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A Stochastic Multi-Scale Model for Prediction of the
Autogenous Shrinkage Deformations of Early-age

Concrete
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Abstract: Autogenous shrinkage is defined as the bulk deformation of a closed,
isothermal, cement-based material system, which is not subjected to external forces.
It is associated with the hydration process of the cement paste. From the viewpoint
of engineering practice, autogenous shrinkage deformations result in an increase of
tensile stresses, which may lead to cracking of early-age concrete. Since concrete
is a multi-phase composite with different material compositions and microscopic
configurations at different scales, autogenous shrinkage does not only depend on
the hydration of the cement paste, but also on the mechanical properties of the
constituents and of their distribution. In this paper, a stochastic multi-scale model
for early-age concrete is presented, which focuses on the prediction of autogenous
shrinkage deformations. In this model, concrete is divided into three different lev-
els according to the requirement of separation of scales. These levels are the ce-
ment paste, the mortar, and the concrete. A specific representative volume element
(RVE) for each scale is described by introducing stochastic parameters. Different s-
cales are linked by means of the asymptotic expansion theory. A set of autogenous
shrinkage experiments on the cement paste, the mortar, and the concrete is con-
ducted and used for validation of the developed multi-scale model. Furthermore,
the influence of the type and the volume fraction of the aggregate on autogenous
shrinkage is studied. Besides, a combined optimum of fine and coarse aggregates
is determined. The analysis results show that the proposed model can effectively
estimate the autogenous shrinkage deformations of concrete at early-age by taking
the influence of the material composition and configuration into consideration.
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model, Asymptotic expansion method.

1 Introduction

In the construction of massive concrete structures, such as dams, immersed tun-
nels, basements, and wharfs, crack control at early-age has been a very important
aspect [Wang (1997); Shen and Xie (2006)]. Cracking of concrete reduces the load-
carrying capacity of the structure; moreover, it may also lead to leakage, corrosion,
and rupture of the reinforcement. This may reduce the durability of structures and
finally cause structural damage. Hence, cracking of concrete has a negative effect
on the service life of structures and ultimately on their safety performance [Ye and
Tian (2013); Min and Jung (2010)].

In order to satisfy the requirements for High Performance Concrete (HPC), such
as low permeability and diffusivity, a low water to binder ratio (w/b) with a large
amount of binder is essential. In concrete with w/b < 0.5, most of the mixed water
remains bound to the binder, which causes a reduction of the specific volume of
water through chemical absorption during hydration. Small pores in the cement
paste gradually develop, and the vapor pressure and the relative humidity decrease
accordingly, without supply of water. Closely related to this change of relative hu-
midity, the cement paste undergoes autogenous shrinkage [Lura and Jensen (2003);
Li and Bao (2010)]. This results in tensile stresses due to internal restraint from
aggregates or external restraint from adjunct elements. When the stresses exceed
the tensile strength, micro or macro cracking will occur. [Holt and Leivo (2006);
Lura and Jensen (2009); Darquennes, Staquet, Marie and Bernard (2011)].

Quantifying the autogenous shrinkage deformations is a prerequisite to the fun-
damental understanding of autogenous shrinkage as well as the development of
numerical models for stress analysis. So far, the main focus of research on auto-
genous shrinkage of cementitious materials has been on the mechanism [Tazawa
and Miyazawa (1998); Zhang, Hou and Wei (2010)] and on its influence factors.
The factors were investigated by means of experiments on the macroscopic scale,
considering the type of cement [Lura, Breugel and Maruyama (2001); Zhutosky,
Kovler and Bentur (2004)], the aggregates [Kohno, Okamoto, Isikawa and Mori
(1999); Idiart, Bisschop, Caballero and Lura (2012)], the admixtures [Lee and Kim
(2006); Yoo, Kwon and Jung (2012)], and external environmental factors [Lura,
Breugel and Maruyama (2001); Gaurav (2012)]. However, such experimental re-
search activities are usually limited to one particular factor, which is not enough to
fully understand autogenous shrinkage.

At present, there are two different ways to measure autogenous deformations of
cement-based materials. One is the volumetric deformation method, and the other
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one is the one-dimensional deformation method [Wang and Li (2013); Barcelo and
Boivin (1999); Bjøntegaard, Hammer and Sellevold (2004)]. For the cement paste
and the mortar, the volumetric deformation method is standardized and well ap-
plied, because it can be measured from the beginning of the set, and it can be easily
operated with high precision. However, for concrete, rigid aggregates may pierce
the rubber bag during molding. Hence, the volumetric deformation method cannot
be applied. Therefore, the one-dimensional deformation method is chosen. How-
ever, so far, there exists no uniform standard test method for autogenous shrinkage
of concrete at early-age. Different researchers have designed different experimen-
tal devices and methods, based on specific research goals and available laboratory
conditions. In tests of autogenous shrinkage, concrete specimens should not on-
ly be sealed to prevent moisture exchange with the surrounding environment, but
also measured without constraints of the deformations. Besides, since autogenous
shrinkage varies strongly at early-age, its measurement should start already at the
formation of the initial structure of concrete. Thus, it is difficult to accurately mea-
sure autogenous shrinkage deformations of concrete at early-age. On that account,
autogenous shrinkage of concrete, as treated in the literature varies enormously,
both in magnitude and direction. Therefore, there is not enough confidence in these
results, allowing them to be used in engineering practice.

