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A Sliding Mode Control Algorithm for Solving an
Ill-posed Positive Linear System

Chein-Shan Liu1

Abstract: For the numerical solution of an ill-posed positive linear system we
combine the methods from invariant manifold theory and sliding mode control the-
ory, developing an affine nonlinear dynamical system with a positive control force
and with the residual vector as being a gain vector. This system is proven asymp-
totically stable to the zero residual vector by using an argument from the Lyapunov
stability theory. We find that the system fast tends to the sliding surface and then
moves with a sliding mode, such that the resultant sliding mode control algorithm
(SMCA) is robust against large noise and stable to find the numerical solution of
an ill-posed linear system. It is interesting that even under a random noise with an
intensity 10−5 we can obtain a quite accurate solution of the linear Hilbert prob-
lem with dimension n = 500. For this highly ill-conditioned problem the number
of iterations is still smaller than 100. Numerical tests, including the inverse prob-
lems of backward heat conduction problem and Cauchy problems, confirm that
the present SMCA has superior computational efficiency and accuracy even for a
highly ill-conditioned linear equations system under a large noise.

Keywords: Ill-posed linear equations, Invariant manifold, Sliding mode control
method, Asymptotically stable

1 Introduction

In this paper we propose a robust and easily-implemented algorithm to solve the
following linear equations system:

Bx = b, (1)

where B∈Rn×n is a given positive-definite matrix, and x∈Rn is an unknown vector
to be determined from the input data b ∈ Rn. When B is severely ill-conditioned
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and b is perturbed by noise, we may encounter the problem that the numerical
solution of Eq. (1) will deviate from the exact one to a great extent. Therefore, an
algorithm compromises stability, efficiency and accuracy is desired.

There are several regularization techniques developed after the pioneering work
of Tikhonov and Arsenin (1977). Previously, the author and his co-workers have
developed several methods to solve the ill-posed linear problems: using the ficti-
tious time integration method as a filter for ill-posed linear system [Liu and Atluri
(2009a)], a modified polynomial expansion method [Liu and Atluri (2009b)], the
non-standard group-preserving scheme [Liu and Chang (2009)], a vector regular-
ization method [Liu, Hong and Atluri (2010)], the preconditioners and postcondi-
tioners generated from a transformation matrix, obtained by Liu, Yeih and Atluri
(2009) for solving the Laplace equation with a multiple-scale Trefftz basis function-
s, the relaxed steepest descent method [Liu (2011a, 2012a)], the optimal iterative al-
gorithm [Liu and Atluri (2011a)], an optimally scaled vector regularization method
[Liu (2012b)], the best vector iterative method [Liu (2012c)], a globally optimal
iterative method [Liu (2012d)], the generalized Tikhonov regularization method-
s [Liu (2012e)], the optimal tri-vector iterative methods [Liu (2013a, 2014a)], as
well as an adaptive Tikhonov regularization method [Liu (2013b)].

It is known that iterative methods for solving the system of algebraic equations can
be derived from the discretization of certain ODEs system [Bhaya and Kaszkurewicz
(2006); Chehab and Laminie (2005); Liu and Atluri (2008)]. Particularly, the de-
scent methods can be interpreted as the discretizations of gradient flows [Brown
and Bartholomew-Biggs (1989); Helmke and Moore (1994)]. For a large scale
system the main choice is using an iterative regularization algorithm, where a regu-
larization parameter is presented by the number of iterations. The iterative method
works if an early stopping criterion is used to prevent the reconstruction of noisy
components in the approximate solutions.

Liu and Atluri (2008) have developed a very simple ODEs system for iteratively
solving algebraic equations. After the work by Liu and Atluri (2008), there were
several works applied the fictitious time integration method (FTIM) to solve engi-
neering problems, e.g., [Liu and Atluri (2009a); Liu (2008a, 2009a, 2009b, 2009c,
2010); Chi, Yeih and Liu (2009), Ku, Yeih, Liu and Chi (2009); Chang and Liu
(2009)]. In this paper we will develop an affine nonlinear ODEs system with a de-
rived controller from the sliding mode control theory to accelerate the convergence
speed in the solution of ill-posed linear problems.
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2 An invariant manifold

