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Dynamic Instability of Rectangular Composite Plates
under Parametric Excitation

Meng-Kao Yeh1, Chia-Shien Liu2 and Chien-Chang Chen3

Abstract: The dynamic instability of rectangular graphite/epoxy composite plates
under parametric excitation was investigated analytically and experimentally. In
analysis, the dynamic system of the composite plate, obtained based on the assumed-
modes method, is a general form of Mathieu’s equation, including parametrically
excited terms. The instability regions of the system, each separated by two transi-
tion curves, were found to be functions of the modal parameters of the composite
plate and the position and the excited amplitude of the electromagnetic device on
the composite plates. The fiber orientation, the aspect ratio and the layer numbers
of the composite plates were varied to assess their effects on the dynamic insta-
bility behavior of the composite plates. In experiment, an electromagnetic device,
acting like a spring with alternating stiffness, was used to parametrically excite the
composite plates. The frequency and the amplitude of the excitation force were
accurately controlled by the AC current flowing through the coil of the electro-
magnetic device. Since the excitation force was a transversely non-contact elec-
tromagnetic force, the disturbances induced by the eccentricity of the usual planar
excitation force and by the geometric imperfection of the composite plate were ef-
fectively avoided. The experimental results, for the cases of twice the fundamental
frequency, were found to agree well with the analytical ones. The excitation fre-
quencies at tip of instability regions decrease as the fiber orientation increases for
composite plates with [±θ2]s lamination at bending mode; while the excitation fre-
quencies increase to a maximum at 45o fiber orientation for composite plates with
[±θ2]slamination at torsional mode. The excitation frequency at tip of instability
regions decreases for higher aspect ratios and thinner composite plates.
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tromagnetic Spring.

1 Introduction

The problem of dynamic instability has been playing an important role for the safe-
ty of structures. Bazant (2000) reported the following structural failure examples
due to their instability hehavior: the resonance of Tacoma Narrows Bridge due to air
flow which resulted in its failure in 1940; the failure of space frame, Hartford Are-
na, in 1978; the failure of Quebec bridge at St. Lawrence in 1907. Bolotin (1965)
summarized the parametrically excited instability problems for various structural
elements. Evan-Iwanowski (1965) and Nayfeh and Mook (1979) also reviewed the
similar problems. The governing equation of the parametrically excited instabili-
ty problem is a Mathieu equation, which was analyzed by many researchers [Hsu
(1963); Nayfeh and Mook (1977); Fox (1990)] to obtain the system instability
solution for the problem of multiple degrees of freedom.

Researchers also investigated the parametrically excited instability problem of the
basic structural elements, such as beams, columns, plates and shells for different
material properties, different boundary conditions, and different excitation forces
analytically. Yeh and Chen (1998) and Chen and Yeh (1999) investigated ana-
lytically a general column under a periodic load in the direction of the tangency
coefficient at any axial position; they also assessed the simple and combination res-
onances of a general column carrying an axially oscillating mass and gave physical
explanations of the parametric resonances by viewing the system energy. Ganapathi
and Balamurugan (1998) investigated the dynamic instability of circular cylindrical
shells using the finite element method. Deolasi and Datta (1995; 1997) studied the
simple and combination resonances for a simply-supported rectangular plate under
nonuniform edge loading with damping and under localized edge loading.

As the rapid development of aeronautical technology, although the basic structural
elements (beams, columns, plates and shells), made from traditional metal materi-
als, have enough strengths in design, their relative heavy weights make themselves
not suitable in aeronautical use. Composite materials, with high specific strength,
high specific stiffness and the ability of variable lamination to have required me-
chanical property, becomes an competitive substitute for use in various aerospace
substructures. The composite structure has excellent mechanical property from
static analysis. However, the composite structure may become unstable due to
external dynamic disturbances resulted from external resonance or parametrically
excited resonance, caused by periodic forces. Srinivasan and Chellapandi (1986)
investigated the dynamic instability of composite plate by the finite strip method.
Chen and Yang (1990) studied the dynamic stability of angle-ply composite plates
under compressive forces by finite element method. Moorthy and Reddy (1990)
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investigated the parametric instability of composite plates with transverse shear
deformation. As the instability experiment is conserned, Bassiouni et al (1999) s-
tudied the dynamic instability of composite beams analytically and experimentally.
Chen and Yeh (2001) investigated the parametrically excited instability problem of
beams under electromagnetic excitation analytically and experimentally. Yeh and
Kuo (2004) studied the instability problem of composite beams analytically and
experimentally.

