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Analysis of Elastic-Plastic Waves in a Thin-Walled Tube
By a Novel Lie-Group Differential Algebraic Equations

Method

Chein-Shan Liu1 and Satya N. Atluri2

Abstract: In this paper, we adopt the viewpoint of a nonlinear complementari-
ty problem (NCP) to derive an index-one differential algebraic equations (DAEs)
system for the problem of elastic-plastic wave propagation in an elastic-plastic sol-
id undergoing small deformations. This is achieved by recasting the pointwise
complementary trio in the elastic-plastic constitutive equations into an algebraic
equation through the Fischer-Burmeister NCP-function. Then, for an isotropically-
hardening/softening material under prescribed impulse loadings on a thin-walled
tube with combined axial-torsional stresses, we can develop a novel algorithm
based on the Lie-group differential algebraic equations (LGDAE) method to it-
eratively solve the resultant DAEs at each time marching step, which converges
very fast. The one-dimensional axial-torsional wave propagation problems under
different imposed dynamical loading conditions and initial conditions are solved,
to assess the performance of the LGDAE.

Keywords: Elastoplasticity, Lie-group GL(n,R), Index-one differential algebraic
equations, Elastic-plastic wave, Lie-group differential algebraic equations (LGDAE)
method.

1 Introduction

The combined axial and torsional testing of thin-walled tubes is ideal for the study
of constitutive equations of metals; see, for example, Nadai (1950) and Hill (1950).
The thin-walled tubular specimen is usually subjected to a combination of axial
load P(t) and torque T (t). With an appropriate feedback arrangement, the length
Z(t) and the relative twist angle Θ(t), as well as P(t) and T (t) can serve as control
variables. Thus the axial-torsional testing of a thin-walled tube may have (P,T ),
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(Z,Θ), (P,Θ), and (Z,T ) as control input pairs. Under the assumption of uniform
deformation and stress distribution in the main parallel segment of the thin wall of
the specimen, the four control pairs can be correspondingly related to (σxx,σxθ ),
(εxx,εxθ ), (σxx,εxθ ), and (εxx,σxθ ). They are, respectively, pure stress control, s-
train control, and mixed controls; see, for example, Klisinski, Mroz and Runesson
(1992). In a small deformation theory, the stress and strain paths for the considered
tests are such that their rates are of the forms:

σ̇ =

 σ̇11 σ̇12 0
σ̇12 0 0
0 0 0

 , ε̇ =

 ε̇11 ε̇12 0
ε̇12 ε̇22 0
0 0 ε̇22

 , (1)

where the superimposed dot denotes a differentiation with respect to time t. Notice
that σ̇21 = σ̇12, ε̇21 = ε̇12, and ε̇33 = ε̇22. In cylindrical coordinates (x,θ ,r), ε11 = εxx

is the axial strain, ε22 = εθθ is the hoop (or circumferential) strain, ε33 = εrr is the
radial strain, and ε12 = εxθ is the shear strain in the thin wall of the tube, whereas
σ11 = σxx is the axial stress and σ12 = σxθ is the shear stress in the thin wall of the
tube.

The experiments involving combined longitudinal and torsional plastic waves in a
thin-walled tube of an aluminum alloy have been reported by Lipkin and Clifton
(1970a). Two types of plastic waves were observed, which involved coupled longi-
tudinal and torsional motions. In the course of an impulse loading, the metallic ma-
terial behaves plastically when stress is over the yield point, and the phenomenon
of stress wave propagation in elastic-plastic solids has been studied for a long time
[Cristescu (1967); Nowacki (1978)]. In an earlier analytical work, Clifton (1966)
has considered the combined longitudinal and torsional plastic wave propagation
in isotropically-hardening materials, and these two waves are called fast and slow
plastic waves depending on whether the plastic wave speed is grater or less than the
elastic shear wave speed. The analysis was extended by Lipkin and Clifton (1970b)
to the general class of elastic-plastic materials characterized by a smooth loading
surface. Goel and Malvern (1970) presented solutions to the same problem for the
case of combined kinematic and isotropic hardening materials. Most theoretical
results and computational techniques are based on the method of characteristics
[Yang (1970); Ting (1969, 1972, 1973); Wu and Lin (1974); Lin and Ballmann
(1993); Karagiozova (2004)]; however, it is not easy to determine the speeds of
characteristic lines which are dependent on the loading history for elastic-plastic
material. Unfortunately, these analyses cannot be applied to the stress wave propa-
gation when wave reflection occurs at the boundary [Tanimoto (2007)].

It is known that the elastoplastic equations are a set of differential algebraic equa-
tions (DAEs) with discontinuities, which take place at the points of transition from
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an elastic state to a plastic state and vice versa [Büttner and Simeon (2002); Eckert,
Baaser, Gross and Scherf (2004)]. Most practical problems of wave propagation
in such a complicated situation cannot be solved analytically due to the shape of
the boundaries, the hardening effect and the complicated loading functions. Ow-
ing to these facts, the elastic-plastic wave equation is not a pure conservation law.
Although there exist many numerical schemes for hyperbolic conservation laws,
which cannot be directly used to solve the elastic-plastic wave equations and some
modifications are required [Giese and Fey (2003, 2005)].