For these reasons, several researchers have developed mechanical models for au-
togenous shrinkage of concrete by investigating mechanisms based on the material
composition, the microscopic configuration, the relative humidity and so on [Liu,
Zhao, Deng and Liang (2009); Slowik, Hübner, Schmidt and Villmann (2009)].
Other researchers have fitted data obtained from macroscopic experiments in form
of linear functions, exponential functions, power functions or combinations of such
functions [ACI Committee (2009); Chu, Kwon, Amin and Kim (2012)]. However,
the resulting macroscopic models depend on the available experimental means, i.e.
on macroscopic experiments of concrete. Thus, it is understandable that the range
of application of macroscopic models of autogenous shrinkage is limited.

The main reasons of the aforementioned problems are that, as a kind of multi-
phase composite, concrete consists of cement paste and aggregates. Besides, along
with the hydration reaction of cement, its mechanical behavior shows significant
time variability. Multi-scale mechanics provides a new approach to treat prob-
lems of early-age concrete. It divides concrete into different scales and assumes
that it has different compositions and microscopic configurations at different scales
and that the individual scales can be linked by means of homogenization strate-
gies [Constantinides and Ulm (2004)]. This approach was chosen by several re-
searchers [Pichler, Lackner and Mang (2007); Kar, Ray, Unnikrishnan and Davalos
(2013); Zhang and Hou (2012)], using micro-mechanics of composites. However,
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in these models some assumptions were made to simplify the calculation, which
does not reflect the random configuration of concrete. Since concrete is a typical
non-homogenous composite, autogenous shrinkage of this material does not only
depend on the hydration of the cement paste, but also on the mechanical properties
of the constituents and of their distribution. In order to take these characteristics
into account, multi-inclusion unit cell models have been proposed [Böhm, Han and
Eckschlager (2004); Dong and Atluri (2013)], and some recent works of compu-
tational grains, which significantly reduces the burden of FEM meshing and com-
putation have been published [Dong and Atluri (2012); Dong and Atluri (2013);
Dong and Gamal (2013)]. Asymptotic expansion theory has been proposed as a
calculation method [Cui and Cao (1998)] that is suitable for composite materials of
periodic or random configuration with a high inclusion content. It takes the inter-
action between the inclusions into account [Li and Cui (2005); Liu, Liu, Guan, He
and Yuan (2013); Yu and Cui (2007)].

In this paper, a stochastic multi-scale model for early-age concrete, focusing on the
prediction of autogenous shrinkage deformations, is presented. The scope of the
work is outlined as follows: Concrete is divided into three different levels accord-
ing to the requirement of separation of scales. For each scale, a specific RVE is
defined by introducing stochastic parameters, and the asymptotic expansion theory
is applied for the development of upscaling schemes. A set of contrasting experi-
ments on autogenous shrinkage with respect to the cement paste, the mortar, and the
concrete is conducted and used for validation of the developed model. Besides, the
influence of the type and the volume fraction of aggregates on autogenous shrink-
age of concrete is investigated.

2 Representation

To predict autogenous shrinkage of concrete more accurately, concrete is divided
into three scales below the macro-scale: the concrete scale, the mortar scale, and the
cement paste scale, as shown in Fig. 1, according to the requirement of separation
of scales.

The cement paste is regarded as isotropic and homogenous. Its mechanical param-
eters and autogenous shrinkage are obtained through a standardized test, which is
highly precise from the beginning of the set.

The mortar is considered as a two-phase composite that consists of cement paste as
the matrix and sand as the inclusion. A simple RVE with randomly distributed sand
could be insufficient for providing reliable estimates of the properties of mortar.
Therefore, a series of specific RVEs are proposed. Each of them is assumed to
consist of the matrix and of spherical inclusions, which are non-overlapping and
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Figure 1: Scale division of concrete.

distributed randomly, as shown in Fig. 1. A spherical inclusion is defined by four
parameters: the position of the center, depending on the parameters (yn

1,y
n
2,y

n
3), and

the diameter Dsand . With regard to the specific RVE for mortar, its length, Lmort

, is 1cm, and the diameter of the spheres, Dsand , is 0.25− 1.0mm. It is worth of
mention that (yn

1,y
n
2,y

n
3) and Dsand are uniformly distributed within their own range.

Thus, the RVE is further described with stochastic parameters, which can simulate
the random distribution of sand in the cement paste.

At the concrete scale, the RVE is composed of the homogenized mortar as the
matrix and coarse aggregates as the inclusion. A series of specific RVEs which can
simulate the random distribution of coarse aggregates in the mortar, needs to be
described in the same way as for the mortar scale, as shown in Fig. 1. The size of
the RVEs of the concrete scale, Lconc, is 20cm, and the diameter of the spheres is
5−20mm.

Because of Dsand << Lmort ≤ Daggr << Lconc << L0, where L0 characterizes the
macro-scale, the requirement of separation of scales is satisfied.

3 A stochastic multi-scale model for autogenous shrinkage of concrete

3.1 Governing equations

A point of a homogenous body can be treated as a periodic multiple permutation
of the RVE which is heterogeneous in the asymptotic expansion theory, as shown
in Fig. 2. When the equivalent homogenous body is subjected to external forces,
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its field quantities such as the displacements, the stresses, and the strains, will vary
with the global coordinate x. Because of the great heterogeneity of the local con-
stitution, they will also vary rapidly with the local coordinates y and z. Therefore,
following the multi-scale representation of concrete, the scale factor εconc at the
concrete scale is defined asεconc = ε , where ε denotes the basic scale factor. At the
mortar scale, the scale factorεmort is defined asεmort = ε2. For the sake of simplicity,
the probability distributions wconc and wmort are collectively denoted as w, given
asw = {wconc : y ∈ Y ;wmort : z ∈ Z}.

