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A Novel Approach to Identify the Thermal Conductivities
of a Thin Anisotropic Medium by the Boundary Element

Method

Y.C. Shiah1, Y.M. Lee2 and T.C. Huang2

Abstract: A common difficulty arises in characterizing the anisotropic proper-
ties of a thin sheet of anisotropic material, especially in the transverse direction.
This difficulty is even more phenomenal for measuring its mechanical properties
on account of its thickness. As the prelude of such investigation, this paper pro-
poses a novel approach to identify the thermal conductivities of an unknown thin
layer of anisotropic material. For this purpose, the unknown layer is sandwiched in
isotropic materials with known conductivities. Prescribing proper boundary condi-
tions, one may easily measure temperature data on a few sample boundary points.
Therefore, the anisotropic thermal conductivities can be calculated inversely. For
the inverse analysis, the boundary element method (BEM) is employed to combine
with the conjugate gradient method (CGM). For verifying our analysis, numerical
experiments were carried out. The obtained results have shown great computa-
tional efficiency and accuracy in identifying the thermal conductivities of the thin
anisotropic layer.

Keywords: Thermal conductivities, thin anisotropic layer, boundary elemen-
t method, conjugate gradient method.

1 Introduction

Since the 1970s’, anisotropic materials have been extensively applied in engineer-
ing for various purposes. With the rapid evolvement of nanotechnologies, new
materials have been developed using carbon nanotubes (CNTs), whose thickness
is approximately 50,000 times thinner than a human hair. Due to their extraordi-
nary thermal conductivity and mechanical properties, CNTs find applications as
additives to various applications. Very recently, the study of buckypaper, a thin
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sheet originally fabricated to handle CNTs, has attracted significant research [e.g.
Wang et al (2004); Biercuk et al (2002); Schadler et al (1998); Ajayan et al (2000);
Lozano et al (2001); Rosen and Jin (2002)] owing to its promise in various appli-
cations, such as armors, next-generation electronics and displays, etc. However,
the experimental study of its properties has been only limited to the in-plane char-
acteristics due to the difficulty of measuring data in the transverse direction. For
any other thin anisotropic medium, this difficulty always exists, especially for the
properties associated with cross-terms. The simplest way to avoid this would be
to assume transversely isotropy, where the cross-terms disappear; however, this
simplification would introduce errors to a certain degree.

In this paper, an inverse analysis based on the BEM is proposed to serve as an aux-
iliary means for measuring the thermal conductivities of an ultra-thin anisotropic
medium. Basically, the idea is to sandwich the unknown anisotropic medium as the
core (Fig.1) between isotropic materials with known conductivities.
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Figure 1: An integrated composite subjected to a heat flux.

For the ease of analysis, the top and bottom sandwiching materials are chosen to
be the same. With proper boundary conditions specified, the generally anisotropic
conductivities of the core layer are inversely determined by the temperature data
measured in the neighborhood of the sandwiched medium. For the present inverse
analysis, the boundary element method is employed. In contrast with the domain
solution techniques such as the finite element method (FEM) and the finite differ-
ence method, the BEM is renowned for its distinctive feature that only the boundary
needs to be modeled. This feature is especially ideal for the inverse analysis since
only boundary data can be measured from experiments. Early inverse analysis may
be traced back to treat problems of thermal conduction by Shumakov (1957). Since
then, the inverse study on the thermal conduction problems has been extensively
applied to various identifications of initial conditions, boundary conditions, geo-
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metric parameters, and heat sources, etc. Among these works, Sparrow et al (1964)
studied the inverse problem of transient heat conduction by applying the technique
of Laplace Transform and the Integral method. After that, lots of works have been
published for the inverse analysis of thermal problems. To name a few as exam-
ples, Alifanov (1974) introduced a concept of iteration by gradients for inversely
analyzing the heat conduction problem. Based on the perturbation principle, the
CGM has been widely applied to various inverse problems [Huang and Wu (1995a,
1995b); Huang and Yan (1995)]. As aforementioned, owing to its distinctive notion
of boundary discretization, it is beneficial to apply the BEM to inverse problems
[e.g. Martin and Dulikavich (1998); Hematiyan et al (2012)]. For this, the inverse
analysis based on the BEM has been rapidly growing in recent decades, especially
for problems of thermal conduction. For example, Pasquetti and Petit (1994) made
use of the time-dependence with space to inversely investigate the transient tem-
perature field at corners using the BEM. Mellings and Aliabadi (1993) employed
the Dual boundary element for studying inverse potential problems in crack iden-
tification. Wei and Li (2009) used the approach of generalized cross validation to
perform an inverse analysis of heat conduction in multilayer domain. Using the
BEM and the singular value decomposition, Lagier et al (2004) presented a nu-
merical solution to the linear multidimensional unsteady inverse heat conduction
problem. There are too many to mention all as a complete review for the works on
the BEM’s applications in various inverse analyses pertinent to thermal conduction.
For more references as examples, one may refer to references [Pasquetti and Petit
(1994); Zed et al (2000); Singh and Tanaka (2001); Hon and Wei (2004); Sladek et
al (2006); Dong et al (2007); Onyango et al (2009); Movahedian et al (2013)].