In the present theoretical computation of the elastic-plastic wave propagations in
a solid material, we place a greater emphasis on a unified point-of-view under
the framework of a Lie-group differential algebraic equations (LGDAE) method,
which is drastically different from the above mentioned methods. It is importan-
t to note that unlike most other numerical schemes, the present method can be
easily extended to the approximations of any order in space and time and any com-
plicated elasto-plastic model with complex hardening/softening effect [Liu (2005,
2006, 2007); Liu and Chang (2004)], which is extremely advantageous for a high-
accuracy solution of the elastic-plastic wave propagation problems.

The remainder of this paper is structured as follows. In Section 2 we emphasize
the complementary trio appearing in a system of six postulations for isotropically-
hardening plasticity, in tensor form. Then, in Section 3 we introduce the Fischer-
Burmeister NCP-function, and propose a novel system of index-one DAEs for the
isotropically-hardening plasticity equations, where we describe the governing e-
quations, nonlinear complementarity problem, and momentum balance equation
for a thin-walled tube problem. These equations are coined as a system of DAEs for
all material points. For solving the resultant DAEs we develop a Lie-group method
based on GL(n,R) in Section 4, while the numerical algorithm for the elastic-plastic
wave propagation problem of the isotropically-hardening plasticity is given in Sec-
tion 5. In Section 6 we study the wave propagation problems of an exponentially
saturated hardening material, an isotropically linear hardening material, as well as
an isotropically softening material under different loading conditions, by using the
corresponding LGDAE numerical algorithm. Finally, some conclusions are drawn
in Section 7.

2 The isotropically-hardening model

In a small-deformation theory, the elastoplastic model for solid materials proposed
by Prandtl (1924) and Reuss (1930) is re-formulated as follows:

ε̇ = ε̇
e + ε̇

p, (2)
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σ̇ = 2Gε̇
e +

3K−2G
3

(tr ε̇)I, (3)

ε̇
p =

λ
[
σ − 1

3(trσ)I
]

2τy
, (4)

√
1
2

[
σ − 1

3
(trσ)I

]
·
[

σ − 1
3
(trσ)I

]
≤ τy, (5)

λ ≥ 0, (6)

λ

√
1
2

[
σ − 1

3
(trσ)I

]
·
[

σ − 1
3
(trσ)I

]
= λτy, (7)

where I is the third-order identity tensor, the symbol tr denotes the trace of the ten-
sor, and a dot between two tensors of the same order denotes their Euclidean inner
product. The model has only two experimentally determined material constants
and a material property, namely the bulk modulus K, the shear modulus G, and the
shear yield strength τy, which are postulated to be

1
K
≥ 0, G > 0, τy > 0. (8)

τy is supposed to be a function of Λ where Λ̇ = λ , Λ(0) = 0. The boldfaced ε , εe,
ε p and σ are, respectively, the strain, elastic strain, plastic strain, and stress tensors,
all symmetric, whereas λ is a scalar. All the ε , εe, ε p, σ and λ are functions of one
and the same independent variable, which in most cases is taken as the ordinary
time.

3 Axial-torsional plastic wave

3.1 Governing equations

For a two-dimensional axial-torsional deformation problem the following constitu-
tive equations can be obtained from Eqs. (2)-(4) and (1),

σ̇11 = E ε̇11−
Eλ

3τy
σ11, (9)

σ̇12 = 2Gε̇12−
Gλ

τy
σ12, (10)
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and the yield condition reduces to(
σ11√

3

)2

+σ
2
12 = τ

2
y . (11)

We may use Eqs. (9) and (10) to solve for σ11 and σ12, respectively. However, they
are coupled through Eq. (11), where τy is not a constant value, but a function of Λ

with Λ̇ = λ .

3.2 Nonlinear complementarity problem

A general complementarity problem is to find a solution x ∈ Rn of the following
complementary trio system:

P(x)≥ 0, Q(x)≥ 0, PTQ = 0, (12)

where P,Q ∈Rn denote vector functions. Many applications from engineering sci-
ences, economics, game theory, etc. lead to problems of this kind; see Ferris and
Pang (1997) for a survey. Most algorithms for the solution of nonlinear comple-
mentarity problem (NCP) are based on a suitable reformulation of Eq. (12) either
as a system of algebraic equations, as an optimization problem, or as a fixed-point
problem, etc. Refer the survey paper by Harker and Pang (1990) for some basic
algorithms.

Let x be a solution of an NCP, that is, x ≥ 0, F(x)≥ 0, and xF(x) = 0. Obviously,
it is equivalent to the requirement that x is a solution of the minimum problem:
min(x,F(x)) = 0. The function φ is said to be an NCP-function: if φ : R2 7→R and
φ(a,b) = 0 if and only if a≥ 0, b≥ 0, ab = 0.