 
Figure 2: Representation of multi-scale method.

The governing differential equations for determination of the displacements of an
elastic solid Ω subjected to body forces are given as follows :

∂

∂x j

[
Cε

i jkl(x)
(

1
2

(
∂uε

k(x)
∂xl

+
∂uε

l (x)
∂xk

))]
= fi(x), x ∈Ω (1)

where, the body Ω represents the elastic solid, consisting of the homogenized ma-
terial on the macro-scale. uε

i (x) is a component of the displacement vector at point
x and fi(x) is a component of the vector of body forces at this point. Cε

i jkl(x) is
a component of the elasticity tensor of the homogenized material. The boundary
conditions are specified as follows:

uε
i (x) = ūi(x), x ∈ Γu (2)

v jCε
i jkl(x)

1
2

(
∂uε

k(x)
∂xl

+
∂uε

l (x)
∂xk

)
= p̄i(x)p, x ∈ Γp (3)

Γu is the part of the boundary ∂Ω of Ω, on which displacements ūi(x) are speci-
fied, and Γp is the part of the boundary ∂Ω, on which surface tractions p̄i(x) are
specified. Therefore, ∂Ω = Γu +Γp; v j denotes the unit normal vector on Γp.

However, autogenous shrinkage is the term for the bulk deformation of a closed,
isothermal, cement-based material system, which is not subjected to external forces.



A Stochastic Multi-Scale Model 91

Therefore, the body forces and the boundary tractions are equal to zero. Modifying
Eq. 1 for autogenous shrinkage results as

∂

∂x j

[
Cε

i jkl(x)
(

1
2

(
∂uε

k(x)
∂xl

+
∂uε

l (x)
∂xk

)
-εε

kl(x)
)]

= 0, x ∈Ω (4)

where, εε
kl(x) denotes the strain due to autogenous shrinkage. The properties of the

material composition in the RVE can be expressed as

Cε
i jkl(x) =Ci jkl(y,w1) =Ci jkl(y,z,w2) (5)

3.2 Multi-scale analysis

Let x, y, z denote the coordinate systems of the macro scale, the concrete scale and
the mortar scale, respectively. They are related to one another as follows:

y = x/ε; z = y/ε (6)

An asymptotic expansion of uε(x) is performed with the help of the coordinates x,
y and z:

uε(x) = u0(x)+ εu1(x,y,z)+ ε
2u2(x,y,z)+ ... (7)

Differentiation with respect to x is defined as

∂

∂xi
=

∂

∂xi
+ ε
−1 ∂

∂yi
+ ε
−2 ∂

∂ zi
(8)

Substituting Eq.7 and Eq.8 into Eq.4 and lettingε → 0, the coefficient of each term
εn(n =−4,−3,−2,−1) must be zero.

The following partial differential equation is the vanishing coefficient of ε−4:

∂

∂ z j

(
Ci jkl(y,z,w)

∂u0
k

∂ zl

)
= 0 (9)

Since u0 is only a function of x, the above relation is automatically satisfied.

The following partial differential equation represents the vanishing coefficient of
ε−3:

∂

∂y j

(
Ci jkl(y,z,w)

∂u0
k

∂ zl

)
+

∂

∂ z j

(
Ci jkl(y,z,w)

(
∂u0

k
∂yl

+
∂u1

k
∂ zl

))
= 0 (10)

Because u0 is only a function of x, the terms ∂u0
k

/
∂ zl and ∂u0

k

/
∂yl vanish. Thus,

u1 is only a function of x and y, which can be written as follows:

u1
i (x,y) = Nkl

i (y)
∂u0

k
∂xl

(11)
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where, Nkl
i (y) is a coefficient of matrix function defined in the RVE(Y) at the con-

crete scale, which reflects the influence of the local heterogeneity of composites.

Recalling that u0 is only a function of x, and u1 is a only function of x and y, the
partial differential equation representing the vanishing coefficient of ε−2 can be
simplified as follows:

∂

∂ z j

[
Ci jkl(y,z,w)

(
∂u0

k
∂xl

+
∂u1

k
∂yl

+
∂u2

k
∂ zl

)]
= 0 (12)

The term ∂u0
k

/
∂xl is a function of x and the term ∂u1

k

/
∂yl is a function of x and y.

This allows writing u2 as follows:

u2
i (x,y,z) = Mkl

i (z)
(

δkmδln +
∂Nmn

k
∂yl

)
∂u0

m

∂xn
(13)

where Mkl
i (z) is a coefficient of matrix function defined in the RVE (Z) at the mortar

scale. It reflects the influence of the local configuration of the composites. Substi-
tuting Eq.11 and Eq.13 into Eq.12, gives:

Ci jkl(y,z,w)
(

∂u0
k

∂xl
+

∂u1
k

∂yl
+

∂u2
k

∂ zl

)
=Ci jkl(y,z,w)

(
δksδlt +

∂Mst
k

∂ zl

)(
δmsδnt +

∂Nmn
s

∂yt

)
∂u0

m

∂xn

(14)

Substituting Eq.14 into Eq.12 yields the mortar scale equation for the domain Z,
which is the equation for determination of Mkl

i (z):

∂

∂ z j

[
Ci jkl(y,z,w)

(
δksδlt +

∂Mst
k

∂ zl

)]
= 0 (15)

It is seen that Mkl
i (z) only depend on z.