There are several regularization methods to deal with Eq. (1) when B is ill-conditioned,
of which the most prominent and best well understood ones are the Tikhonov
method, the Landweber iteration method, and truncated singular value decomposi-
tion, all being linear and all being strongly convergent with an appropriate a priori
parameter choice [Eicke, Louis and Plato (1990)]. In this paper we consider an
iterative regularization method for Eq. (1) by investigating

r(x) = Bx−b. (2)

We start from a continuous manifold [Absil, Baker and Gallivan (2007); Adler,
Dedieu, Margulies, Martens and Shub (2002); Baker, Absil and Gallivan (2008);
Smith (1994); Yang (2007)], defined in terms of the square-residual-norm of r and
a function Q(t):

h(x, t) :=
1
2

Q(t)‖r(x)‖2 =C. (3)

Here, we let x be a function of a fictitious time-like variable t, and expect that in
our algorithm Q(t)> 0 is an increasing function of t, and the residual error can be
decreased with time. We let Q(0) = 1, and C is determined by the initial condition
x(0) = x0 given by

C =
1
2
‖r(x0)‖2. (4)

Usually, C > 0, and C = 0 when the initial value x0 is just the solution of Eq. (1).

When C > 0 and Q > 0, the manifold defined by Eq. (3) is continuous and differ-
entiable, and thus the following differential operation carried out on the manifold
makes sense. For the requirement of "consistency condition", i.e., x(t) always on
the manifold in time, we have

1
2

Q̇(t)‖r(x)‖2 +Q(t)(BTr) · ẋ = 0, (5)

which is obtained by taking the time differential of Eq. (3) with respect to t and
considering x = x(t).
The governing equation of x cannot be uniquely determined by Eq. (5); however,
we suppose that x is governed by a gradient-flow, like that for the steepest-descent
method (SDM):

ẋ =−λ
∂h
∂x

=−λQ(t)BTr, (6)
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where λ is to be determined. Inserting Eq. (6) into Eq. (5) we can solve

λ =
Q̇(t)‖r‖2

2Q2(t)‖BTr‖2 . (7)

Thus by inserting the above λ into Eq. (6) we can obtain an ODEs system for x:

ẋ =−q(t)
‖r‖2

‖BTr‖2 BTr, (8)

where

q(t) :=
Q̇(t)
2Q(t)

. (9)

If Q(t) can be guaranteed to be an increasing function of t, we have an absolutely
convergent numerical method to solve Eq. (1) shown as follows:

‖r(x)‖2 =
2C

Q(t)
. (10)

When t is large enough the above equation will enforce the residual error ‖r(x)‖
tending to zero, and meanwhile the solution of Eq. (1) is obtained approximately.

3 The sliding mode control method

Equation (8) is an ODEs system defined on the invariant manifold in Eq. (10).
Based on this equation, Liu (2011a) has derived the relaxed steepest descent method
(RSDM) for solving linear system (1). Although the original design of the numeri-
cal algorithm is for the purpose of keeping the orbit of x on the invariant manifold
in Eq. (10), but in practice the RSDM cannot satisfy this requirement. For this
purpose we can insert a compensated controller ũ in Eq. (8):

ẋ =− ‖r‖
2

‖BTr‖2 BTr+ ũr, (11)

such that a suitable design of ũ can help us to achieve this purpose. In above we let
q = 1 and r is taken as a gain vector.

The theory of sliding mode control for system (11) is designed an invariant hyper-
surface [Utkin (1978, 1992); Liu (2014b)]:

s(x) = 0 (12)
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in the state space, such that by keeping the orbit of x on the surface we require

ṡ(x) =
∂ s
∂x
· ẋ = 0. (13)

Here we can set up the most simple sliding surface by

s = a · r = 0, (14)

where a is a constant vector. Hence, we have

ṡ = a · ṙ = a · (Bẋ) = 0. (15)

Inserting Eq. (11) for ẋ we can derive

− ‖r‖
2

‖BTr‖2 a · (Ar)+ ũa · (Br) = 0, (16)

where

A := BBT. (17)

From Eq. (16) we can solve

ũ =
‖r‖2

‖BTr‖2
a · (Ar)
a · (Br)