In addition to the above minimum function, there are many other NCP-functions,
for example, the Fischer-Burmeister NCP-function:

φFB(a,b) =
√

a2 +b2− (a+b). (13)

The most interesting property of this merit function is that, as is easily verified:√
a2 +b2− (a+b) = 0⇐⇒ a≥ 0, b≥ 0, ab = 0. (14)

Thus, for a general NCP of Eq. (12) in a component form we write it to be

Fi = φFB(Pi,Qi) =
√

P2
i +Q2

i − (Pi +Qi) = 0, i = 1, . . . ,n, (15)
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where Pi and Qi are respectively the components of P and Q. Accordingly, we can
reformulate the complementary trio in plasticity as an NCP by

σ̇11 = E ε̇11−
Eλ

3τy(Λ)
σ11, (16)

σ̇12 = 2Gε̇12−
Gλ

τy(Λ)
σ12, (17)

Λ̇ = λ , (18)

√√√√√τy(Λ)−

√(
σ11√

3

)2

+σ2
12

2

+λ 2−

τy(Λ)−

√(
σ11√

3

)2

+σ2
12

−λ = 0.

(19)

It is easy to check that Eqs. (16)-(19) are index-one DAEs, which are better than
those of the index-two DAEs formulation of plasticity [Büttner and Simeon (2003a,
2003b); Liu (2013c)]. On the other hand, in Eqs. (16)-(19) we do not need to treat
the on-off switch, while for the original index-two DAEs we need to treat a two-
phase system and the on-off switching criteria of elasticity and plasticity.

3.3 Kinematic and momentum balance equation

Our method is easily extended to the three-dimensional elastic-plastic wave propa-
gation problem by adjoining the momentum balance equation together:

∇ ·σ = ρ
∂w
∂ t

, (20)

where ρ is the material density while w is the velocity field. However, we only
consider the process of the propagation of an elastic-plastic wave in a finite length
thin-walled tube with length ` consisting of an isotropically hardening material,
subjected to dynamical boundary conditions and initial conditions. The problem
will be discussed in a Lagrangian system where the axis x coincides with the thin-
walled tube axis, and the origin x = 0 is assumed to be the left-end point of the
thin-walled tube. It is also assumed that the thin-walled tube does not buckle in the
course of deformation. We consider small strains and assume that the thin-walled
tube density ρ does not change. The only stress components are σxx = σ and
σxθ = τ , and the non-zero strain components are εxx = ε , εxθ = γ/2, and εrr = εθθ .
The velocity field has only the first two components being nonzero and the third
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component is zero, i.e., w = (u,v,0)T. Hence, the governing equations at a material
point x and a genric time t can be written as

∂σ(x, t)
∂ t

= E
∂u(x, t)

∂x
− λ (x, t)E

3τy(Λ)
σ(x, t), (21)

∂τ(x, t)
∂ t

= G
∂v(x, t)

∂x
− λ (x, t)G

τy(Λ)
τ(x, t), (22)

∂u(x, t)
∂ t

=
1
ρ

∂σ(x, t)
∂x

, (23)

∂v(x, t)
∂ t

=
1
ρ

∂τ(x, t)
∂x

, (24)

∂Λ(x, t)
∂ t

= λ (x, t), (25)√√√√√τy(Λ)−

√(
σ√

3

)2

+ τ2

2

+λ 2−

τy(Λ)−

√(
σ√

3

)2

+ τ2

−λ = 0, (26)

where u and v are the axial and circumferential velocities.

If we want to know the field variables of strains ε(x, t) and γ(x, t) we can supple-
ment the following kinematic equations:

∂ε(x, t)
∂ t

=
∂u(x, t)

∂x
, (27)

∂γ(x, t)
∂ t

=
∂v(x, t)

∂x
. (28)

4 A Lie-group DAE method

After a suitable discretization of the above equations at each material point, E-
qs. (21)-(26) constitute a system of nonlinear differential algebraic equations (DAEs).
Hereby, we give a general setting to treat the DAEs which govern the evolution of
n+ q variables xi, i = 1, . . . ,n and y j, j = 1, . . . ,q, with n nonlinear ordinary dif-
ferential equations (ODEs) and q nonlinear algebraic equations (NAEs):

ẋ = f(x,y, t), x(0) = x0, t ∈ R, x ∈ Rn, y ∈ Rq, (29)

F(x,y, t) = 0, F ∈ Rq. (30)
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4.1 Endowing the ODEs with a Lie-group GL(n,R)

The general linear group is a Lie group, whose manifold is an open subset GL(n,R) :
= {G ∈ Rn×n|detG 6= 0} of the linear space of all n× n non-singular matrices.
Thus, GL(n,R) is an n×n-dimensional manifold. The group composition is given
by the matrix multiplication.