The following simplified partial differential equation represents the vanishing co-
efficient of ε−1:

∂

∂y j

[
Ci jkl(y,z,w)

(
∂u0

k
∂xl

+
∂u1

k
∂yl

+
∂u2

k
∂ zl

)]
+

∂

∂ z j

[
Ci jkl(y,z,w)

(
∂u1

k
∂xl

+
∂u2

k
∂yl

+
∂u3

k
∂ zl

)]
= 0

(16)

The volume average of quantities for the mortar scale domain Z is defined as

〈•〉2 =
1
|Z|

∫
Z

•dz (17)
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Substitution of Eq.14 into Eq.16 and use of Eq.17 yields the following equation for
determination of Nkl

i (y) in the RVE (Y) at the concrete scale:

∂

∂y j

[
CH1

i jst(y,w)
(

δmsδnt +
∂Nmn

s

∂yt

)]
= 0 (18)

where CH1
i jst(y,w) is a component of the elasticity tensor of the homogenized mortar,

which is given as

CH1
i jst(y,w) =

1
|Z|

∫
Z

Ci jkl(y,z,w)
(

δksδlt +
∂Mst

k
∂ zl

)
dz (19)

Thus, Nkl
i (y) can be obtained from Eq.18, making use of Eq.19.

The following partial differential equation represents the vanishing coefficient of
ε0:

∂

∂x j

[
Ci jkl(y,z,w)

(
∂u0

k
∂xl

+
∂u1

k
∂yl

+
∂u2

k
∂ zl

)]
+

∂

∂y j

[
Ci jkl(y,z,w)

(
∂u1

k
∂xl

+
∂u2

k
∂yl

+
∂u3

k
∂ zl

)]
+

∂

∂ z j

(
Ci jkl(y,z,w)

(
∂u2

k
∂xl

+
∂u3

k
∂yl

+
∂u4

k
∂ zl

))
− ∂

∂x j

(
Ci jkl(y,z,w)ε0

kl(x)
)
= 0

(20)

The volume average of quantities for the mortar scale domain Y is defined as

〈•〉1 =
1
|Y |

∫
Y

•dy (21)

Substitution of Eq.14 into Eq.20 with the help of Eq.17 and Eq.21 yields the fol-
lowing control equation for the concrete scale:

∂

∂x j

[
CH

i jkl(w)
(

∂u0
k

∂xl
− ε

0
kl

)]
= 0 (22)

where, CH
i jkl(w) is a component of the elasticity tensor of the homogenized the

concrete scale, denoted as

CH
i jkl(w) =

1
|Y |

∫
Y

CH1
i jst(y,w)

(
δksδlt +

∂Nkl
s

∂yt

)
dy (23)

Lettingε → 0, the strain field in the mortar scale domain Z can be expressed as

ε
2
kl =

1
2

(
∂u0

k
∂xl

+
∂u0

l
∂xk

+
∂u1

k
∂yl

+
∂u1

l
∂yk

+
∂u2

k
∂ zl

+
∂u2

l
∂ zk

)
(24)
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Having obtained N(y) and M(z) by solving Eq.15, Eq.18, and Eq.19; u1 and u2 can
be obtained according to Eq.11 and Eq.13 respectively. Substituting u1 and u2 into
Eq.24 gives

ε
2
kl =

1
2

(
∂u0

k
∂xl

+
∂u0

l
∂xk

)
+

1
2

∂u0
m

∂xn

[(
δpmδqn +

∂Nmn
p

∂yq

)(
∂Mpq

k
∂ zl

+
∂Mpq

l
∂ zk

)
+

(
∂Nmn

k
∂yl

+
∂Nmn

l
∂yk

)] (25)

where the strains of the matrix in the domain Z are the strains of the cement paste
εc−p. They can be obtained from tests, which can be operated easily, and they
provide results of high precision. Thus, the homogenized displacement field u0

can be computed, followed by determination of u1 and u2. The strain field in the
concrete scale domain Y is then defined as follows:

ε
1
kl =

1
2

(
∂u0

k
∂xl

+
∂u0

l
∂xk

+
∂u1

k
∂yl

+
∂u1

l
∂yk

)
(26)

Substitution of Eq.11 into Eq.26 gives

ε
1
kl =

1
2

(
∂u0

k
∂xl

+
∂u0

l
∂xk

)
+

1
2

∂u0
m

∂xn

(
∂Nmn

k
∂yl

+
∂Nmn

l
∂yk

)
(27)

where, the strains of the matrix in the domain Y are the strains of the homogenized
mortar, εεεmort . Substitution of u0 into Eq.22 and use of Eq.23, the homogenized
strains εεε0 of the macro-scale, caused by autogenous shrinkage, are obtained.

4 Analysis procedure

4.1 Computation of homogenized autogenous shrinkage

According to the RVE the mortar and the concrete scale, different inclusions, such
as sand and coarse aggregates, have different size and positions in different sam-
ples. From the multi-scale Eq.19 and Eq.23, it can be seen that this configura-
tion has an influence on the stiffness of concrete, which also means on autogenous
shrinkage. Thus, as was mentioned in the context of the description of mortar and
concrete scale, the characteristics of the homogenized concrete, can be evaluated
by means of the proposed multi-scale model.