, (18)

and then by Eq. (11) we have

ẋ =− ‖r‖
2

‖BTr‖2 BTr+
‖r‖2

‖BTr‖2
a · (Ar)
a · (Br)

r; (19)

however, this ODEs system may be unstable. Thus we recast Eq. (19) to be

ẋ =− ‖r‖
2

‖BTr‖2 BTr−ur, (20)

where

u = |ũ|= ‖r‖2

‖BTr‖2

∣∣∣∣a · (Ar)
a · (Br)

∣∣∣∣> 0. (21)

In the control theory, Eq. (20) is a form of an affine nonlinear system, which is
linear with the control force u(t), while the residual vector r is acting as a gain
vector.
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Now we prove that the above dynamical system is asymptotically stable, tending
to the zero dynamics of the residual vector r. Consider the following Lyapunov
function:

V =
1
2
‖r‖2 ≥ 0. (22)

Taking the derivative of V and inserting ṙ = Bẋ and Eq. (20) we can derive

V̇ = r · ṙ = r · (Bẋ)

= − ‖r‖
2

‖BTr‖2 r · (Ar)−ur · (Br)< 0, (23)

where we have used the positiveness of A, B and u. As compared with Eq. (8), the
new ODEs system (20) possesses an extra term ur to enforce the dynamics to the
zero point of r = 0, which is gained by a sliding effect with the aid of a gain vector
r and a positive control force u.

Given an initial point r0 = Bx0−b we can construct the constant vector a by an
arbitrarily given vector a0, say a0 = (1, . . . ,1)T:

a = a0−
a0 · r0

‖r0‖2 r0; (24)

it is obvious that a · r0 = 0, such that s0 = a · r0 = 0.

We simply use the Euler scheme to integrate Eq. (20), and thus one can derive the
following sliding mode control algorithm (SMCA):
(i) Give a stepsize h, an initial x0, r0 = Bx0−b and a0 = (1, . . . ,1)T, and compute
a = a0− (a0 · r0)r0/‖r0‖2.
(ii) For k = 0,1,2, . . ., we repeat the following computations:

rk = Bxk−b,

uk =
‖rk‖2

‖BTrk‖2

∣∣∣∣a · (Ark)

a · (Brk)

∣∣∣∣ ,
xk+1 = xk−

h‖rk‖2

‖BTrk‖2 BTrk−hukrk. (25)

If xk+1 converges according to a given stopping criterion ‖rk+1‖ < ε , then stop;
otherwise, go to step (ii).

4 Numerical examples

In order to assess the performance of the newly developed method of the sliding
mode control algorithm (SMCA), let us investigate the following examples. Some
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results are compared with that obtained by the relaxed steepest descent method (RS-
DM), conjugate gradient method (CGM), the optimal iterative algorithm driven by
an optimal descent vector (OIA/ODV), and the globally optimal iterative algorithm
(GOIA).

4.1 Hilbert problems

Finding an n-degree polynomial function p(x) = a0+a1x+ . . .+anxn to best match
a continuous function f (x) in the interval of x ∈ [0,1]:

min
deg(p)≤n

∫ 1

0
[ f (x)− p(x)]2dx, (26)

leads to a problem governed by Eq. (1), where B is the (n+ 1)× (n+ 1) Hilbert
matrix, defined by

Bi j =
1

i+ j−1
, (27)

x is composed of the n+1 coefficients a0,a1, . . . ,an appeared in p(x), and

b =


∫ 1

0 f (x)dx∫ 1
0 x f (x)dx

...∫ 1
0 xn f (x)dx

 (28)

is uniquely determined by the function f (x).

The Hilbert matrix is a famous example of highly ill-conditioned matrices. Eq. (1)
with the coefficient matrix B having a large condition number usually displays
that an arbitrarily small perturbation of data on the right-hand side may lead to an
arbitrarily large perturbation to the solution on the left-hand side.

In this example we consider a highly ill-conditioned linear equation (1) with B
given by Eq. (27). The ill-posedness of Eq. (1) with the above B increases very fast
with an exponential growth with n.