From the above-mentioned literature, most researchers investigated the paramet-
rically excited instability problem of structures analytically or numerically. The
experimental work on the dynamic instability for parametrically excited compos-
ite plate is rather limited. In this paper, the dynamic instability of rectangular
graphite/epoxy composite plates under parametric excitation was investigated an-
alytically and experimentally. The electromagnetic device, acting as a spring of
variable stiffness, was used as a non-contacting transversely parametric exciter in
experiment, and the effects caused by the geometric imperfection, the eccentricity
of the planar excitation forces could be avoided.

2 Instability Analysis of Composite Plate

The dynamic instability equation of rectangular composite plate is obtained based
on the assumed-modes method. The finite element code ANSYS® was used to ob-
tain the natural frequencies and natural modes of the composite plate and finally the
instability regions of the composite plate under parametric excitation were found.

The composite plate under electromagnetic excitation is idealized as shown in Fig-
ure 1, with left end fixed and free at right end. The electromagnetic device was
modeled as a concentrated massmoand a spring with stiffness k(t) connected at
point P at the mid-plane of composite plate. The composite plate has length a,
width b, thickness h, mass M The composite plate is made from the prepreg, which
is assumed transversely isotropic with material principal axis on the x− y plane.
The composite plate, symmetric to the mid-plane, satisfies the Kirchhoff assump-
tion. The gravitational effect was ignored in analysis.

The dynamic equation of the composite plat, without spring k(t), can be expressed
as

D11
∂ 4w
∂x4 +2(D12 +2D66)

∂ 4w
∂ x2∂ y2 +D22

∂ 4w
∂y4

+[ρ +m0δ (x− x0)δ (y− y0)]
∂ 2w
∂ t2 + c

∂ w
∂ t

= 0

(1)

in which D11 D12 D22 and D66 obtained from the integration of transformed lamina
stiffnesses in the thickness direction, represent the laminate-bending stiffnesses of
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Figure 1: Idealized model for composite plate under an electromagnetic excitation

the composite plate; ρ and c are the density and damping coefficient of the com-
posite plate; δ (x−xo) and δ (y−yo) are unit pulse functions; (xo, yo) represents the
central position of the electromagnetic device with mass mo at point P

2.1 Finite Element Modal Analysis

Using the assumed mode method [Craig (1981)], the transverse displacement of
the composite plate w(x,y,t) can be expressed as the summation of the normalized
modal vector φn(x,y) multiplied by its corresponding displacement component Vn(t)
as

w(x,y, t) =
∞

∑
n=1

φn (x,y)Vn (t) (2)

where Vn(t) is function of time only. For the specified boundary condition, fixed at
left and free at right, the orthogonal function φ n(x, y) must satisfy∫ b

0

∫ a

0
[ρ +m0δ (x− x0) δ (y− y0)]φn (x,y)φm (x,y)dxdy = δnm (3)

Since one end of the composite plate is clamped and the other three sides free,
the exact solution for the modal shapes of transverse vibration is not available and
the finite element analysis was used to obtain the vibration modes φ n(x, y) of the
composite plate. The three-dimensional Shell99 element was used in the analysis.
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Each element has 8 nodes and each node has 6 degrees of freedom. The attached
electromagnetic device was modeled as a concentrated mass, element type Mass21,
located at the center of the device. After applying the boundary conditions, the nat-
ural frequencies and the corresponding modal vectors of the composite plate can be
obtained using ANSYS®code. Besides, the modal vector satisfies the normalized
orthogonal condition.