Here we give a new form of Eq. (29) from the GL(n,R) Lie-group structure. The
vector field f on the right-hand side of Eq. (29) can be written as

ẋ = Ax, (31)

where

A =
f
‖x‖
⊗ x
‖x‖

(32)

is the coefficient matrix. The symbol ⊗ in u⊗y denotes the dyadic operation of u
and y, i.e., (u⊗y)z = y · zu.

Because the coefficient matrix A is well-defined, the Lie-group element G generat-
ed from the above dynamical system (31) with Ġ = AG satisfies det G(t) 6= 0, such
that G ∈ GL(n,R).
Liu (2013a) has found the essential form in Eq. (31) for nonlinear ODEs, and devel-
oped a very effective Lie-group GL(n,R) scheme to solve ODEs by only assuming
that f/‖x‖ is a constant vector within a small time step. Then, Liu (2013b) devel-
oped a Lie-group GL(n,R) scheme to solve ODEs by assuming that both f/‖x‖
and x/‖x‖ are constant vectors in a small time incremental step. Liu (2013c) has
developed a powerful numerical method to solve the nonlinear differential alge-
braic equations, based on the above Lie-group GL(n,R) scheme. Liu (2014a) has
used the Lie-group differential algebraic equations (LGDAE) method to solve the
sliding mode control problem, and Liu (2014b) has solved the heat source identifi-
cation problem by using the LGDAE.

4.2 An implicit GL(n,R) Lie-group scheme

Eq. (31) is a new starting point for the development of the Lie-group GL(n,R)
algorithm. In order to develop a numerical scheme from Eqs. (31) and (32), we
suppose that the coefficient matrix A is constant with

a =
f̄
‖x̄‖

, b =
x̄
‖x̄‖

(33)

being two constant vectors, which can be obtained by taking the values of f and x at
a suitable mid-point of t̄ ∈ [t0 = 0, t], where t ≤ t0+h and h is a small time stepsize.
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The variable y is suppose to be a constant vector in this small time interval. Thus
from Eqs. (31) and (32) we have

ẋ = b ·xa. (34)

By defining

w = b ·x, (35)

Eq. (34) becomes

ẋ = wa. (36)

Then, from the above two equations we can derive

ẇ = cw, (37)

where

c = a ·b (38)

is a constant scalar in a small time step. From Eq. (37) it follows that

w(t) = w0 exp(ct), (39)

where w0 = b ·x0.

Inserting Eq. (39) for w(t) into Eq. (36) and integrating the resultant equation we
can obtain

x(t) = [In +η(t)abT]x0, (40)

where the superscript T denotes the transpose, x0 is the initial value of x at an initial
time t = t0 = 0, and

η(t) =
ect −1

c
. (41)

Let G be the coefficient matrix before x0 in Eq. (40):

G = In +ηabT, (42)

which is one sort of elementary matrices. According to Liu (2013a, 2013c) we can
prove

detG = ect > 0, (43)
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such that G is a Lie-group element of GL(n,R).
Within a small time step we can suppose that the variables y j, j = 1, . . . ,m are
constant in the interval of tk < t < tk+1. Consequently, we can develop the following
implicit scheme for solving the ODEs (29) where y at the kth time step, denoted by
yk, is viewed as parameters:
(i) Give 0≤ θ ≤ 1.
(ii) Give an initial x0 at an initial time t = t0 and a time stepsize h.
(iii) For k = 0,1, . . ., we repeat the following computations to a terminal time:

xk+1 = xk +hfk, (44)

where fk := f(xk,yk, tk). With the above xk+1 generated from an Euler step as an
initial guess we can iteratively solve the new xk+1 by

t̄k = tk +θh,

x̄k = (1−θ)xk +θxk+1,

f̄k = f(x̄k,yk, t̄k),

ak =
f̄k

‖x̄k‖
,

bk =
x̄k

‖x̄k‖
,

ck = ak ·bk,

dk = xk ·bk,

ηk =
exp(ckh)−1

ck
,

(45)

zk+1 = xk +ηkdkak. (46)

If zk+1 converges according to a given stopping criterion, such that,

‖zk+1−xk+1‖< ε2, (47)

then go to (iii) to the next time step; otherwise, let xk+1 = zk+1 and go to the com-
putations in Eqs. (45)-(46) again. In all the computations given below we will fix
θ = 1/2.

4.3 Newton iterative scheme for DAEs

Now, we turn our attention to the DAEs defined in Eqs. (29) and (30). Within a
small time step we can suppose that the variables y j, j = 1, . . . ,m are constant in
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the interval of tk < t < tk+1. We give an initial guess of y j, j = 1, . . . ,m, and insert
them into Eq. (29). Then we apply the above implicit scheme to find the next xk+1,
supposing that xk is already obtained in the previous time step. When xk+1 are
available we insert them into Eq. (30), and then apply the Newton iterative scheme
to solve yk+1 by

y`+1
k+1 = y`k+1−B−1F(xk+1,y`k+1, tk+1), (48)

till the following convergence criterion is satisfied:

‖y`+1
k+1−y`k+1‖< ε1. (49)

Otherwise, go to Eq. (45). In the above the component Bi j of the Jacobian matrix
B is given by ∂Fi/∂y j.