4.1.1 n = 9

In order to compare the numerical solutions with exact solutions we suppose that
x1 = . . .= xn = 1 to be the exact one, and then by Eq. (27) we have

bi =
n

∑
j=1

1
i+ j−1

+σR(i), (29)
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where we consider noise being imposed on the data with random numbers R(i) ∈
[−1,1].

We first calculate this problem for the case with n = 9 and σ = 0. The resulting
linear equation is highly ill-conditioned, since the condition number is quite large,
up to 4.93×1011.

In the computation by the SMCA we have fixed h = 0.3. Starting from x1 = . . .=
x9 = 0.5, and with a stopping criterion ε = 10−8 we find that SMCA converges with
1166 iterations, where the maximum error is 1.03×10−3.

The RSDM with γ = 0.06 does not converge within 5000 iterations; however the
numerical solution is close to the exact solution as shown in Table 1 with the max-
imum error being 1.44×10−3; wherein, for the purpose of comparison, the values
obtained by the conjugate gradient method (CGM) are also listed. The maximum
error of CGM is 7.85×10−3.

4.1.2 n = 50

Let us increase the ill-posedness of the linear Hilbert problem to n = 50. For this
problem the condition number is about 1.1748×1019. We first consider a constant
solution x1 = . . .= x50 = 1. The convergence criterion ε is fixed to be ε = 10−6 for
case 1 with noise-free σ = 0, and case 2 with ε = 10−3 and with a noise σ = 10−4.
Starting from the initial condition xi = 0.5, i = 1, . . . ,50, for case 1 the SMCA with
h = 0.1 converges with 1184 iterations as shown in Fig. 1(a) for the residual error,
Fig. 1(b) for the control force and Fig. 1(c) for the numerical error, of which the
maximum error is 0.00392. Very accurate result is obtained. From Fig. 2(a) we
can observe that the iterative dynamics approaches to the sliding surface with s = 0
very quickly. For case 2 the SMCA with h = 0.1 converges with 116 iterations as
shown in Fig. 2(b) for the sliding quantity s, Fig. 2(c) for the residual error and the
control force. The maximum error is 0.037 as shown in Fig. 1(c) by the dashed
line.

4.1.3 n = 200

Let us consider n= 200 and with a noise σ = 10−5. In the computation of this noisy
problem by the SMCA, we fix h = 0.35 and ε = 10−3, where we show the residual
error in Fig. 3(a) and the SMCA converges with 82 iterations. From Fig. 3(b) we
can see that the sliding mode is obtained very fast. The numerical solution obtained
by the SMCA converges to the exact solution very accurately as shown in Fig. 3(c)
with the maximum error being 0.0258. We also apply the CGM to this problem
under the same noise. Under the above convergence criterion the CGM converges
very fast with 9 steps, and the maximum error as shown in Fig. 3(c) is 0.0993. It
can be seen that the accuracy of SMCA is better than CGM.
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Figure 1: For example 1 of Hilbert problem with n=50, (a) the residual and (b) the 

control force for noise free case, and (c) comparing the numerical errors. 

 

 

 

Figure 1: For example 1 of Hilbert problem with n = 50, (a) the residual and (b)
the control force for noise free case, and (c) comparing the numerical errors.
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Figure 2: For example 1 of Hilbert problem with n = 50, comparing the sliding
quantities for (a) noise free and (b) under a noise, and (c) the control force and
residual for the noised case.
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Figure 3: For example 1 of Hilbert problem with n=200, (a) the residual and (b) the 

sliding quantity for noised case, and (c) comparing the numerical errors. 
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Figure 4: For example 1 of Hilbert problem with n=500, (a) the residual and (b) the 

sliding quantity for noised case, and (c) comparing the numerical errors. 

 

 

Figure 4: For example 1 of Hilbert problem with n = 500, (a) the residual and (b)
the sliding quantity for noised case, and (c) comparing the numerical errors.
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4.1.4 n = 500

Let us consider n = 500 and with a noise σ = 10−5. In the computation by the
SMCA, we fix h = 0.4 and ε = 10−3, where we show the residual error in Fig. 4(a)
and the SMCA can converge with 96 iterations. From Fig. 4(b) we can see that
the sliding mode is obtained very fast. The numerical solution of SMCA is very
accurate as shown in Fig. 4(c) with the maximum error being 0.024. The maximum
error of CGM as shown in Fig. 4(c) is large up to 0.1973. It can be seen that the
accuracy of SMCA is much better than CGM. From the above cases for this highly
ill-posed Hilbert problem we can observe that the present SMCA is robust and
effective, which is insensitive to the degree of the ill-posedness. The accuracy of
the SMCA is much better than other methods.