As the prelude for the inverse analysis of 3D anisotropic elasticity [Shiah et al
(2012)], the present work is to identify the thermal conductivities of an ultra-thin
layer of 2D generally anisotropic medium by the inverse analysis of CGM based
on the BEM. For facilitating experimental setups to measure temperature data, the
ultra-thin layer is sandwiched in isotropic materials (e.g. epoxy resin on both sides)
as an integrated multi-domain. As has been reported in the BEM literature, near-
singularities will appear in the integral equation for treating the ultra-thin layer.
Very recently, the leading author has applied the scheme of integration by parts to
regularize the boundary integrals for 3D anisotropic heat conduction [Shiah et al
(2013)]. The present work employs the scheme of integration by parts (IBP) [Shiah
and Shi (2006)] for modeling the thin layer and employs the direct domain mapping
technique [Shiah and Tan (1997)] to treat its anisotropy. For the inverse analysis,
the CGM is applied, where the temperature field on the boundary near the core is
provided as the target function to be satisfied. For verification, numerical examples
are provided at the end.
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2 BEM treatment of the heat conduction

For elucidating how the BEM is applied to the inverse analysis, a brief review of the
fundamentals is provided fist. As shown in Fig.1, consider an integrated composite
consisting of three layers- two face layers of the same isotropic material on its top
and bottom plus one thin anisotropic layer sandwiched between as the core. For the
generally anisotropic layer in 2D, the governing Euler’s equation is written as

Ki jT,i j = 0 , (i, j = 1, 2) (1)

where, T stands for the temperature change, and Kij are the thermal conductivities
coefficients defined in the x1-x2 coordinate system. From thermodynamic consid-
erations and Onsagar’s reciprocity relation, the coefficients Kij must satisfy

K11 > 0 , K22 > 0 , K12 = K21 , K11K22−K2
12 > 0 (2)

The analysis can be significantly simplified in the case of orthotropy, where the
cross-derivative terms are absent. As a result, a commonly adopted approach to
numerically treat the fully anisotropic problem is, first, to determine the principal
axes (ζ1, ζ2) by rotating the original Cartesian axes such that the cross-derivative
terms will disappear. Another attractive approach to treat the anisotropic problem
is to employ a coordinate transformation such that T in the transformed domain
is governed by the standard Laplace’s equation. This was studied analytically by
but with limited success. The difficulties in this analytical approach are due to
the complexities that stem from the distorted boundary in the mapped plane. In
their efforts to formulate an exact transformation of the volume integral associated
with the thermal effects into surface integrals for plane anisotropic thermoelasticity
in BEM, Shiah and Tan (1997) also developed a similar transformation and ap-
plied it to numerically treat the two-dimensional anisotropic problem in the BEM
field theory. The main advantage of such BEM treatment lies in the fact that the
anisotropic field problem can be easily solved using any readily available BEM
codes for ‘isotropic’ potential theory with relatively minor program modifications.
The linear transformation/inverse transformation takes the following form,

[x̂1 x̂2]
T = [F(Ki j)] [x1 x2]

