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Nonlinear Symmetric Free Vibration Analysis of Super
Elliptical Isotropic Thin Plates

Da-Guang Zhang1,2 and Hao-Miao Zhou1

Abstract: Nonlinear symmetric free vibration analyses are first presented for su-
per elliptical isotropic thin plates with simply supported edge and clamped edge
based on classical plate theory. Approximate solutions of super elliptical thin plates
are obtained by Ritz method, and the validity can be confirmed by comparison with
related researchers’ results. Numerical results confirm that the characteristics of
nonlinear vibration behaviors are significantly influenced by different boundary
conditions, vibration amplitudes, the power of the super ellipse, as well as ratio
of major to minor axis.
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1 Introduction

Super elliptical plates which are defined by shapes between an ellipse and a rectan-
gle have a wide range of use in engineering applications, and it is more difficult to
analyze nonlinear behaviors of super elliptical plates than rectangular, circular and
elliptical plates.

Some studies for linear behaviors of super elliptical plates are available in the liter-
ature, for example, Wang et al. (1994) presented accurate frequency and buckling
factors for super elliptical plates with simply supported and clamped edges by using
Rayleigh-Ritz method. Lim (1998) investigated free vibration of doubly connect-
ed super-elliptical laminated composite plates. Then Chen et al. (1999) reported
a free vibration analysis of laminated thick super elliptical plates. Liew and Feng
(2001) studied three-dimensional free vibration analysis of perforated super ellip-
tical plates. Zhou (2004) analysed three-dimensional free vibration of super ellip-
tical plates based on linear elasticity theory using Chebyshev-Ritz method. Altekin
(2008) gave out free linear vibration and buckling of super-elliptical plates resting
on symmetrically distributed point-supports. Altekin and Altay (2008) calculated
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static analysis of point-supported super-elliptical plates, then Altekin (2009; 2010)
discussed free vibration and bending of orthotropic super elliptical plates on inter-
mediate supports. Çeribaşı et al. (2008) gave out static linear analysis of super
elliptical clamped plates based on the classical plate theory by Galerkin’s method.
Çeribaşı and Altay (2009) investigated free vibration of super elliptical plates with
constant and variable thickness by Ritz method, then Çeribaşı (2012) investigated
static and dynamic linear analyses of thin uniformly loaded super elliptical clamped
functionally graded plates. Jazi and Farhatnia (2012) discussed buckling of func-
tionally graded super elliptical plate based on the classical plate theory using Pb-2
Ritz method. Tang et al. (2012) presented upper and lower bounds of the solution
for the superelliptical plates problem using genetic algorithms.

Many studies for nonlinear vibration of rectangular and circular plates are available
in the literature. For example, Ostiguy and Sassi (1992) investigated the influence
of initial geometric imperfections on the dynamic behavior of simply supported
rectangular plates subjected to the action of periodic in-plane forces. Saniei and Lu-
o (2001) presented the natural frequency and responses for the nonlinear free vibra-
tion of heated rotating disks when non-uniform temperature distributions pertain-
ing to the laminar and turbulent airflow induced by disk rotation were considered.
Haterbouch and Benamar (2003; 2004) examined the effects of large vibration am-
plitudes on the axisymmetric mode shapes and natural frequencies of clamped thin
isotropic circular plates, then Haterbouch and Benamar (2005) investigated non-
linear free axisymmetric vibration of simply supported isotropic circular plates by
using the energy method and a multimode approach. Allahverdizadeh et al. (2008)
studied vibration amplitude and thermal effects on the nonlinear behavior of thin
circular functionally graded plates. Bakhtiari-Nejad and Nazari (2009) calculated
nonlinear vibration analysis of isotropic cantilever plate with viscoelastic laminate.
Shooshtari and Razavi (2010) presented a closed form solution for linear and non-
linear free vibrations of composite and fiber metal laminated rectangular plates.
Alijani et al. (2011) investigated geometrically nonlinear vibrations of FGM rect-
angular plates in thermal environments via multi-modal energy approach. Ma et
al. (2012) reported nonlinear dynamic response of a stiffened plate with four edges
clamped under primary resonance excitation. Xie and Xu (2013) applied a simple
proper orthogonal decomposition method to compute the nonlinear oscillations of
a degenerate two-dimensional fluttering plate undergoing supersonic flow.

A literature review of works on the nonlinear vibration of rectangular and circu-
lar plates is given by Chia (1980), Sathyamoorthy (1987) and Chia (1988), while
investigations on nonlinear vibration of super elliptical plates haven’t been report-
ed. Zhang (2013) first investigated non-linear bending of super elliptical thin plates
based on classical plate theory, and presented approximate solutions and conver-
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gence studies by Ritz method. The present paper extends the previous works
[Zhang (2013)] to the case of nonlinear vibration analysis for super elliptical thin
plates, and approximate solutions are also obtained by Ritz method.

