er failure mechanisms dominate and c1 only has small effect after the peak stress
is reached, and the composite quickly reach its final fracture. It is obvious that the
ductility of the aluminum matrix has more effect when the volume fraction is low
and has little effect when the volume fraction is high.

Interface failure or debonding has been found to be critical to the mechanical be-
havior of particle reinforced composites. Fig. 8 shows the effect of different failure
criterion on the predicted stress-strain curve for SiC volume fraction of 7% and
25%, and in this study three different values of c2 are used: 10MPa, 15MPa and
20MPa. For low SiC particle volume fraction (7%), the effect can be seen from
Fig. 8a), it is seen that smaller c2 causes earlier softening of the composite struc-
ture, but the effect is small. It is interesting to note that the stress strain converges
after certain deformation (3%). This result can be explained that the strength of the
matrix plays the most important role in determining the mechanical behavior of the
composite structure after the failure of the interface. For high SiC particle volume
fraction (25%) the value of c2 has more obvious effect on the predicted stress-strain
curve. Smaller value of c2 results much lower tensile strength and also earlier frac-
ture, which can be seen from Fig. 8b). Unlike for the case of low volume fraction,
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Figure 7: Effect of matrix failure on the tensile stress.
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Figure 8: Effect of the interface failure.

fracture of the composite structure happens quickly after the peak stress is reached.

In the deformation of composite structure, strong stress concentration may happen
due to the deformation inhomogeneity, and the stress can be high enough to break
the SiC particles. Fig. 9 shows the effect of SiC particle failure or fracture of the
particle on the mechanical behavior of the composite structure. When the volume
fraction is small as shown in Fig. 9a), it is seen that the material softening happen
earlier for small value of c3, but after stress peaks, there is still obvious relative
homogeneous deformation. However, for the case of high volume fraction (25%)
as shown in Fig. 9b), it is seen that small value of c3 results in earlier fracture of
the composite structure, and large value of c3 can allow the structure to undergo
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more deformation and later softening. However, after stress peaks, the fracture
propagates quickly and result in total fracture of the structure. When the volume
fraction is high, the interaction of SiC particles can be significant, which can cause
extremely high stress concentration to break the hard particles. For low volume
ratio, the interaction of the hard SiC particle is rare, and the deformation is relative
homogeneous. So, the stress concentration is not high enough to break the SiC
particles.
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Figure 9: Effect of the crack of SiC particles.

When the gap between two neighboring particles is smaller than the element size, it
is impossible to model the effect of particle separation. With the current approach,
a new bond which consists of three segments: SiC-Al-SiC, with its own strength
and ductility. Fig. 10 shows the effect of c4 on the mechanical behavior of the
composite structure. For low SiC particle volume fraction (7%), there is no effect
at all as shown in Fig. 10a). For the case of high volume fraction (25%), it is
seen that the smaller value of c4 allow the structure to fail early, and larger value
of c4 delay the fracture process. When the SiC volume fraction is small, the gap
between neighboring particle might still be big, and there is no such separation of
two neighboring SiC particles. However, when the SiC particle volume fraction is
high, it is unavoidable that some particles will be close to the other neighboring SiC
particles, as shown in Fig. 10b). Accordingly, this failure mechanism can affect the
mechanical behavior.

The predicted stress-strain curves are compared with experimental data [Su, et al.
(2014)], and was shown in Fig. 11. For the case of 7% vol SiC composites shown
in Fig. 11a), the predicted stress is about 25MPa lower than the experimental in
the plastic deformation region, while the predicted stress-strain curve match the
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Figure 10: Effect of the separation of neighboring SiC particles.

test data for 25% vol SiC composites. In quenching process, due to differential
thermal contraction between the matrix and the SiC particles, high residual stresses
occur during cooling process, which in turn cause hardening effect for the matrix.
When the SiC volume ratio is low, the mechanical behavior is more influenced by
the matrix. In this study, the hardening effect caused by the thermal stress is not
considered, and it is reasonable that lower stress is predicted in the plastic region.
For the case of 25% SiC volume ratio, the mechanical behavior is more influenced
by the interaction of the SiC particles, and the quenching effect is relatively small,
as shown in Fig. 11b).

The new method can also better predict the limit strain, defined as the tensile strain
corresponding to the peak stress. With adhesion interface or cohesive interface, the
predicted stress continue to increase for an extended strain range [Su, et al (2014);
Segurado and LLorca (2005)], which is not an observed phenomena from exper-
iment. The current method predicts the peak force followed by obvious material
softening, which will eventually result in the total fracture of the structure.

Table 1 shows some the comparisons of some extra material properties between
prediction and experimental data. All the predicted Young’s modulus are very close
to the test data and the error is within 5%. The predicted tensile strength, which is
defined as the maximum stress, are alsoclose to the experimental data. The limit
strain, corresponds to the tensile strength, is another important index to evaluate the
mechanical property of any composite. After the limit strain, the stress no-longer
increase and the failure mechanism dominates. From table 1, it is seen the predicted
limit strains are also close to the measure data for all the three SiC particle volume
fractions.
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Figure 11: Comparisons between the predicted stress-strain curve with test.

Table 1: Mechanical properties of SiC/Al composites.

unit
7% vol 25% vol

Exp. Num. Exp. Num.
Young’s modulus GPa 84.2 80.6 113.3 113.5
Tensile strength MPa 568.6 545.0 623.6 641.3

Limit strain 0.018 0.019 0.012 0.014

4 Conclusions

In this study, numerical simulation has been performed for the cubical SiC/Al MM-
C structure at two volume fraction ratios of 7% and 25%. The SiC particles are
represented by sphere cylinders, and are randomly distributed over the whole com-
posite structure. The newly developed MLPG-Eshelby Method was used and four
different failure criterions have been considered to better simulate the mechanical
behavior of the composite structure. The following conclusions can be drawn:

1. The mesh-free based MLPG-Eshelby Method can be more suitable to simu-
late the fracture propagations of particle reinforced particle composites. Fail-
ure of one bond between two sphere elements only affects the strength in one
direction and does not affect the material strength in the other directions. In
addition, this method makes it more convenient to model SiC particles with
tiny gap between each other.

2. For low volume fraction of SiC particles, the mechanical properties of the
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aluminum matrix is more important in determining the behavior of composite
structure.

3. The failure between the interface of SiC particle and the aluminum matrix is
important for all the cases.

4. For low volume fraction of SiC composite structure, fracture mostly initiates
from the interface and propagate into the matrix and results in the total failure
of the structure.

5. For high volume fraction of SiC particles, the fracture of the SiC particle, as
well as the separation of the neighboring particles also play important roles.
Ignoring those failure mechanisms can result in overestimating the predicted
stress and limit strain.

6. After considering the four failure mechanisms, the predicted mechanical be-
havior agree well with experimental data, in both elastic and plastic defor-
mation regions.

This work should provide an important understanding of the material failure mech-
anism in the deformation of particle reinforced metal matrix composites.
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