The numerical process as a combination of the Lie-group method based on GL(n,R)
and the Newton method to solve the DAEs in Eqs. (29) and (30) is called the Lie-
group DAE (LGDAE) method.

5 Numerical algorithm for elastic-plastic wave

Now we suppose that all the variables are discretized to be σi(t) = σ(xi, t), τi(t) =
τ(xi, t), ui(t) = u(xi, t), vi(t) = v(xi, t), λi(t) = λ (xi, t) and Λi(t) = Λ(xi, t), where
xi = (i− 1)∆x = (i− 1)`/(m− 1), and m is the number of grid points. Then, we
have totally n = 5m ODEs and q = m constraints:

σ̇1(t) =−E
3u1(t)−4u2(t)+u3(t)

2∆x
− λ1(t)E

3τy(Λ1)
σ1(t), i = 1,

σ̇i(t) = E
ui+1(t)−ui−1(t)

2∆x
− λi(t)E

3τy(Λi)
σi(t), i = 2, . . . ,m−1,

σ̇m(t) = E
3um(t)−4um−1(t)+um−2(t)

2∆x
− λm(t)E

3τy(Λm)
σm(t), i = m,

τ̇1(t) =−G
3v1(t)−4v2(t)+ v3(t)

2∆x
− λ1(t)G

τy(Λ1)
τ1(t), i = 1,

τ̇i(t) = G
vi+1(t)− vi−1(t)

2∆x
− λi(t)G

τy(Λi)
τi(t), i = 2, . . . ,m−1,

τ̇m(t) = G
3vm(t)−4vm−1(t)+ vm−2(t)

2∆x
− λm(t)G

τy(Λm)
τm(t), i = m,
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u̇1(t) =−
3σ1(t)−4σ2(t)+σ3(t)

2ρ∆x
, i = 1,

u̇i(t) =
σi+1(t)−σi−1(t)

2ρ∆x
, i = 2, . . . ,m−1,

u̇m(t) =
3σm(t)−4σm−1(t)+σm−2(t)

2ρ∆x
, i = m,

v̇1(t) =−
3τ1(t)−4τ2(t)+ τ3(t)

2ρ∆x
, i = 1,

v̇i(t) =
τi+1(t)− τi−1(t)

2ρ∆x
, i = 2, . . . ,m−1,

v̇m(t) =
3τm(t)−4τm−1(t)+ τm−2(t)

2ρ∆x
, i = m,

Λ̇i(t) = λi(t), i = 1, . . . ,m,

(50)

√√√√√τy(Λi)−

√(
σi√

3

)2

+ τ2
i

2

+λ 2
i −

τy(Λi)−

√(
σi√

3

)2

+ τ2
i

−λi = 0,

i = 1, . . . ,m.

(51)

We apply the implicit GL(n,R) scheme to solve σi, τi, ui, vi, and Λi through E-
q. (50) and then iteratively solve the unknown function λi through Eq. (51) by the
Newton iterative method. The numerical processes of this implicit LGDAE are giv-
en below, where we use Q = (σ1, . . . ,σm,τ1, . . . ,τm,u1, . . . ,um,v1, . . . ,vm,Λ1, . . . ,
Λm)

T and f is used to denote the right-hand sides of Eq. (50):
(i) Give an initial guess of λ 0

i , for example, λ 0
i = 0.

(ii) Give an initial condition Q0 at an initial time t = 0 and a time stepsize δ t.
(iii) For k = 0,1, . . ., we repeat the following computations to a specified terminal
time t = t f :

Qk+1 = Qk +δ tfk. (52)

With the above Qk+1 generated from an Euler step as an initial guess we then
iteratively solve the new Qk+1 by

Q̄k = (1−θ)Qk +θQk+1,

ak =
f̄k

‖Q̄k‖
,
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bk =
Q̄k

‖Q̄k‖
,

ck = ak ·bk,

dk = Qk ·bk,

ηk =
exp(ckδ t)−1

ck
,

zk+1 = Qk +ηkdkak.

(53)

If zk+1 converges according to a given stopping criterion, such that,

‖zk+1−Qk+1‖< ε2, (54)

then go to (iv); otherwise, let Qk+1 = zk+1 and go to Eq. (53).
(iv) For j = 0,1, . . ., we repeat the following computations:

λ
j+1

i = λ
j

i −
F j

i

F ′ ji

, i = 1, . . . ,m, (55)

where the prime denotes the differential with respect to λi, and

f̄′k =−
E

3τy(Λk)
Q̄k, the first m components of f and Q,

f̄′k =−
G

τy(Λk)
Q̄k, the second m components of f and Q,

f̄′k = 1, the fifth m components of f and Q,

a′k =
f̄′k
‖Q̄k‖

,

(ci
k)
′ = bi

k(a
i
k)
′+bm+i

k (am+i
k )′+b4m+i

k (a4m+i
k )′, i = 1, . . . ,m,

(η i
k)
′ =

(ci
k)
′[(ckδ t−1)exp(ckδ t)+1]

c2
k

, i = 1, . . . ,m,
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(Qi
k+1)