2 Basic formulations of thin plates based on classical plate theory
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Figure 1: Geometry and coordinates of a super elliptical plate.

Consider a super elliptical plate of major axis 2a, minor axis 2b and thickness h,
and the coordinate system is illustrated in Fig. 1. The boundary shape equation of
the super elliptical plates can be represented by

x2k

a2k +
y2k

b2k −1 = 0 (1)

k is the power of the super ellipse, and if k = 1, the shape becomes an ellipse,
if k = ∞, the shape becomes a rectangle. According to classical plate theory, the
displacement fields are

u = u0 − z
∂w
∂x

, (2a)
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v = v0 − z
∂w
∂y

, (2b)

w = w(x,y, t) (2c)

in whichu, vand w are total displacements, u0 and v0 are mid-plane displacements
in the x and y directions, respectively. Considering nonlinear von Kármán strain-
displacement relationships, the strains can be expressed by

[ε] = [εx,εy,γxy]
T =

[
ε
(0)
]
+ z
[
ε
(1)
]

(3)

in which

[
ε
(0)
]
=

[
∂u0

∂x
+

1
2

(
∂w
∂x

)2

,
∂v0

∂y
+

1
2

(
∂w
∂y

)2

,
∂v0

∂x
+

∂u0

∂y
+

∂w
∂y

∂w
∂x

]T

(4a)

[
ε
(1)
]
=

[
−∂ 2w

∂x2 ,−
∂ 2w
∂y2 ,−2

∂ 2w
∂x∂y

]T

(4b)

According to Hooke’s law, the stresses can be determined as

[σ ] = [σx,σy,τxy]
T =

[
Q̃
]
[ε] (5)

where [Q̃] is the stiffness matrix transformation, defined by

[
Q̃
]
=

 Q̃11 Q̃12 0
Q̃21 Q̃22 0
0 0 Q̃66

 (6)

and

Q̃11 = Q̃22 =
E

1−ν2 , (7a)

Q̃12 = Q̃21 =
νE

1−ν2 , (7b)

Q̃66 =
E

2(1+ν)
(7c)

The constitutive equations can be deduced by proper integration. Nx

Ny

Nxy

=

 A11 A12 0
A21 A22 0
0 0 A66


 ε

(0)
x

ε
(0)
y

γ
(0)
xy

 , (8a)
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 Mx

My

Mxy

=

 D11 D12 0
D21 D22 0
0 0 D66


 ε

(1)
x

ε
(1)
y

γ
(1)
xy

 (8b)

In Eq. (8) Ai j and Di j are the plate stiffnesses, defined by

(Ai j,Di j) =
∫ h

2

− h
2

Q̃i j
(
1,z2)dz (i, j = 1,2,6) (9)

In the following analysis, all edges of plate are assumed to be simply supported and
clamped with no in-plane displacements, i.e. prevented from moving in the x- and
y-directions.

u0 = v0 = w = Mn = 0, (for simply supported edge, referred to as Case 1) (10a)

u0 = v0 = w =
∂w
∂n

= 0, (for clamped edge, referred to as Case 2) (10b)

where n refers to the normal directions of the plate boundary.

3 Ritz method for approximate solutions of nonlinear vibrations of super
elliptical thin plates

Ritz method is adopted in this section to obtain approximate solutions of super
elliptical plates. The key issue is first to assume the deflection and mid-plane dis-
placements of the plate

w =
M

∑
m=1,2,···

Wm, (11a)

u0 =
M

∑
m=1,2,···

Ūm, (11b)

v0 =
M

∑
m=1,2,···

V̄m (11c)

where M is total number of series. For symmetrical problems about the plate with
Case 1, it can be assumed that

Wm = sinωt
(

1− x2k

a2k −
y2k

b2k

) 2(m−1)

∑
i=0,2,···

ai j
x2i

a2i
y2 j

b2 j (12a)
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Ūm = sin2
ωt
(

1− x2k

a2k −
y2k

b2k

)
x
a

2(m−1)

∑
i=0,2,···

di j
x2i

a2i
y2 j

b2 j (12b)

V̄m = sin2
ωt
(

1− x2k

a2k −
y2k

b2k

)
y
b

2(m−1)

∑
i=0,2,···

ei j
x2i

a2i
y2 j

b2 j (12c)

For symmetrical problems about the plate with Case 2, it can be assumed that

Wm = sinωt
(

1− x2k

a2k −
y2k

b2k

)2 2(m−1)

∑
i=0,2,···

ai j
x2i

a2i
y2 j

b2 j (13a)

Ūm = sin2
ωt
(

1− x2k

a2k −
y2k

b2k

)
x
a

2(m−1)

∑
i=0,2,···

di j
x2i

a2i
y2 j

b2 j (13b)

V̄m = sin2
ωt
(

1− x2k

a2k −
y2k

b2k

)
y
b

2(m−1)

∑
i=0,2,···

ei j
x2i

a2i
y2 j

b2 j (13c)

in which j = 2m− i− 2 in Eqs. (12-13). Note that ai j, di j and ei j are undeter-
mined coefficients, and Eqs. (12-13) satisfy displacement boundary conditions. In
addition, Eqs. (12-13) are adapt to analysis of symmetrical nonlinear fundamental
vibration modes, but not adapt to other modes, so other modes are not discussed in
this paper.