4.2 Example 2

When the backward heat conduction problem (BHCP) is considered in a spatial
interval of 0 < x < ` by subjecting to the boundary conditions at two ends of a slab:

ut(x, t) = αuxx(x, t), 0 < t < T, 0 < x < `, (30)

u(0, t) = u0(t), u(`, t) = u`(t), (31)

we solve u under a final time condition:

u(x,T ) = uT (x). (32)

The fundamental solution to Eq. (30) is given as follows:

K(x, t) =
H(t)

2
√

απt
exp
(
−x2

4αt

)
, (33)

where H(t) is the Heaviside function.

The method of fundamental solutions (MFS) has a broad application in engineer-
ing computations. However, the MFS has a serious drawback in that the resulting
system of linear equations is always highly ill-conditioned, when the number of
source points is increased [Golberg and Chen (1996)], or when the distances of
source points are increased [Chen, Cho and Golberg (2006)].

In the MFS the solution of u at the field point z = (x, t) can be expressed as a linear
combination of the fundamental solutions U(z,s j):

u(z) =
N

∑
j=1

c jU(z,s j), s j = (η j,τ j) ∈Ω
c, (34)
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where N is the number of source points, c j are unknown coefficients, and s j are
source points located in the complement Ωc of Ω = [0, `]× [0,T ]. For the heat
conduction equation we have the basis functions:

U(z,s j) = K(x−η j, t− τ j). (35)

It is known that the location of source points in the MFS has a great influence on
the accuracy and stability. In a practical application of MFS to solve the BHCP, the
source points are uniformly located on two straight lines parallel to the t-axis and
not over the final time, which was adopted by Hon and Li (2009) and Liu (2011b),
showing a large improvement than the line location of source points below the
initial time. After imposing the boundary conditions and the final time condition
on Eq. (34) we can obtain a linear equations system:

Vx = b1, (36)

where

Vi j =U(zi,s j), x = (c1, · · · ,cN)
T,

b1 = (u`(ti), i = 1, . . . ,m1;uT (x j), j = 1, . . . ,m2;u0(tk), k = m1, . . . ,1)T. (37)

The number n = 2m1 +m2 of collocation points does not necessarily equal to the
number N of source points. By applying the SMCA to solve the above problem we
solve a normal equation:

VTVx = VTb1. (38)

Since the BHCP is highly ill-posed, the ill-conditioning of the matrix B = VTV in
Eq. (38) is serious. To overcome the ill-posedness of Eq. (38) we can employ the
SMCA to solve this problem. Here we compare the numerical solution with an
exact solution:

u(x, t) = cos(πx)exp(−π
2t).

For the case with T = 1 the value of final data is in the order of 10−4, which is
small in a comparison with the value of the initial temperature u0(x) = cos(πx) to
be retrieved, which is O(1).

We apply the SMCA to solve Eq. (38) with h = 0.05 and ε = 10−4, and a relative
random noise with an intensity σ = 10% is added on the final time data. The SMCA
converges with 899 iterations as shown in Fig. 5(a), while the sliding quantity s is
shown in Fig. 5(b). The numerical error as shown in Fig. 5(c) by the solid line is
smaller than 0.0438. For the purpose of comparison we also apply the RSDM with
γ = 0.05 to solve this problem; however, over 10000 iterations it does not converge
as shown in Fig. 5(a) by the dashed line for the residual error. However, the result
as shown in Fig. 5(c) by the dashed line for numerical error is smaller than 0.05.
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4.3 Example 3

We solve the Cauchy problem of the Laplace equation under overspecified bound-
ary conditions:

∆u = urr +
1
r

ur +
1
r2 uθθ = 0, r < ρ, 0≤ θ ≤ 2π, (39)

u(ρ,θ) = h(θ), 0≤ θ ≤ π, (40)

un(ρ,θ) = g(θ), 0≤ θ ≤ π, (41)

where h(θ) and g(θ) are given functions, and ρ = ρ(θ) is a given contour to de-
scribe the boundary shape. The contour in the polar coordinates is specified by
Γ = {(r,θ)|r = ρ(θ), 0≤ θ ≤ 2π}, which is the boundary of the problem domain
Ω, and n denotes the normal direction.