T , [x1 x2]
T =

[
F−1(Ki j)

]
[x̂1 x̂2]

T (3)

where [F(Ki j)] is the transformation (and [F−1(Ki j)] the inverse transformation)
matrix, given by

F =

( √
∆/K11 0
−K12/K11 1

)
, F−1 =

(
K11/
√

∆ 0
K12/
√

∆ 1

)
, ∆ = K11K22−K2

12

(4)
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With this transformation, the anisotropic field is now governed by the standard
Laplace’s equation T,ii = 0, where the underline denotes the new coordinate system
(x̂1 , x̂2). As is well established in the BEM literature for isotropic field problems,
the temperature change T and its normal gradient q = dT/dn are related by

C(P)T (P) =
∫

S
q(Q)T ∗(P,Q)dS(Q) −

∫
S

T (Q)Q∗(P,Q)dS(Q) (5)

where P and Q are the source and field points on the boundary, respectively, C(P)
are coefficients dependent of the geometry at the source point, and T∗(P,Q) and
Q∗(P,Q) represent the fundamental solutions for the temperature and its normal
gradient, given by

T ∗(P,Q) =
1

2π
ln

1
r

, Q∗(P,Q) =
−1
2πr

dr
dn

(6)

In Eq.(6), r is the distance between the source point P and the field point Q on
the element under integration. To numerically solve the boundary integral equa-
tion (BIE) of Eq.(5), the boundary surface is discretised into a number of segments
or elements, say M elements, with a total of N nodes. Following the usual inter-
polation process for n-order elements, one may have nodal values of coordinates,
temperature, and temperature gradients expressed in terms of the local coordinate
ξ ∈ [−1,1] as

x j(ξ ) =
n

∑
c=1

Nc(ξ ) xc
j , T (ξ ) =

n

∑
c=1

Nc(ξ ) T c , q(ξ ) =
n

∑
c=1

Nc(ξ ) qc (7)

where Nc are the shape functions whose quadratic forms are expressed as

N1(ξ ) =−ξ (1−ξ )/2 , N2(ξ ) = (1−ξ
2) , N3(ξ ) = ξ (1+ξ )/2 (8)

In convenience of later derivations, the quadratic shape function can be expressed
as

Nc(ξ ) = α
c
ξ

2 +β
c
ξ + γ

c (9)

where αc, β c, γcare constant coefficients. Substitution of Eqs.(6), (7) into Eq.(1)
results in the discretised BIE form,

C(Pa)T (Pa) =
M

∑
b=1

n

∑
c=1

bqc
∫ 1

−1

1
2π

ln
1
br

Nc(ξ )J(ξ )dξ

−
M

∑
b=1

n

∑
c=1

bT c
∫ 1

−1

−1
2πbr

dbr
dn

Nc(ξ )J(ξ )dξ

, (Pa = 1, ...,N) (10)
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where the superscript a represents the a-th global node of the boundary mesh, b
denotes the b-th element, and c is c-th node of the element. Also in Eq.(10), J(ξ )
is the Jacobian transformation of the path from the global coordinates to the local
coordinate ξ . Sequentially, the collocation process via Eq.(10) forms a set of N
linear algebraic equations for the unknown temperature and temperature gradients
at the boundary nodes, which can be solved by, for example, the Gaussian elimi-
nation scheme. For treating the multi-domain as shown in Fig.1, the conventional
sub-regioning technique in the BEM can be applied; however, proper interfacial
conditions must be specified.

With the presence of an anisotropic medium sandwiched in the composite, the in-
terfaces consider the isotropic/anisotropic conditions, including the continuity and
the equilibrium between adjacent interfaces. The former states that the temperature
of contiguous surfaces must be identical between the isotropic material (1) and the
anisotropic material (2), i.e.

T (1) = T (2) (11)

Since the temperature field does not depend on the coordinate transformation,
Eq.(11) must hold true even though the distorted interface of the anisotropic medi-
um may misalign with that of the isotropic one. However, due to the misalignment
of the unit outward normal on the interface of the anisotropic material, the equi-
librium condition needs to be reformulated accordingly. For this purpose, consider
first the heat fluxes out of the interfaces between adjacent materials 1 (isotropic)
and 2 (anisotropic) in the physical plane. The thermal equilibrium between the in-
terfaces states that the sum of the normal heat fluxes across their interfaces shall
vanish, i.e.