′ = (η i
k)
′dkai

k +ηkdk(ai
k)
′, i = 1, . . . ,n,

A j
i = τy(Λ

j
i )−

√√√√( σ
j

i√
3

)2

+(τ j
i )

2, i = 1, . . . ,m,

F j
i =

√
(A j

i )
2 +(λ j

i )
2−A j

i −λ
j

i , i = 1, . . . ,m,

A′ ji = τ
′
y(Λi)−

σ
j

i σ
′ j
i /3+ τ

j
i τ
′ j
i√(

σ
j

i√
3

)2

+(τ j
i )

2

, i = 1, . . . ,m,

F ′ ji =
A j

i A′ ji +λ
j

i√
(A j

i )
2 +(λ j

i )
2
−A′ ji −1, i = 1, . . . ,m,

(56)

where both i (super or sub scripted) denote the ith components. If λ
j

i converges
according to

|λ j+1
i −λ

j
i |< ε1, i = 1, . . . ,m, (57)

then go to (iii) with λ
j

i as an initial guess of λi for the next time step; otherwise, let
λ

j
i = λ

j+1
i and go to Eq. (53).

6 Examples of plastic waves

In order to assess the performance of the above numerical method of LGDAE,
we consider elastic-plastic wave propagation problems of a thin-walled tube with
length ` = 0.1 m= 100 mm, and the material constants are E = 70,000 MPa,
G = 70,000/[2(1+ν)] = 26923.08 MPa with ν = 0.3, and ρ = 2700 kg/m3. We
consider three hardening cases and one softening case, and different loading con-
ditions and initial conditions.

6.1 Step-loading of a linearly hardening material, comparison with Clifton
(1966)

First, we consider an isotropically-linearly hardening material with τy being a linear
function of Λ:

τy(Λ) = 150+15000Λ. (58)

The thin-walled tube is initially at rest and pre-stressed over the initial yield stress,
being subjected simultaneously at the end x = 0 to constant stresses σ0 and τ0. The
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initial conditions are, respectively,

u(x,0) = v(x,0) = τ(x,0) = 0, σ(x,0) = 300, (59)

u(x,0) = v(x,0) = σ(x,0) = 0, τ(x,0) = 250. (60)

The thin-walled tube is pre-stressed to a plastic state and the intial value of Λ can be
solved from Eq. (58). For the pre-tension case we consider σ0 = 200 and τ0 = 300,
while for the pre-shear case we consider σ0 = 350 and τ0 = 300.
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Figure 1: For an isotropically linear hardening material showing the stress paths
for (a) pre-tension stress, and (b) pre-shear stress.

We fix ∆x = 0.01/100 and solve this problem under a time stepsize δ t = 5×
10−7 sec in a time interval t ∈ [0,0.0001]. The stress paths for the above two cases
are plotted in Figs. 1(a) and 1(b) for a point at x = ∆x. For the pre-tension case,
from Fig. 1(a) it can be seen that the material quickly tends from point a to point b
with a fast plastic wave where normal stress falls to a much smaller normal stress
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and shear stress quickly increases from zero shear stress to a much larger shear
stress, and then from point b to point c along a slow plastic wave. For the pre-shear
case, from Fig. 1(b) it can be seen that the material quickly tends from point a to
point b, which propagates with fast plastic wave, and then from point b to point c
along a slow plastic wave. The above behaviors were described by Clifton (1966)
for a semi-infinite tube by using the characteristic theory, for which our results are
similar.

6.2 Exponentially saturated hardening material

We let τy be a function of Λ, which is given by

τy(Λ) = 350−200exp(−5Λ). (61)

For the isotropically hardening plastic wave problem we need to calculate Λi by

Λ̇i(t) = λi(t), i = 1, . . . ,m. (62)

Ting (1973) has analyzed the plastic wave speeds of an isotropically work harden-
ing material.

The boundary conditions are supposed to be u(0, t) = 1+ t + t2, v(0, t) = 2(1+ t +
t2), and the initial conditions are given by u(x,0) = v(x,0) = 0.01cos[(πx)/(2`)],
and σ(x,0) = τ(x,0) = 50. The right-end of the tube is fixed. We consider three
different terminal times: case 1 with t f = 0.002 sec, case 2 with t f = 0.01 sec, and
case 3 with t f = 0.1 sec.

We fix ∆x = 0.002 for all cases. We solve case 1 under a time stepsize δ t =
10−6 sec. In Fig. 2(a) we plot the elastic and plastic zones in the plane (x, t),
where the point corresponding to a plastic state is marked by a black square point.
In Fig. 3 we plot the waves at some sampled times t1 = 500δ t = 0.0005 sec,
t2 = 1000δ t = 0.001 sec, t3 = 1500δ t = 0.0015 sec, and t4 = 2000δ t = 0.002 sec.
Then we plot the time histories of wave at two points x1 = 0.002 and x2 = 0.08 in
Fig. 4. It can be seen that at the first point the material quickly tends to yielding
and enters into the plastic state. At point x2 the material is elastically unloading.