Nonlinear algebraic equations about ai j, di j and ei j can be obtained by substituting
w, u0 and v0 into the following expression.∫ 2π

ω

0

∂Π

∂ai j
dt = 0, (14a)

∫ 2π

ω

0

∂Π

∂di j
dt = 0, (14b)

∫ 2π

ω

0

∂Π

∂ei j
dt = 0 (14c)

in which Π = K −U , and the strain energy is

U =
1
2

∫
Ω

(σxεx +σyεy + τxyγxy)dΩ (15a)

The kinetic energy may be expressed by

K =
1
2

∫
Ω0

ρh
(

∂w
∂ t

)2

dΩ0 (15b)



Nonlinear Symmetric Free Vibration Analysis 27

where Ω denotes domain of plates and Ω0 denotes mid-plane of plates.

As for plates with given nonlinear fundamental frequency ωNL and other known
coefficients, ai j, di j and ei j can be solved by Newton-Raphson method or other
equivalent methods. For the sake of brevity, nonlinear algebraic equations and the
solving process are omitted. Substituting these coefficients back into Eqs. (12-13),
w, u0 and v0 may then be completely determined. In addition, linear fundamental
frequency ωL can be easily obtained by making solutions of coefficients ai j, di j and
ei j approach to zero.

4 Results and discussion

4.1 Comparison studies

The present paper extends convergence studies of the previous works [Zhang (2013)]
to nonlinear vibrations analysis of super elliptical plates, and M = 5 is used in al-
l the following calculations in consideration of both simplicity and convergence.
To ensure the accuracy and effectiveness of the present method, two examples are
solved for nonlinear vibration analysis of isotropic circular and rectangular plates.

Example 1. The nonlinear-to-linear fundamental frequency ratio (ωNL/ωL) for the
isotropic circular plates with Case 2 is calculated and compared in Table 1 with
results of Haterbouch and Benamar (2003) and Allahverdizadeh et al. (2008). In
this example, the plates have a/h = 136.59 and ν = 0.3.

Table 1: Comparisons of nonlinear-to-linear fundamental frequency ratio for
isotropic circular plates with Case 2.

wmax/h Haterbouch and
Benamar (2003)

Allahverdizadeh
et al. (2008)

Present

0.2 1.0072 1.0075 1.007
0.4 1.0284 1.0296 1.030
0.5 1.0439 1.0459 1.046
0.6 1.0623 1.0654 1.065
0.8 1.1073 1.1135 1.113
1.0 1.1615 1.1724 1.172
1.5 1.3255 1.3567 1.357
2.0 1.5147 1.5789 1.578

Example 2. The nonlinear-to-linear fundamental frequency ratio (ωNL/ωL) for the
isotropic rectangular thin plates with Case 1 is calculated and compared in Fig. 2
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with results of Shooshtari and Razavi (2010). In this example, the super elliptical
plate with k = 10 represents a shape similar to a rectangular plate, a/h = 50 and
ν = 0.3.
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 Figure 2: Comparison of nonlinear-to-linear frequency ratio (ωNL/ωL) for isotropic
rectangular plates with Case 1.

These two comparisons show that the present results agree well with existing re-
sults, and thus the validity can be confirmed.

4.2 Parametric studies

Numerical results are presented in this section for linear and nonlinear vibration
of isotropic super elliptical thin plates with Case 1 and Case 2, the plates have
ν = 0.3, ratio of major to minor axis a/b = 1,1.5,2,3 and the power of the super
ellipse k = 1,2,3,4. The non-dimensional fundamental frequency is defined by
ω∗

L = 4
(
ωLa2/π2

)√
ρh/D in this section.

The relations of nonlinear-to-linear frequency ratio ωNL/ωL and non-dimensional
vibration amplitudes wmax/h for the plate are calculated in Table 2-9. It can be ob-
served that the present results agree well with existing results of Wang et al. (1994)
for linear vibration of isotropic super elliptical thin plates. It can be concluded
that nonlinear vibration frequencies increase significantly with increasing the value
of vibration amplitudes and ratio of major to minor axis a/b. It can be also ob-
served that the characteristics of nonlinear vibration are significantly influenced by
different boundary conditions and the power of the super ellipse k.
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Table 2: Nonlinear-to-linear frequency ratio (ωNL/ωL) for super elliptical thin
plates with Case 1 and k = 1.

a/b
ω∗

L wmax/h
Wang et al.