K(1)
0 T (1)

,i n(1)i +K(2)
i j T (2)

, j n(2)i = 0 (12)

where K(1)
0 and K(2)

i j are the conductivity coefficients of the isotropic material and
anisotropic material, respectively. By applying the formulation derived by Shiah
et al [28] to the isotropic/anisotropic interface, the equilibrium condition can be
readily shown to have the following form,

K(1)
0

dT (1)

dn(1) +
∆(2)

ω(2) K(2)
11

· dT (2)

dn̂(2) = 0 (13)

where ω(2) is defined by

ω
(2) =

√(
n̂1

√
∆(2)/K(2)

11 − n̂2K(2)
12 /K(2)

11

)2
+ n̂2

2 (14)
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As a result of applying Eq.(11) and Eq.(13) to the sub-regioning scheme in the BEM
for providing additional equations, all boundary known values can be determined
by solving the BIE for the both materials. However, there is still another issue
needed to be dealt with for the sandwiched material, namely the near-singularity. It
is seen that for an ultra-thin layer, the source point P shall approach the integration
element. Thus, it is evident that regular numerical integration schemes will fail
to evaluate the nearly singular integrals accurately. To resolve the problem, these
integrals need to be regularized by the processes to be described next.

3 Regularization of integrals

As reported in the BEM literature, numerical difficulties will arise for evaluation
of the integrals when the source point approaches the element under integration. In
principal, this happens to the case when the distance from the source point P to its
projection point on the element is one-order less than the characteristic size of the
element. Obviously, such a process needs to be taken for treating the anisotropic
core layer due to its ultra-small thickness in the transverse direction. Although
this issue may be directly resolved by subdividing the element into several small
intervals with each interval length of the same order as the distance, this scheme
is not generally feasible since overloading computation will be incurred due to
excessive subdivisions for ultra thin structures. Thus, an appealing way of dealing
with this problem is to regularize the nearly singular integrals such that the usual
numerical schemes, like Gauss quadrature scheme for example, may yield accurate
results.

The present analysis considers the most general case when quadratic elements (c=3)
are employed; however, it should be bear in mind that the formulations used can be
easily extended for general high-ordered elements. From Eq.(10), the first integral
reveals weak singularity. For quadratic elements, the weakly singular integral is
expressed as

1
2π

∫ 1

−1
ln

1
br

Nc(ξ )J(ξ )dξ =
−1
4π

∫ 1

−1
ln

(
4

∑
n=0

Anξ
n

)
Nc(ξ )J(ξ )dξ (15)

In the above equation, the Jacobian J(ξ ) is given by

J(ζ ) =
√

B0ζ 2 +C0ζ +D0 (16)
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where the invariants B0, C0, and D0 are defined by the followings:

B0 = E2
1 +E2

2 , C0 = E1F1 +E2F2 , D0 = F2
1 +F2

2 ,

E1 =
bx(1)1 −2bx(2)1 + bx(3)1 , E2 =

bx(1)2 −2bx(2)2 + bx(3)2 ,

F1 =
(

bx(3)1 −
bx(1)1

)
/2 , F2 =

(
bx(3)2 −

bx(1)2

)
/2 .

(17)

and the invariantsA0 ∼ A4 are given by

A4 =
E2

1 +E2
2

4
, A3 = (E1F1 +E2F2) ,

A2 = F2
1 +E1

(
x(2)1 − xp1

)
+F2

2 +E2

(
x(2)2 − xp2

)
,

A1 = 2F1

(
x(2)1 − xp1

)
+2F2

(
x(2)2 − xp2

)
, A0 =

(
x(2)1 − xp1

)2
+
(

x(2)2 − xp2

)2
.