We solve case 2 under a time stepsize δ t = 5× 10−6 sec. In Fig. 2(b) we plot the
elastic and plastic zones in the plane (x, t). In Fig. 5 we plot the waves at some
sampled times t1 = 10δ t = 0.00005 sec, t2 = 500δ t = 0.0025 sec, t3 = 1500δ t =
0.0075 sec, and t4 = 2000δ t = 0.01 sec. We plot the time histories of wave at two
points x1 = 0.008 and x2 = 0.08 in Fig. 6. It can be seen that at the first point
x1 = 0.008 the material quickly tends to plastic state and intervening by elastic



Novel Lie-Group Differential Algebraic Equations Method 17

 

0.00 0.02 0.04 0.06 0.08 0.10

x

0.00

0.02

0.04

0.06

0.08

0.10

t

0.000

0.001

0.002

t

(a)

(b)

0.000

0.002

0.004

0.006

0.008

0.010

t

(c)

ELASTIC ZONE

ELASTIC ZONE

ELASTIC ZONE

Figure 2: The elastic-plastic zones for three different terminal times for the elastic-
plastic wave propagations of isotropically hardening material.
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velocity.
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Figure 4: For case 1 of isotropically hardening material the elastic-plastic wave
propagation with respect to time: (a) axial stress, (b) shear stress, (c) axial velocity,
and (d) torsional velocity.
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Figure 5: For case 2 the elastic-plastic wave propagation for isotropically harden-
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Figure 6: For case 2 of isotropically hardening material the elastic-plastic wave
propagation with respect to time: (a) axial stress, (b) shear stress, (c) axial velocity,
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Figure 7: For case 3 the elastic-plastic wave propagation for isotropically harden-
ing material: (a) axial stress, (b) shear stress, (c) axial velocity, and (d) torsional
velocity.
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Figure 8: For case 3 of isotropically hardening material the elastic-plastic wave
propagation with respect to time: (a) axial stress, (b) shear stress, (c) axial velocity,
and (d) torsional velocity.
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Figure 9: For case 2 of isotropically hardening material the stress wave profiles: (a)
axial stress, and (b) shear stress.
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 Figure 10: For case 3 of isotropically hardening material the stress wave profiles:

(a) axial stress, and (b) shear stress.



26 Copyright © 2014 Tech Science Press CMC, vol.41, no.1, pp.1-36, 2014

unloading state. At point x2 the material is elastically unloading to compressive
stress and negative shear stress.

We solve case 3 under a time stepsize δ t = 4× 10−5 sec. In Fig. 2(c) we plot the
elastic and plastic zones in the plane (x, t). In Fig. 7 we plot the waves at some
sampled times t1 = 10δ t = 0.0004 sec, t2 = 1500δ t = 0.06 sec, t3 = 2000δ t =
0.085 sec, and t4 = 2500δ t = 0.1 sec. We plot the time histories of wave at two
points x1 = 0.002 and x2 = 0.08 in Fig. 8. It can be seen that at both two points the
material beavior is very complex

In Fig. 9 we plot the axial stress and shear stress over the plane (x, t) for case 2,
while in Fig. 10 we plot the axial stress and shear stress over the plane (x, t) for
case 3. It can be seen that in case 3 the stress distributions are much complicated
than that in case 2.

6.3 Linearly hardening material

We let τy be a linear function of Λ:

τy(Λ) = 150+100Λ. (63)

When the right-end of the tube is fixed, the left-end is loaded by impulse stresses.
They simultaneously increase parabolically, after that, they keep constant stresses
after the interval of rising time tr = n1δ t where we fix δ t = 10−5 sec:

σ(0, t) =


σ0 +2σ f t2/t2

r t ∈ [0, tr/2),
σ0−2σ f (t− tr)2/t2

r +σ f t ∈ [tr/2, tr),
σ0 +σ f t ≥ tr,

(64)

τ(0, t) =


τ0 +2τ f t2/t2

r t ∈ [0, tr/2),
τ0−2τ f (t− tr)2/t2

r + τ f t ∈ [tr/2, tr),
τ0 + τ f t ≥ tr.

(65)

The thin-walled tube is supposed to be pre-stressed to a plastic state with initial con-
ditions u(x,0) = 0.3cos[(πx)/(2`)], v(x,0) = 0.25cos[(πx)/(2`)], σ(x,0) = σ0 =
0, and τ(x,0) = τ0 = 150 MPa which is equal to the initial shear yield stress 150
MPa. The parameters used are n1 = 5, σ f = 300 MPa and τ f = 250 MPa.