• Based on the statistical characteristics of mortar scale, for a random distribu-
tion ws,mort , a sample is generated. Then, Eq.15 is solved in RVE (Z) to ob-
tain M(z,ws,mort). Thereafter, the homogenized elastic tensor CH1(y,ws,mort),
corresponding to sample ws,mort , is computed by means of Eq.19.
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• Analogous to ahead, for a random distribution ws,conc at the concrete scale, a
sample is generated. Then, Eq.18 is solved in RVE (Y) to obtain N(y,ws,conc).
Thereafter, the homogenized elastic tensor CH(x,ws,mort ,ws,conc), correspond-
ing to sample ws,conc, is computed by means of Eq.23.

• Substitute N(y,ws,conc) and M(z,ws,mort) into Eq.11 and Eq.13, the strain
field εεε2(z,ws,mort) in the domain Z at the mortar scale as a function of u0(x,
ws,mort ,ws,conc) is determined with the help of Eq.25. The strains of the ma-
trix are the strains of cement paste εεεc−p; thus, u0(x,ws,mort ,ws,conc) is com-
puted, followed by u1(y,ws,conc) and u2(z,ws,mort).

• Compute the homogenized strains εεε0(x,ws,mort ,ws,conc) of the concrete, caused
by autogenous shrinkage, by substituting u0(x,ws,mort ,ws,conc) into Eq. 22-
24.

• Following the generation of T samples with random distributions ws={ws,conc:
y ∈ Y ;ws,mort : z ∈ Z}, s = 1,2...T , and Based on the Kolmogorov’s strong
law of large numbers, the strains representing the homogenized material can
be computed by means of the equation:

ε̄εε(x) =

T
∑

s=1
εεε0(x,ws,mort ,ws,conc)

T
, T → ∞ (28)

4.2 Flowchart of multi-scale algorithm

The flowchart of the algorithm for the proposed stochastic multi-scale method for
prediction of the autogenous shrinkage of concrete is given as follows:

5 Model validation

The main purpose of this Chapter is to validate the capability of the proposed mul-
tiscale technique to predict autogenous shrinkage of early-age concrete by means
of upscaling from the cement paste scale. Thus, a set of tests for autogenous defor-
mations of the cement paste, the mortar, and the concrete was conducted and used
for validation at the mortar and the concrete scale.

5.1 Validation experiments on the cement paste, the mortar, and the concrete

5.1.1 Materials and mix design

OPC (Ordinary Portland Cement) was used as a cementitious material. The chem-
ical composition and the physical properties of cementitious materials are given
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Table 1: Flowchart for computing the autogenous shrinkage of concrete.
Input Ec−p, vc−p; Esand , vsand ; diameter distribution of sand, Dsand ;

volume fraction of sand, fsand ; Eaggr, vaggr; diameter dis-
tribution of coarse aggregate, Daggr; volume fraction of the
coarse aggregate, faggr; autogenous shrinkage of cement paste
achieved from test εc−p

Mortar scale
(1) Generate a sample REV (Z) with a random distribution ws,mort ,

which consists of cement paste as the matrix and randomly dis-
tributed sphere which simulate the sand inclusions, as shown in
Fig. 1; establish a finite element model for the REV (Z), con-
sisting of tetrahedron elements with 10-nodes, as shown in Fig.
8

(2) Compute M(z) in REV (Z) by solving Eq.15, and evaluate the
elasticity tensor CH1

i jst(y,w) of the homogenized mortar from E-
q.19

Concrete scale

(3) Generate a sample REV (Y) with a random distribution ws,conc,
which consists of the homogenized mortar as the matrix and
randomly distributed sphere which simulate sand inclusion,
as shown in Fig. 1; establish a finite element model for the
REV (Y), consisting of tetrahedron elements with 10-nodes, as
shown in Fig. 8

(4) Compute N(y) in REV Y by solving Eq.18, and evaluate the
elasticity tensor CH

i jst(y,w) of the homogenized the concrete s-
cale from Eq.23

(5) Compute u0 with the help of Eq.25, where the strains of the
matrix are the strains of cement paste εc−p

(6) Compute the strain field εεε1 in the domain Y at the concrete
scale with the help of Eq.27 and Eq.28

Macro-scale
(7) Compute the homogenized strains εεε0 of the concrete by substi-

tuting u0 into Eq. 22-24.
(8) Based on Kolmogorov’s strong law of large numbers, the s-

trains of the homogenized material can be computed Eq.28.
Output CH1

i jst(y,w), CH
i jst(y,w), εεεmort , ε̄εε(x)

in Tab. 2. Graded and crushed limestone, 5-20mm, with a maximum of 20mm,
conforming to ASTM C33 (Standard Specification for Concrete Aggregates), were
used as coarse aggregates, whereas graded river sand, 0.25-1.0mm with a maxi-
mum size of 1.0mm, conforming to ASTM C33, was used as a fine aggregate. The
physical properties of the aggregates are given in Tab. 3. A commercially available
high-range water reducing admixture (HRWRA), conforming to ASTM C494 Type
F (Specification for Chemical Admixtures for Concrete), was used in this study.
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Table 2: Chemical composition and physical properties of cement.
Item Blaine Specific gravity Chemical composition (%)