2.2 Parametrically Excited Dynamic Equation

Since the system considered contains an electromagnetic spring and no external
forces, the system dynamic equation can be obtained below, similar to the case for
the composite beam [Yeh and Kuo (2004)]

V̈n (t)+dnV̇n (t)+ω
2
nVn (t)+k (t)∑

m
φm (x0,y0) φn (x0,y0)Vm (t) = 0 for n = 1,2, . . .

(4)

in which dn = c/ρ is the modal damping coefficient; ωn is the undamped natural
frequency of the laminated plate system. The variables are nondimensionalized in
the following form.

ξ =
x
a

; η =
y
b

; τ = ω1t; µn =
dn

2ω1
; ω̄n =

ωn

ω1
; ε (τ) =

k (t)
2Mω2

1
;

fnm = Mφm (x0,y0) φn (x0,y0) = Mφm (ξ0,η0) φn (ξ0,η0)

where ω1 is the fundamental frequency. Then the system dynamic equation be-
comes

V̈n (τ)+2µnV̇n (τ)+ ω̄
2
nVn (τ)+2ε (τ)∑

m
fnmVm (τ) = 0 for n = 1,2, . . . (5)

If the stiffness of spring is a constant, ε (τ) = ε . The natural frequencies of the
transverse vibration of composite plate shift slightly due to the spring effect. This
could be used to identify the spring stiffness ε in experiment. If the spring has
variable stiffness, ε (τ) = ε cos ω̄τ , then equation (5) becomes

V̈n (τ)+2µnV̇n (τ)+ ω̄
2
nVn (τ)+2ε cos ω̄τ ∑

m
fnmVm (τ) = 0 for n = 1,2, . . . (6)

The above equation is a Mathieu equation, in which the excitation term contains
the modal displacement Vn and the parametric excitation coefficient fnm
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2.3 Criterion for Parametric Instability

After obtaining the parametric excitation coefficient fnm, the instability bandwidth
parameter Gnm can be calculated. The instability regions can be found from the
instability bandwidth parameter Gnm, the amplitude of the spring, and the natural
frequencies of the composite plate ω̄n, ω̄m [Chen and Yeh (2001); Yeh and Kuo
(2004)]

(a) For Simple Resonance

When the excitation frequency ω̄ is close to twice the natural frequency 2ω̄n and
the instability bandwidth parameterGnn is defined as

Gnn =


(

fnn
ω̄n

)2
−4
(

µn
ε

)2
, µn 6= 0(

fnn
ω̄n

)2
, µn = 0

(7)

The transition curves separate the stable and unstable regions are

ω̄ = 2ω̄n± εG1/2
nn , when Gnn > 0 (8)

(b) For Combination Resonance of Summed Type

When the excitation frequency ω̄ is close to the sum of two natural frequencies
ω̄n + ω̄m and the instability bandwidth parameter Gnm is defined as

Gnm =


(µn +µm)

2

µnµm

[
fnm fmn

4ω̄nω̄m
− µnµm

ε2

]
, µn and µm 6= 0

fnm fmn

4ω̄nω̄m
, µn or µm = 0

(9)

The transition curves separate the stable and unstable regions are

ω̄ = ω̄n + ω̄m± εG1/2
nm , when Gnm > 0 (10)

(c) For Combination Resonance of Difference Type

When the excitation frequency ω̄ is close to the difference of two natural frequen-
cies ω̄n− ω̄m, (ω̄n > ω̄m) and the instability bandwidth parameter Gnm is defined
as

Gnm =


(µn +µm)

2

µnµm

[
− fnm fmn

4ω̄nω̄m
− µnµm

ε2

]
, µn and µm 6= 0

− fnm fmn

4ω̄nω̄m
, µn or µm = 0

(11)
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The transition curves separate the stable and unstable regions are

ω̄ = ω̄n− ω̄m± εG1/2
nm , when Gnm > 0 (12)

The instability regions of the system, each separated by two transition curves, were
found to be functions of the modal parameters of the composite plate and the po-
sition and the excitation amplitude of the electromagnetic device on the composite
plates.