We fix ∆x = 0.002 and solve this problem under a time stepsize δ t = 10−6 sec in
a time interval t ∈ [0,0.002]. In Fig. 11(a) we plot the elastic and plastic zones
in the plane (x, t), where the point corresponding to a plastic state is marked by
a black point. In Figs. 11(b) and 11(c) we plot the stress waves at some sampled
times t1 = 10δ t = 10−5 sec, t2 = 500δ t = 0.0005 sec, t3 = 1500δ t = 0.0015 sec,
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and t4 = 2000δ t = 0.002 sec. Then we plot the time histories of stress waves at
two points x1 = 0.002 and x2 = 0.006 in Figs. 12(a) and 12(b). The stresses path is
plotted in Fig. 12(c) and the strains path at the second point is plotted in Fig. 12(d).
From Fig. 12(c) it can be seen that at the first point the material quickly tends from
point a to point b, which propagates with fast plastic wave, and then from point b
to point c along a slow plastic wave. At the second point the material propagate
along another fast plastic wave from point a to point d. In Fig. 13 we plot the axial
stress and shear stress over the plane (x, t), from which we can observe the stress
distributions.
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Figure 11: For an isotropically linear hardening material the stress wave propaga-
tion: (a) plastic zone, (a) axial stress, and (c) shear stress.
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Figure 12: For an isotropically linear hardening material investigating stress wave
propagation at two different points: (a) axial stress, (b) shear stress, (c) stress paths,
and (d) strain path.

6.4 Isotropically-softening material

Finally we consider an isotropically-softening material with τy being a function of
Λ:

τy(Λ) = 50+150exp(−10Λ). (66)

The initial yield stress is 200 MPa, and then fast tends to 50 MPa.

When the right-end of the tube is fixed, the left-end is loaded by impulse velocities.
They simultaneously increase parabolically, after that, they keep constant velocities
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 Figure 13: For an isotropically linear hardening material the stress wave profiles:

(a) axial stress, and (b) shear stress.
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Figure 14: For an isotropically softening material the stress wave propagation: (a)
plastic zone, (a) axial stress, and (c) shear stress.
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Figure 15: For an isotropically softening material investigating stress wave propa-
gation at two different points: (a) axial stress, (b) shear stress, (c) stress paths, and
(d) strain path.

after the interval of rising time tr = n1δ t where we fix δ t = 10−5 sec:

u(0, t) =


2u0t2/t2

r t ∈ [0, tr/2),
−2u0(t− tr)2/t2

r +u0 t ∈ [tr/2, tr),
u0 t ≥ tr,

(67)

v(0, t) =


2v0t2/t2

r t ∈ [0, tr/2),
−2v0(t− tr)2/t2

r + v0 t ∈ [tr/2, tr),
v0 t ≥ tr,

(68)

where we take u0 = 0.01, v0 = 0.05 and n1 = 10. The thin-walled tube is supposed
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 Figure 16: For an isotropically softening material the stress wave profiles: (a) axial
stress, and (b) shear stress.
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to be pre-stressed to a plastic state with σ(x,0) = 100 MPa, and τ(x,0) = 200 MPa,
and other initial conditions are zeros.

We fix ∆x = 0.002 and solve this problem under a time stepsize δ t = 10−5 sec
in a time interval t ∈ [0,0.05]. In Fig. 14(a) we plot the elastic and plastic zones
in the plane (x, t), where the point corresponding to a plastic state is marked by a
black point. In Figs. 14(a) and 14 (b) we plot the stress waves at some sampled
times t1 = 1000δ t = 0.01 sec, t2 = 2000δ t = 0.02 sec, t3 = 3000δ t = 0.03 sec,
and t4 = 5000δ t = 0.05 sec. Then we plot the time histories of stress waves at two
points x1 = 0.002 and x2 = 0.006 in Figs. 15(a) and 15(b). The stresses path is
plotted in Fig. 15(c) and the velocity path is plotted in Fig. 15(d). From Fig. 15(c)
it can be seen that at the first point the material quickly tends from point a to point
b, which propagates with fast plastic wave, and then from point b to point c and
then to d along a slow plastic wave. In Fig. 16 we plot the axial stress and shear
stress over the plane (x, t), from which we can observe the stress distributions.

7 Conclusions

The conventional implicit index-two DAEs formulation of plasticity is successfully
transformed into a set of explicit index-one DAEs in this paper, for the constitutive
equations of an isotropically-hardening/softening material, which provides some
advantages such that one can solve the nonlinear elastic-plastic wave propagation
problems without resorting on the switching criteria and the two phase equations at
each material point. A novel Lie-group differential algebraic equations (LGDAE)
method was developed for the solutions of different elastoplastic wave propagation
problems, and we found that the LGDAE can faithfully reveal the complex wave
behavior of a finite thin-walled tube under different loading conditions and initial
conditions, to produce different axial-torsional stress waves. The elastic-plastic
wave for the isotropic-hardening-softening material has a complicated feature with
many elastic-plastic loadings and unloadings, together with complicated moving
elastic-plastic boundaries. Because the LGDAE can provide a very effective time
marching solution, without using the two-phase equations and the on-off switch, it
can compute the solution straightforward for much saving computational time.
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