(cm2/g) (g/cm3) SiO2 Al2O3 Fe2O3 CaO MgO SO3
OPC 3413 3.15 21.01 6.40 3.12 61.33 3.02 2.14

Table 3: Physical properties of aggregates.
Item Specific gravity

(g/cm3)
Fineness
modulus

Water
absorption (%)

Volumetric
weight (kg/m3)

River sand 2.67 2.60 1.83 1422
Coarse aggregate 2.63 6.87 0.63 1429

The mixture proportioning of the cement paste, the mortar, and the concrete are
shown in Tab. 4, Tab. 5, and Tab. 6, respectively. Except for the graded river sand
that has been added, the mortar has the same composition as the corresponding net
cement paste, including the amount of HRWRA. Also, the concrete has the same
composition as the corresponding mortar except for the addition of graded and
crushed limestone as coarse aggregates. It is worth of mention that a contrasting test
with different volume fractions of coarse aggregates was included in the concrete
series. The percentage in brackets refers to the volume fraction.

Table 4: Mix design of the cement paste (g).

Serial number w/c Cement Water HRWRA
P1 0.3 400 120 4

Table 5: Mix design of the mortar (g).

Serial number w/c Cement Water Sand HRWRA
M1 0.3 400 120 900 (40%) 4

5.1.2 Specimen preparation and test method

For the cement paste and the mortar, a test method conforming to ASTM C1698-
09 (Standard Test Method for Autogenous Strain of Cement Paste and Mortar) was
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Table 6: Mix design of the concrete (kg/m3).
Serial number w/c Cement Water Sand Coarse agg. HRWEA

C1 0.3 390 117 876 (40%) 1018 (40%) 5
C2 0.3 390 117 876 (40%) 822 (35%) 5
C3 0.3 390 117 876 (40%) 655 (30%) 5

chosen. The cement paste (P1) and the mortar (M1) were freshly mixed according
to ASTM C305 (Practice for Mechanical Mixing of Hydraulic Cement Pastes and
Mortars of Plastic Consistency). Three specimens of each mixture proportion were
prepared, using a corrugated mold which is sealed to prevent moisture loss. It offers
little resistance to a length change of the specimen, as shown in Fig. 3. The length
of the specimen was measured, using a dial gauge at regular time intervals until the
designed age. The change in length and the original length of the specimen were
used to compute the autogenous strain.

 

Figure 3: Corrugated mold and measure device for the cement paste and the mortar.

For the concrete, the ingredients were mixed in the laboratory, conforming to AST-
M C192/192M (Standard Practice for Making and Curing Concrete Test Specimens
in the Laboratory). A few steel probes were embedded in the concrete, penetrating
the hole at the ends of the steel mold of 100 mm×100 mm×515 mm. A teflon sheet
of 1 mm thickness was placed on the bottom of the mold for free movement of the
specimen. Then, for each mixture proportion, three identical prismatic specimens
were cast in the specific steel mold and subjected to full vibration on the vibration
table. At last, all specimens were covered with a polyester film of 0.1mm thick-
ness to avoid evaporation and absorption of outside moisture, as shown in Fig. 4.
After removal of the steel mold, 12 hours after mixing, all specimens were stored
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at a control condition set by a temperature of 20±2◦C and a relative humidity of
90±5%. The dial gauge and a support were used as a measuring instrument, as
shown in Fig. 4.

               

    (a) Specimens of the concrete             (b) Measure device of the concrete 

 Figure 4: Specimens and measure device of the concrete.

The test method for the cement paste and the mortar, conforming to ASTM C1698-
09, can measure the autogenous deformations from the time of final setting. For
the concrete, however, the first measurement was only carried out after removal of
the mold, 12 hours after mixing, when the steel probes embedded in the concrete
were sufficiently stable and the molds were easy to be removed without damage to
the specimens. Thus, considering the purpose of these contrasting tests at different
scales, the measurement at 12 hours after mixing was taken as the relative zero
point.

The average of the experimental values, obtained from two identical specimens of
the size 25 mm×25 mm×100 mm, was taken to determine the elastic modulus
of the cement paste and the mortar in accordance with ASTM C469 (Standard
Test Method for Static Modulus of Elasticity and Poisson Ratio of Concrete in
Compression).

5.1.3 Results and discussion

From the values of length change, the free shrinkage strains are computed at 1, 3,
5, 7, 14 and 28 days, in terms of microstrain for each individual mix.

Fig. 5 shows the autogenous shrinkage of the cement paste, the mortar, and con-
crete C1 as a function of time. It is obvious that autogenous shrinkage of the cement
paste, the mortar, and the concrete decreases in consequence of the addition of sand
and coarse aggregates, which restrain the deformation of the cement paste. At 28
days, autogenous shrinkage of the cement paste, the mortar, and of concrete C1
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Figure 5: Autogenous shrinkage of the cement paste, the mortar and the concrete
C1.