3 Experiment

In addition to the analysis, parametrically-excited instability experiments were per-
formed to verify the analytical results. The instability experiment for composite
plate follows the basic procedure reported in [Chen and Yeh (2001); Yeh and Kuo
(2004)] except the composite plate specimens were used in this study. The equip-
ment includes a hot press to make the composite plate specimen, an air compressor
to provide uniform pressure and a vacuum pump to extract the air generated during
the molding of plate specimen.

3.1 Composite Plate Specimen

The thermosetting graphite/epoxy prepreg, 0.12 mm thick approximately, was used
in making the composite plate. The prepreg was cut into the required size and
stacked to form the composite plate in the hot press. Finally, the composite plate
was cut and trimmed to the desired specimen size for experiment.

The material properties of the composite plate were measured on a tensile test-
ing machine according ASTM D3039-76 (1983) and ASTM D3518-76 (1983).
Each layer of the composite plate is assumed to be transversely isotropic [Gibson
(2007)]. Five material constants, E11, E22, G12, ν12, and ν23 are needed. ν23, which
is difficult to measure in experiment, is assumed to be equal to ν12 as previously
reported [Yeh and Tan (1994)]. Each material constant was measured five times
and average value was obtained. The longitudinal modulus is E11=147.56±0.45 G-
Pa, the Poisson’s ratio ν12=0.283±0.0013, the transverse modulus E22=9.31±0.06
GPa, and the shear modulus G12=5.70±0.04 GPa.

3.2 Dynamic Instability Experiment

The equipment used in the dynamic instability experiment of the composite plate
includes a dynamic signal analyzer, an AC/DC power supply, an accelerator, an im-
pact hammer and force sensor, a signal conditioner, and an electromagnetic device
acting as a spring. The electromagnetic spring is made from a pair of magnets and
a pair of coils. The magnets are fixed on the supporting frame; while the coils are
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wound on a plastic square frame glued on the composite plate specimen. When a
DC current flows through the coils, the coils become an electromagnet. The force
between the electromagnet and the magnet fixed on the support makes the device
to act like a spring [Chen and Yeh (2001)]. When an AC current flows through
the coils, the coils become an electromagnetic spring of variable stiffness, which
was used as a non-contacting parametric exciter in experiment. Since the excitation
force acted on the composite plate transversely, the effects caused by the geomet-
ric imperfection, the eccentricity of the planar excitation force could be avoided in
experiment.

Before the instability experiment, the characteristics of the electromagnetic spring
were identified using a DC power supply and an impact hammer. A DC current was
applied through the coils to form an electromagnetic spring and the natural frequen-
cies of the plate specimen were found using an impact hammer. The transverse
fundamental frequency of the composite plate was calculated using ANSYS® A
relation between the transverse fundamental frequency and the DC current was es-
tablished first. Secondly, the relation between the transverse fundamental frequency
and the stiffness of the electromagnetic spring was obtained. Finally, the relation
between the stiffness of the electromagnetic spring ε and the current Ithrough the
coils was identified below

ε = 0.02281 I−0.00094 (13)

Figure 2 shows the relation between the stiffness of the electromagnetic spring and
the DC current through the coils for composite plate ([0˚]8, 20×20.2 cm)

 
Figure 2: Electromagnetic spring stiffness versus DC coil current for composite
plate ([0˚]8, 20×20.2 cm)
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Figure 3 shows experimental setup for composite plate under electromagnetic ex-
citation. Figure 4 shows the schematic for measuring dynamic instability of com-
posite plate under electromagnetic excitation. An AC power supply was used to
make the electromagnetic device a sinusoidal exciter on the composite plate. The
frequency of AC current was applied and increased slightly step-by-step from the
lower limit to the higher limit in the specified frequency range. At each excitation
frequency, the amplitude of the AC current was increased from zero to a saturat-
ed value to observe the dynamic response of the composite plate. The position of
excitation, where the electromagnetic device located, was chosen away from the
fixed end to obtain the vibration signals more easily. The instability of the compos-
ite plate was observed when its vibrating amplitude increased abruptly. Once the
instability occurred, the current was cut off immediately. The excitation frequency
and the current amplitude were recorded. This procedure was repeated to obtain the
instability region for each composite plate. The fiber orientation, the aspect ratio
and the layer numbers of composite plate, were varied to study their effects on the
instability behavior of the composite plates.