(1994)
Present 0.2 0.4 0.6 0.8 1

1 2.000 2.000 1.027 1.103 1.220 1.369 1.540
1.5 3.357 3.357 1.027 1.103 1.220 1.369 1.541
2 5.355 5.355 1.027 1.103 1.220 1.371 1.545
3 10.976 10.976 1.027 1.104 1.226 1.384 1.569

Table 3: Nonlinear-to-linear frequency ratio (ωNL/ωL) for super elliptical thin
plates with Case 1 and k = 2.

a/b
ω∗

L wmax/h
Wang et al.

(1994)
Present 0.2 0.4 0.6 0.8 1

1 1.878 1.878 1.024 1.093 1.199 1.334 1.490
1.5 3.100 3.100 1.025 1.097 1.208 1.350 1.515
2 4.872 4.873 1.027 1.105 1.225 1.380 1.561
3 9.995 9.997 1.029 1.115 1.250 1.427 1.634

Table 4: Nonlinear-to-linear frequency ratio (ωNL/ωL) for super elliptical thin
plates with Case 1 and k = 3.

a/b ω∗
L

wmax/h
0.2 0.4 0.6 0.8 1

1 1.920 1.022 1.086 1.185 1.312 1.460
1.5 3.146 1.023 1.091 1.196 1.331 1.488
2 4.895 1.026 1.101 1.217 1.367 1.543
3 9.930 1.029 1.114 1.250 1.428 1.638
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Table 5: Nonlinear-to-linear frequency ratio (ωNL/ωL) for super elliptical thin
plates with Case 1 and k = 4.

a/b
ω∗

L wmax/h
Wang et al.

(1994)
Present 0.2 0.4 0.6 0.8 1

1 1.947 1.947 1.021 1.083 1.179 1.302 1.446
1.5 3.179 3.180 1.022 1.088 1.191 1.322 1.476
2 4.925 4.926 1.025 1.099 1.213 1.361 1.535
3 9.934 9.938 1.029 1.113 1.249 1.427 1.636

Table 6: Nonlinear-to-linear frequency ratio (ωNL/ωL) for super elliptical thin
plates with Case 2 and k = 1.

a/b
ω∗

L wmax/h
Wang et al.

(1994)
Present 0.2 0.4 0.6 0.8 1

1 4.141 4.140 1.007 1.030 1.065 1.113 1.172
1.5 6.944 6.942 1.007 1.030 1.065 1.113 1.172
2 11.100 11.096 1.007 1.030 1.065 1.113 1.173
3 23.023 23.020 1.007 1.030 1.065 1.115 1.176

Table 7: Nonlinear-to-linear frequency ratio (ωNL/ωL) for super elliptical thin
plates with Case 2 and k = 2.

a/b
ω∗

L wmax/h
Wang et al.

(1994)
Present 0.2 0.4 0.6 0.8 1

1 3.688 3.687 1.007 1.029 1.064 1.112 1.170
1.5 6.233 6.230 1.007 1.030 1.065 1.113 1.173
2 10.094 10.087 1.008 1.030 1.067 1.117 1.180
3 21.445 21.432 1.008 1.031 1.070 1.124 1.192
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Table 8: Nonlinear-to-linear frequency ratio (ωNL/ωL) for super elliptical thin
plates with Case 2 and k = 3.

a/b ω∗
L

wmax/h
0.2 0.4 0.6 0.8 1

1 3.654 1.007 1.029 1.063 1.109 1.166
1.5 6.172 1.007 1.029 1.064 1.112 1.170
2 9.990 1.008 1.030 1.066 1.116 1.178
3 21.226 1.008 1.031 1.071 1.126 1.196

Table 9: Nonlinear-to-linear frequency ratio (ωNL/ωL) for super elliptical thin
plates with Case 2 and k = 4.

a/b
ω∗

L wmax/h
Wang et al.

(1994)
Present 0.2 0.4 0.6 0.8 1

1 3.648 3.650 1.007 1.028 1.063 1.110 1.167
1.5 6.161 6.163 1.007 1.029 1.065 1.112 1.171
2 9.971 9.974 1.007 1.030 1.066 1.116 1.178
3 21.179 21.184 1.008 1.031 1.071 1.126 1.196

5 Conclusions

In this paper, nonlinear vibration analyses are first presented for super elliptical
plates based on classical plate theory. Ritz method is employed to analyze nonlinear
vibration behaviors. Numerical results confirm that the characteristics of nonlinear
vibration behaviors are significantly influenced by different boundary conditions,
vibration amplitudes, the power of the super ellipse k, as well as ratio of major to
minor axis.
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