were 963×10−6, 475×10−6 and 226×10−6, respectively. However, the evolution
of autogenous shrinkage of these three materials is similar. During the first day,
there was a rapid increase of autogenous shrinkage, then its rate was decreasing be-
tween one day and seven days, and at about 14 days, it became almost zero. Thus,
it can be concluded that autogenous shrinkage occurs mainly during the first sev-
en days, after which it has reached 89.7%, 83.2%, and 89.4%, respectively, of the
total autogenous shrinkage. This fact can be explained by the mechanism of auto-
genous shrinkage, which is associated with the reduction of the internal volume of
the cement/water mixture caused by the hydration process [Zhang, Hou and Wei
(2010)]. It is well known that the stress state in the liquid phase follows the law
of surface tension: the smaller the pore size, the larger the pressure difference at
the interface between the liquid and the gaseous phase [Pichler, Lackner and Mang
(2007)]. Therefore, as the degree of liquid saturation decreases, the location of this
interface moves into smaller pores, resulting in an increase of capillary depression
in the liquid phase. This causes a contraction of the solid phase, which is macro-
scopically observable as autogenous shrinkage [Lura and Jensen (2003)]. Along
with the growth of age, the hydration rate decreases, resulting in a slower increase
of autogenous shrinkage.
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Figure 6: Autogenous shrinkage of the concrete C1, C2 and C3.

 Figure 7: Elastic modulus of the cement paste and the mortar.
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Fig. 6 refers to autogenous shrinkage of the concrete C1, C2, and C3, charac-
terized by different volume fractions of coarse aggregates. It is seen that autoge-
nous shrinkage decreases with increasing volume fraction of the aggregate. At 28
days, autogenous shrinkage of concrete C1 (40%), C2 (35%), and C3 (30%) was
226×10−6, 265×10−6 and 316×10−6, respectively. The trend of the development
of autogenous shrinkage is the same for C1, C2, and C3. The main reason for this
is the internal restraint between the randomly distributed aggregates and the mortar
matrix, resulting in restrained deformations of the matrix. Thus, the larger the vol-
ume fraction of the coarse aggregate, the smaller the shrinkage of the corresponding
concrete.

Fig. 7 shows the elastic modulus of the cement paste and of the mortar as a function
of age. During the first three days, the elastic modulus of both the cement paste and
the mortar increases significantly. It may reach about 85% of the values at 28
days. As regards Fig. 7, the value of the elastic modulus at 3 days and 28 days,
respectively, are 19.1 GPa and 23.1 Gpa for the cement paste, and 30.5 GPa and
33.8 GPa for the mortar. The reason for the higher values of the elastic modulus for
the mortar than for the cement paste is the addition of sand.

5.2 Comparison of model predictions with experimental results

As mentioned above, the evaluation of autogenous shrinkage of early-age concrete
was based on the following main assumptions: (a) concrete was considered as a
three-scale composite medium, composed of cement paste and sand at the mortar
scale, of homogenized mortar and coarse aggregate at the concrete scale, and of a
homogenized isotropic continuum at the macro-scale; (b) the heterogenous mortar
scale and the concrete scale were modeled by periodic RVEs.

The multi-scale formulation described in Chapter 3 was implemented with the help
of the finite element method. Typical finite element meshes employed in the present
study are shown in Fig. 8. The length of the RVE at the mortar scale is 1cm, while
the length of the RVE at the concrete scale is 20cm.

The predictive capacity of the model was determined by calculating autogenous
shrinkage and comparing the results with experimentally obtained corresponding
values at the mortar and the concrete scale, as shown in Fig. 9 and Fig. 10. It is
seen that the numerical the results from the proposed model are slightly smaller
than results from the experiment. On the one hand, this is a consequence of a se-
ries of simplifying assumptions, one of which is that the mortar and the concrete
are regarded as inclusions dispersed in the homogenous matrix, with perfect bond
between them. Moreover, the influence of micro-cracking on the stiffness is dis-
regarded. On the other hand, the movement of the specimens during the test and
drying shrinkage caused by a non-ideal test environment may result in a measure-
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               (a) The concrete scale                                (b) The mortar scale 

 Figure 8: The finite element discretization of REV by means of tetrahedral.

 Figure 9: Comparison between test and multiscale model for the mortar.

ment error. Thus, taking all of these factors into consideration, it is fair to say that
good agreement between the numerical predictions and the experimental data was
obtained in this study, with a correlation coefficient of up to R2 = 94.59%. Thus, it
may be concluded that the proposed model is quite effective.
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              (a) Comparison for C1                                       (b) Comparison for C2 

      
               (c) Comparison for C3                                      (d) Correlation analysis 

 
Figure 10: Comparison between test and multiscale model for the concrete C1, C2
and C3.

6 Discussion

This Chapter, contains a report on the influence of the type of the aggregate, includ-
ing coarse and fine aggregates. This influence was investigated by a cross-scale s-
tudy on upscaleing of autogenous shrinkage from the cement paste scale. For coarse
aggregates, for the purpose of a comparison, crushed and graded siliceous aggre-
gate (quartzite), igneous aggregate (granite), and calcareous aggregate (limestone)
were chosen, whereas for fine aggregates, river sand, manufactured lime sand, and
manufactured granite sand were selected. The modulus of elasticity and Poisson’s
ratio are given in Tab. 7 [Chang and Zhang (2007)].

Fig. 11 shows a comparison of autogenous shrinkage of concrete with river sand
as fine aggregate and different kinds of coarse aggregates. Firstly, the development
of autogenous shrinkage is similar for these three coarse aggregates, and secondly,
autogenous shrinkage of concrete with calcareous aggregates (limestone) is obvi-
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Table 7: Mechanical properties of coarse aggregate.