(18)

By rewriting the 4-degree polynomial in the logarithmic function in terms of its
quadruple roots Ri, one may obtains

1
2π

∫ 1

−1

1
2π

ln
1
br

Nc(ξ )J(ξ )dξ =
−1
4π

∫ 1

−1

[
lnA4 +

4

∑
i=1

ln(ξ −Ri)

]
Nc(ξ )J(ξ )dξ

(19)

In fact, the roots Ri can be numerically determined by any root-finding schemes
without difficulties. As a result of applying the scheme of integration by parts
proposed by Shiah and Shi (2006), the weakly singular integral is given by

−1
4π

∫ 1

−1

[
lnA4 +

4

∑
i=1

ln(ξ −Ri)

]
Nc(ξ )J(ξ )dξ

=
−1
4π

{
[J(ξ )Ω(ξ )Nc(ξ )]|1−1−

∫ 1

−1

Ω(ξ )

4J(ξ )
f c(ξ )dξ

} (20)

where the function Ω(ξ ) is defined as

Ω(ξ ) = ξ lnA4 +
4

∑
i=1

(ξ −Ri) [ln(ξ −Ri)−1] (21)

and f c(ξ ) is given by

f 1(ξ ) = 6B0ξ
3 +(5C0−4B0)ξ

2− (3C0−4D0)ξ −2D0

f 2(ξ ) =−12B0ξ
3−10C0ξ

2 +(4B0−8D0)ξ +2C0

f 3(ξ ) = 6B0ξ
3 +(5C0 +4B0)ξ

2 +(3C0 +4D0)ξ +2D0

(22)
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Obviously, the integrand on the right hand side of Eq.(20) is completely free of sin-
gularity due to the fact that when ξ approaches to one of the roots Ri, the integrand
will converge rapidly. Thus, the regularized form of the integral can be integrated
using any conventional numerical schemes without any difficulty. However, special
care must be taken for treating the degenerated case of straight elements when A4
vanishes.

For geometrically linear elements, it can be readily shown that the Jacobian is ex-
pressed as

J(ξ ) =
√

F2
1 +F2

2 (23)

By following the previous treatment, the integral is rewritten as

1
2π

∫ 1

−1
ln
(

1
br

)
Nc(ξ )J(ξ )dξ=

−
√

F2
1 +F2

2

4π

∫ 1

−1

[
lnA2 +

2

∑
i=1

ln(ξ −Ri)

]
Nc(ξ )dξ

(24)

where Ri are defined by

R1\2 =
−(A1/A2)±

√
(A1/A2)2−4A0/A2

2
(25)

Apparently, Eq.(24) may be analytically integrated to give

1
2π

∫ 1

−1
ln

1
br

Nc(ξ )J(ξ )dξ=
−
√

F2
1 +F2

2

4π

[
Nc(ξ )Ω1(ξ )−N′c(ξ )Ω2(ξ )−(−1)c

Ω3(ξ )
]∣∣∣∣∣∣

1

−1

(26)

where N′c(ξ ) represents the first order differentiation of the shape function;
Ω1(ξ )∼Ω3(ξ ) are defined by

Ω1(ξ ) = ξ lnA2 +
2

∑
i=1

(ξ −Ri) [ln(ξ −Ri)−1],

Ω2(ξ ) =
1
2

{
ξ

2 lnA2 +
2

∑
i=1

(ξ +Ri)
2
[

ln(ξ +Ri)−
3
2

]}
,

Ω3(ξ ) =
1
3


ξ 3 lnA2 +

2
∑

i=1
(ξ +Ri)

3
[
ln(ξ +Ri)− 3

2

]
+11

2

2
∑

i=1

[
Riξ (ξ −Ri)+

R3
i

3

]
− 11

3 ξ 3

 .

(27)
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Next, the similar processes can also be taken for treating the strongly singular in-
tegral in Eq.(10). Making use of the standard quadratic interpolation, one may
immediately obtain

−1
2π

∫ 1

−1

1
br

dbr
dn

Nc(ξ )J(ξ )dξ =
1

2π

∫ 1

−1

[(
2

∑
n=0

Cnξ
n

)
Nc(ξ )/

4

∑
n=0

Anξ
n

]
dξ (28)

where the invariants C0 ∼C2 are defined by

C0 = F2(
bx(2)1 − x1p)−F1(

bx(2)2 − x2p),

C1 = E2(
bx(2)1 − x1p)−E1(

bx(2)2 − x2p),

C2 =
E2F1−E1F2

2
.