In the potential theory, it is well known that the method of fundamental solutions
(MFS) can be used to solve the Laplace equation when a fundamental solution is
known. In the MFS the trial solution of u at the field point z = (r cosθ ,r sinθ) can
be expressed as a linear combination of the fundamental solutions U(z,s j):

u(z) =
n

∑
j=1

c jU(z,s j), s j ∈Ω
c, (42)

where n is the number of source points, c j are the unknown coefficients, s j are the
source points, and Ωc is the complementary set of Ω. For the Laplace equation (39)
we have the fundamental solutions:

U(z,s j) = lnr j, r j = ‖z− s j‖. (43)

In the practical application of MFS, frequently the source points are uniformly
located on a circle with a radius R, such that after imposing the boundary conditions
(40) and (41) on Eq. (42) we can obtain a linear equations system:

Vx = b1, (44)

where

zi = (z1
i ,z

2
i ) = (ρ(θi)cosθi,ρ(θi)sinθi),

s j = (s1
j ,s

2
j) = (Rcosθ j,Rsinθ j),

Vi j = ln‖zi− s j‖, if i is odd,

Vi j =
η(θi)

‖zi− s j‖2

(
ρ(θi)− s1

j cosθi− s2
j sinθi

− ρ ′(θi)

ρ(θi)
[s1

j sinθi− s2
j cosθi]

)
, if i is even,

x = (c1, . . . ,cn)
T, b1 = (h(θ1),g(θ1), . . . ,h(θm),g(θm))

T, (45)
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in which n = 2m, and

η(θ) =
ρ(θ)√

ρ2(θ)+ [ρ ′(θ)]2
. (46)

A noise with an intensity σ = 10% is imposed on the given data. We fix n = 60
and use a circle with a constant radius R = 14 to distribute the source points. By
applying the SMCA to solve the normal equation (38) obtained from Eq. (44) we
fix h = 0.3. Under the convergence criterion ε = 10−2, the SMCA converges with
7308 iterations and the residual error is shown in Fig. 6(a), while the control force
is shown in Fig. 6(b) and the sliding quantity s is plotted in Fig. 7(a). Along the
lower half contour ρ(θ) =

√
10−6cos(2θ), π ≤ θ < 2π , in Fig. 6(c) we compare

the numerical solution with the exact data given by u = ρ2 cos(2θ), π ≤ θ < 2π ,
of which the maximum error is found to be 0.121.

For the purpose of comparison we also apply the OIA/ODV developed by Liu and
Atluri (2011a) and the GOIA developed by Liu (2012d) to solve this problem under
the same conditions. In Fig. 7(b) we compare the relative residuals obtained by
these three methods, while in Fig. 7(c) we compare the numerical errors, where the
maximum error obtained by the SMCA is 0.121, the maximum error by the GOIA
is 0.141, and the maximum error by the OIA/ODV is 0.148. Both the GOIA and
OIA/ODV do not converge within 10000 iterations under the above convergence
criterion ε = 10−2. We can say that the performance of SMCA is better than GOIA
and OIA/ODV.

4.4 Example 4

In this example we consider an inverse Cauchy problem of the following biharmon-
ic equation:

∆
2u = 0, (x,y) ∈Ω, (47)

where Ω is an interior domain in the plane. This inverse Cauchy problem of bihar-
monic equation is under an incomplete set of data given by

u(ρ,θ) = h(θ), un(ρ,θ) = g(θ), 0≤ θ ≤ 2βπ. (48)

When β = 1 we recover to the direct problem. Here we let β < 1 and do not use
the overspecified data, such that the present problem is a Cauchy problem with an
incomplete set of given data.