Type E (GPa) Poisson’s ratio
Quartzite 27.9-69.3 0.17-0.36
Granite 24.8-61.1 0.12-0.27

limestone 29.4-84.2 0.18-0.35

 Figure 11: Autogenous shrinkage of concrete with different kinds of coarse aggre-
gates.

ously smaller than that of concrete with igneous aggregates (granite). For concrete
with siliceous aggregates (quartzite), autogenous shrinkage falls in between auto-
genous shrinkage of concrete with the other two aggregates. At 28 days, autoge-
nous shrinkage of concrete with limestone aggregates, quartzite aggregates, and
granite aggregates is 250×10−6, 282×10−6, and 320×10−6, respectively. After
gradual stabilization at later ages, autogenous shrinkage of concrete with limestone
decreases by 43.4% relative to the mortar matrix. The corresponding reductions
for concrete with quartzite and granite are 36.2% and 27.6%, respectively. This
phenomenon can be explained by the configuration and the properties of the con-
stituents. The only variable in this comparison is the modulus of elasticity. The
higher the elastic modulus of the coarse aggregates, the higher is the elastic modu-
lus of concrete and the stronger is the restraint on the deformations of the matrix,
which, macroscopically, results in smaller autogenous shrinkage of concrete.
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Figure 12: Autogenous shrinkage of concrete with different kinds of fine aggre-
gates.

Fig. 12 shows a comparison of autogenous shrinkage of concrete for different
kinds of fine aggregates and the same coarse aggregate (limestone). Firstly, it is
seen that autogenous shrinkage of concrete with manufactured lime sand is smaller
than that of concrete with manufactured granite sand, while for concrete with river
sand it falls between the other two. This situation is similar to the one shown in
Fig. 11. The reason for this is that the main composition of river sand is quartz
and that manufactured lime and granite sand are obtained by means of crushing
of limestone and granite, respectively. Thus, their mechanical properties are the
same as the ones of the coarse aggregates. Secondly, the difference in autogenous
shrinkage for different kinds of fine aggregates is greater than the one for different
kinds of coarse aggregates, as follows from a comparison of Fig. 12 with Fig. 11.
This can be explained by the grain sizes of the aggregates. The maximum size
of river sand is 1mm, the one of manufactured lime and granite sand is 4.75mm,
whereas the one of coarse aggregates is 20mm. That is to say, the specific surface
area of fine aggregates is larger than that of coarse aggregates, which results in
a stronger constraint of the matrix. Therefore, the difference between different
aggregates is amplified.

Fig. 13 refers to the combined optimum of fine and coarse aggregates for autoge-
nous shrinkage at 28 days. It is seen that the smallest value is obtained for man-
ufactured lime sand with limestone coarse aggregates as 199×10−6. Then comes
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Figure 13: Combinatorial optimization of fine and coarse aggregate.

manufactured lime sand with quartz coarse aggregates as 236×10−6. If these two
combinations are not available, river sand with limestone coarse aggregates and
manufactured granite sand with quartz coarse aggregates are reasonable substitu-
tions. Thus, it can be concluded from the above discussion that the type of the ag-
gregate has an important influence on autogenous shrinkage of concrete. Crushed
and graded manufactured lime sand with limestone coarse aggregates appear to be
the best choice for engineering practice in order to reduce autogenous shrinkage.

7 Summary and Conclusions

In this research, a stochastic multiscale model for cement-based materials, focusing
on the prediction of autogenous shrinkage, was presented. This model accounts for
the hydration process of cement and the random distribution of aggregates. In addi-
tion to the formulation of the underlying multiscale framework, including represen-
tation of the division of scales, a specific RVE was established and the appropriate
upscaling schemes, based on asymptotic expansion theory, were presented. Exper-
imental results were obtained from a set of tests considering autogenous deforma-
tions of the cement paste, the mortar, and the concrete. They were used to validate
the predictive capability of the developed numerical model. Finally, macroscopic
autogenous shrinkage, obtained from upscaling from the cement paste scale, was
investigated; different kinds of aggregates were chosen to study the influence of
these kinds and of the volume fractions. Finally, the combined optimum of fine and
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coarse aggregates was determined. The following conclusions can be drawn:

• By means of comparing the model predictions with experimental results, the
proposed model was validated successfully.

• Autogenous shrinkage occurs mainly during the first seven days, where about
80% of autogenous shrinkage at 28 days may be reached. Autogenous shrink-
age is clearly tied to the hydration process.

• Autogenous shrinkage of the cement paste, the mortar, and the concrete de-
creases in case of adding sand and coarse aggregates. This results in a re-
straint of the deformation of the cement paste. The larger the volume fraction
of coarse aggregates, the smaller the shrinkage of corresponding concrete
will be.

• The type of the aggregate has a great influence on autogenous shrinkage of
concrete. Crushed and graded manufactured lime sand with limestone coarse
aggregate are found to be the best choice to reduce autogenous shrinkage.

In the proposed model, the mechanical properties and autogenous shrinkage of
cement paste are obtained directly from experiments, which are standardized and
highly precise from the beginning of the set. Thus, the described cross-scale re-
search from the cement paste to the macro structure of concrete avoids non-standar-
dized, highly specialized tests of concrete, including the embarrassing specification
of the starting time. Moreover, performance-based optimization of cement-based
materials becomes possible. Improvements of the model as regards treatment of
cement hydration which will focus on the mixture characteristics and the cement
chemistry are topics of ongoing research.
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