(29)

As a result of performing analytical integration, one obtains

1
2π

∫ 1

−1

1
br

dbr
dn

Nc(ξ )J(ξ )dξ =
1

2π

4

∑
i=1

Gi

[
N′c(Ri)+Nc(Ri) ln

(
Ri−1
Ri +1

)]
(30)

where Gi is defined by

Gi =

2
∑

m=0
CmRm

i

A4R3
i

4
Π

k=1
(1−Rk/Ri +Rkδki/Ri)

(31)

and the δki is the kronecker delta defined as usual. Likewise, the special treatment
of the degenerate case is needed, where both A3 and A4 will vanish. In that case,
the integral becomes

1
2π

∫ 1

−1

1
br

dbr
dn

Nc(ξ )J(ξ )dξ =
1
π

2

∑
i=1

Gi

[
α

cRi +β
c +Nc(Ri) ln

(
Ri−1
Ri +1

)]
(32)

where Gi is defined by

Gi = (−1)i C1Ri +C0

A2(R2−R1)
. (33)

For the special case when repeated double roots occur (i.e. R2 = R1 = R), Eq. (32)
becomes

1
2π

∫ 1

−1

1
br

dbr
dn

Nc(ξ )J(ξ )dξ

=
1

2πA2

{
2(2RC1α

c+β
cC1+α

cC0)+Hc(R)
(

2
R2−1

)
+H ′c(R) ln

(
R−1
R+1

)} (34)
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where Hc(R) is defined by

Hc(R) = α
cC1R3 +(αcC0 +β

cC1)R2 +(β cC0 + γ
cC1)R+ γ

cC0 (35)

and H ′c(R) stands for performing first-order differentiation of Hc(R) with respect
to R. At this end, all the regularized integrals may be numerically integrated for the
ultra-thin core layer. Next, the focus targets the methodology of inverse analysis.

4 Inverse analysis of the Ki j of the core layer

The goal of the present analysis is to identify the generally anisotropic conduc-
tivities of the ultra-thin core layer by use of the temperature data measured on a
few boundary points as indicated in Fig.1. For easy preparation of the composite
sample, epoxy is an ideal candidate to serve as the sandwiching material, whose
average conductivity value is about K0 = 0.541 W/m-0K By assumption, the epoxy
is adopted to be the face material and the unknown anisotropic core layer has the
following conductivity coefficients,

K11 = 21.725 W/m-0K, K12 = 6.019 W/m-0K, K22 = 14.775 W/m-0K. (36)

For illustration of how the inverse analysis is carried out, the boundary conditions
consider the top and bottom surfaces subjected to 1000C and 00C, respectively,
while the opposite vertical sides are thermally insulated. Of no doubt, the heat
conduction in the multiply adjoined composite can be analyzed using the BEM
as described previously. The inverse analysis will take the conductivities of the
core layer as unknowns and uses a few temperature data taken from the boundary
points on the insulated surface as shown in Fig.1. Before performing the inverse
analysis, the problem is analyzed forwardly with its dimensions and the BEM mesh
described in Fig.2.
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Figure 2: BEM modeling of the composite.
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For verification, this forward problem is also investigated using ANSYS, a com-
mercial FEM-based software package, to provide a comparison platform. It should
be noted that on purpose, the thickness of the core layer is designed to have a thick-
ness that the ANSYS may handle in a reasonable period of time. For much smaller
thicknesses that require much refined meshes, overwhelming FEM mesh discretiza-
tion may lead to quite heavy computational burdens. In fact, the CPU-time of the
present BEM analysis took only 3.12×10−2 (seconds) by an Intel-I7 PC, while the
complete run of the ANSYS took 13.46 (seconds) by the same machine. One may
consider this not to be a significant issue for simply a forward analysis; however,
for the inverse analysis requiring more than sounds of iterations, this will be an
obvious advantage to employ the BEM for saving the computation costs. Figure 3
and Figure 4 show the normalized temperature distribution on the interfaces and the
insulated surfaces, respectively, where the normalization factor ∆T =1000C is used.
From the comparisons shown in the both plots, the excellent agreements between
the both results can be observed.
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 Figure 3: Temperature distribution on interfaces.