For the purpose of comparison we suppose that the exact solution is

u(x,y) = x3 + y3,
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Figure 6: For example 3, (a) the residual error obtained by SMCA, (b) the control 

force, and (c) comparing the numerical solution with the exact one. 
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Figure 8: For example 4 of an inverse Cauchy problem of biharmonic equation,
comparing the numerical solutions obtained by the SMCA with exact ones.
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and the domain is defined by

ρ(θ) =
√

26−10cos(4θ). (49)

For this example we apply the following Trefftz method [Liu (2008b)] to solve the
inverse Cauchy problem of biharmonic equation:

u(r,θ) = a0 +
m

∑
k=1

[
ak

(
r

R0

)k

coskθ +bk

(
r

R0

)k

sinkθ

]

+ c0r2 +
m

∑
k=1

[
ck

(
r

R0

)k+2

coskθ +dk

(
r

R0

)k+2

sinkθ

]
. (50)

Under the following parameters R0 = 200, m = 20, β = 0.8 and σ = 0.01 we apply
the SMCA to solve this Cauchy problem, of which the results are compared with
the exact solutions in Fig. 8, where v = ∆u. The results obtained by the SMCA are
quite accurate.

5 Conclusions

In order to tackle the problem of the discrepancy of iteration orbit from the invariant
manifold, which causes a slow convergence, in this new invariant-manifold based
theory we introduce a sliding mode control method by adding an extra controller
with the residual vector as being a gain vector into the evolution equation. The
new dynamics is proven to be asymptotically stable towards the zero point of the
residual vector, which means that we can quickly find the real solution of a positive
linear system by the sliding mode control algorithm (SMCA). In several numeri-
cal examples we have observed the sliding behavior with a fast sliding phase, and
by comparing with exact solutions, the SMCA can work very effectively for the
highly ill-conditioned linear equations system under a large noisy perturbation. We
have obtained very accurate solution of the linear Hilbert problem with dimension
n = 500, and the number of iterations is still smaller than 100. For the inverse
problems the SMCA is also effective, although the noise being imposed on the in-
put data is large up to 10%.
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mum α in ẋ = λ [αF+(1−α)BTF]; Bi j = ∂Fi/∂x j. CMES: Computer Modeling
in Engineering & Sciences, vol. 73, pp. 395-431.

Liu, C.-S.; Atluri, S. N. (2011c): Simple "residual-norm" based algorithms, for
the solution of a large system of non-linear algebraic equations, which converge
faster than the Newton’s method. CMES: Computer Modeling in Engineering &
Sciences, vol. 71, pp. 279-304.

Liu, C.-S.; Chang, C. W. (2009): Novel methods for solving severely ill-posed
linear equations system. J. Marine Sci. Tech., vol. 17, pp. 216-227.

Liu, C.-S.; Hong, H. K.; Atluri, S. N. (2010): Novel algorithms based on the
conjugate gradient method for inverting ill-conditioned matrices, and a new regu-
larization method to solve ill-posed linear systems. CMES: Computer Modeling in
Engineering & Sciences, vol. 60, pp. 279-308.



178 Copyright © 2014 Tech Science Press CMC, vol.39, no.2, pp.153-178, 2014

Liu, C.-S.; Yeih, W.; Atluri, S. N. (2009): On solving the ill-conditioned system
Ax = b: general-purpose conditioners obtained from the boundary-collocation so-
lution of the Laplace equation, using Trefftz expansions with multiple length scales.
CMES: Computer Modeling in Engineering & Sciences, vol. 44, pp. 281-311.

Smith, S. T. (1994): Optimization techniques on Riemannian manifolds: Hamilto-
nian and gradient flows, algorithms and control. Fields Inst. Commun., vol. 3, pp.
113-136.

Tikhonov, A. N.; Arsenin, V. Y. (1977): Solutions of Ill-Posed Problems. John-
Wiley & Sons, New York.

Utkin, V. I. (1978): Sliding Modes and Their Application in Variable Structure
Systems. Mir Publishers, Moscow.

Utkin, V. I. (1992): Sliding Modes in Control and Optimization. Springer-Verlag,
New York.

Yang, Y. (2007): Globally convergent optimization algorithms on Riemannian
manifolds: Uniform framework for unconstrained and constrained optimization.
J. Optim. Theory Appl., vol. 132, pp. 245-265.