Next, consider the inverse problem when the conductivities of the anisotropic core
layer are taken to be unknowns. For this problem, the temperature field can be
only measured on the boundary. As can be seen from Fig.3 and Fig.4, one may
take either interface points or a few boundary points on the insulated surfaces near
the core for characterizing the temperature response. For experimentally recording
temperature on the interfaces, thermal couples need to be fixed onto the interfaces
during the curing process of the epoxy resin. Apparently, it is much easier to take
data from the insulated surfaces due to the accessibility of measured positions and
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Figure 4: Temperature distribution on insulated surface.

repeatability of measurements. For the process of the inverse analysis, let the target
function be

J(
⇀
ω) =

N
∑

n=1
(T (n)(

⇀
ω)−T (n)

meas)
2

N
(37)

where T (n) is the resulting temperature at the n-th point, N is the number of test
points, T (n)

meas is the measured temperature at the n-th point, and
⇀
ω = [K11 K22 K12]T

is the unknown parametric vector of the anisotropic conductivities. The CGM is to
determine the minimum value of the target function using the iterations process as
described below:

(Step 1): Shoot an initial guess of
⇀
ω

(0)
and compute its corresponding gradient of

J(
⇀
ω) at

⇀
ω

(0)
as follows:

g(0) = ∇J(
⇀
ω

(0)
) =

 ∂J(
⇀
ω

(0)
)

∂K11

∂J(
⇀
ω

(0)
)

∂K22

∂J(
⇀
ω

(0)
)

∂K12

T

(38)

In the above equation, the partial differentiations are taken using the central differ-
ence scheme, namely

∂J(
⇀
ω

(0)
)

∂ f
∼=

J(
⇀
ω

(0)
+∆ f )− J(

⇀
ω

(0)
−∆ f )

2∆ f
(39)
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where ∆ f is a small difference step, chosen to be 10−4 for the present analysis. For
the initial iteration (t=0), the first searching of S(0) is along the negative direction at
its initial guess point, i.e.

S(0) =−g(0) (40)

(Step 2): Scan for the optimum α(t) for yielding minimum J(
⇀
ω) by

⇀
ω

(t+1)
=

⇀
ω

(t)
+α

(t)S(t) (41)

(Step 3): Compute the gradient of J(
⇀
ω) at

⇀
ω

(t+1)
by

g(t+1) = ∇J(
⇀
ω

(t+1)
) (42)

(Step 4): Calculate the following ratio of gradients,

β
(t) =

∥∥g(t+1)
∥∥2∥∥g(t)
∥∥2 =

[
∂J(

⇀
ω

(t+1)
)

∂K11

]2

+

[
∂J(

⇀
ω

(t+1)
)

∂K22

]2

+

[
∂J(

⇀
ω

(t+1)
)

∂K12

]2

[
∂J(

⇀
ω

(t)
)

∂K11

]2

+

[
∂J(

⇀
ω

(t)
)

∂K22

]2

+

[
∂J(

⇀
ω

(t)
)

∂K12

]2 (43)

(Step 5): Determine the next searching direction by

S(t+1) =−g(t+1)+β
(t)S(t). (44)

For the next iteration, update the iteration number by t = t+1 and repeat the above
processes from Step 2 to Step 5 until the target function J(

⇀
ω) converges to a value

smaller than the tolerance value ε that is decided in advance. Presently, ε = 10−8

is used for the analysis of the example problem. All the foregoing steps are sum-
marized in the flowchart in Fig.5.

As a matter of fact, the required iteration number strongly depends on the selection
of initial guessed values. For investigating how the initial settings affect the itera-
tion number, numerical experiments were performed for various tries of the initial
values by

k11 = k11 +10−n · k11 (for n = 0, 1, 2, 3, 4)

k22 = m · k11 (for m = 1,2,3,4, 1/2, 1/3, 1/4)

k12 = 0

(45)



Thin Anisotropic Medium by the Boundary Element Method 63

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Shoot an initial  

;  

(t=0),  

Search for by 

  

 

 

 

Update t=t+1 

 

End 

True False 

 

Figure 5: Flowchart of the inverse analysis by the CGM.

For the experiments, the test was to find the best m and n that gave the least iter-
ations. For the present analyses, 11 nodes on the right surface near the core layer
were selected as the sample points for collecting temperature data. Figures 6-12
display the required iteration numbers and percentages of errors varied with n for
various m. From these plots, it can be observed that for m <1, there is a trend of de-
clining numbers of iterations for greater n. Also, from Fig.4, an obvious conclusion
may be drawn that the optimum condition occurs at n=0/m=4. Another interesting
issue worthy of investigations is the choice of sample points for collecting temper-
ature data. For this, the inverse analyses using the optimum condition of n=0/m=4
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Figure 6: Variations of the iteration numbers & error percentages for m=1.
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 Figure 7: Variations of the iteration numbers & error percentages for m=2.

were also carried out for selecting 11 sample points particularly on the left surface
and for another case when 22 points were selected on both left/right surfaces as
the sample points. The results showed that the selection of 22 points on both sides
required the least iteration number. The comparison of the required numbers of
iterations is shown in Fig.13. However, considering that fact that no significant
reduction of the iteration numbers (10% at most) was present and more measured
data would be required, the authors suggest to employ the one-side approach, in-
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volving less measurements of temperature data. By using the optimum condition
of n=0/m=4 and adopting the one-side approach, all calculated conductivities are
tabulated in Tab.1, where the percentages of errors are also listed. From the com-
parison, it can be clearly seen that the inverse BEM analyses are very accurate in
identifying the thermal conductivities of the anisotropic core layer.
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Figure 8: Variations of the iteration numbers & error percentages for m=3.
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 Figure 9: Variations of the iteration numbers & error percentages for m=4.
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Figure 10: Variations of the iteration numbers & error percentages for m=1/2.
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 Figure 11: Variations of the iteration numbers & error percentages for m=1/3.



Thin Anisotropic Medium by the Boundary Element Method 67

 

 

 

Iteratio
n
 n

u
m

b
ers 

% Error 

Iteration No. 

% Error 

n 

Figure 12: Variations of the iteration numbers & error percentages for m=1/4.

 

 

No. of iterations 

 

Figure 13: Required iteration numbers for distinct selections of sample points.
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Table 1: Comparison between the calculated thermal conductivities and the exact
values.

K11(W/m-0K) K22(W/m-0K) K12(W/m-0K)
Exact 21.725 14.775 6.019

Calculated 21.670 14.773 6.008
Error (%) 0.255 0.012 0.175

5 Conclusive remarks

With the rapid march of new technologies, new anisotropic materials have been
developed. It is quite often that they are subtle engineered to thin layers to meet
various purposes of design. So, for implementing the thin materials in practice,
it is crucial to characterize their various properties either by experiments or with
numerically modeling. For resolving the difficulty of measuring transverse proper-
ties, this paper presents a novel approach to identify the thermal conductivities of
a thin generally anisotropic layer by the BEM inverse analysis. For the ease of ex-
perimental measurements, the thin layer is sandwiched between two isotropic face
materials, whose thermal conductivities are known. By providing the measured
temperature on the insulated surface, the anisotropic thermal conductivities of the
core layer are calculated using the inverse BEM analysis combined with the CG-
M approach. The calculated results showed that the temperature measurements on
simply one side of the composite would be sufficient to yield accurate results, yet
with trivial sacrifice of 10% more iterations involved at most. Owing to less data to
take, this one-side approach is ideal for the identification purpose in practice. From
the numerical experiments, this approach of inverse BEM analysis has shown great
computational efficiency and accuracy. Particularly, this approach is ideal for iden-
tifying the mechanical properties of the anisotropic thin layer since experimental
measurements in the transverse direction are unlikely for the small thickness. With
the shown promise of implementation, this approach can be applied to identify the
elastic and thermoelastic properties, such as the stiffness and thermal expansion
coefficients, of generally anisotropic thin media.
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