 

Figure 3: Experimental setup for composite plate under electromagnetic excitation.

4 Results and Discussion

The natural frequencies and the modal shapes of composite plate were found first
using the finite element code ANSYS®; from this the instability regions of the
composite plate were obtained as described in the previous analysis section. The
parameters, including the fiber orientation, the aspect ratio and the layer numbers
of composite plate, are considered in this study.
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Figure 4: Schematic for measuring dynamic instability of composite plate under
electromagnetic excitation.

4.1 Finite Element Analysis

In ANSYS, Shell99 elements were used for the composite plate. Mass21 element
was used for the electromagnetic device. For Shell99, nine constants (E11, E22,
E33, ν12, ν23, ν13, G12, G23, G13) are needed to input, in which E11, E22, ν12 and
G12 were obtained from experiment. Other constants were found according to the
specially orthotropic assumption as follows.

E33 = E22, ν23 = ν12, ν13 =
ν12E22

E33
, G23 =

E22

2(1+ν23)
, G13 = G12 (14)

There were total of 196 elements for a composite plate with electromagnetic device
in modal analysis. Figure 5 shows the fundamental and the second vibration modes
of composite plate ([0˚]8, a=20 cm, b=20.2 cm). The fundamental mode is a bend-
ing type and the second mode a torsional one. The natural frequencies of composite
plate with the mass of electromagnetic device are lower than those without mass.
The frequencies become higher or lower as the fiber orientation increases, depend-
ing on the mode shape. The natural frequencies increase as the layer number of
composite plate increases, since the thicker composite plates have higher stiffness.

4.2 Parametric Instability Regions of Composite Plate

The parametric instability regions of composite plates were obtained from their
modal parameters at the position of electromagnetic device, from which the para-
metric excitation coefficient fnm, the instability bandwidth parameter Gnn and the
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(a) fundamental mode     (b) second mode 

 Figure 5: Vibration modes of composite plate ( [0˚]8, a=20 cm, b=20.2 cm)

transition curves separate the stable and unstable regions were found. In this study,
the simple resonances, 2ω1, 2ω2, 2ω3, and the combination resonances at ω1 +ω2,
ω1 +ω3, and ω2 +ω3 are discussed.

Various composite plate specimens were analyzed for their instability behavior. For
example, Figure 6 shows the dynamic instability regions at simple and combina-
tion resonant frequencies of the composite plate with [±(30o)2]s, length a=20 cm,
width b=20 cm. ω̄ is the ratio between the parametric excitation frequency and
the fundamental natural frequency ω1. ω̄2 and ω̄3 denote the second and the third
resonance frequencies after nondimensionalization by ω1. From equations (6) and
(5), the amplitude ε in Figure 6 represents the spring stiffness. Since the instability
bandwidth parameter Gnm was found negative, no combination resonance of dif-
ference type was obtained in this problem. Figure 7 shows the instability region
at 2ω̄1 in Figure 6 for the composite plate with [±(30o)2]s. The amplitude ε was
calculated from equation (10) for different current value; then the instability region
was obtained from equation (5). A maximum instability region occurs at twice the
fundamental frequency 2ω̄1. The reason is that the instability bandwidth parameter
Gnm, related with the mass of the plate and the modal parameters at the position
of the electromagnetic device only, has higher value for the fundamental bending
mode. The little shift between the analytical and experimental results was proba-
bly due to the assumed perfectly fixed boundary condition used in the analysis. In
general, the experimental results agree well with the analytical ones for the simple
resonances at twice the fundamental frequency.
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Figure 6: Dynamic instability regions of composite plate with[±(30o)2]s. _____
analytical results; . . . . . . experimental results.

 

Figure 7: instability region at 2ω̄1 for the composite plate with [±(30o)2]s._____
analytical results; . . . . . . experimental results.
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4.2.1 Effect of Fiber Orientation

Five fiber angles (θ=0˚, 30˚, 45˚, 60˚, 90˚), were varied to assess their effects on the
instability behavior of composite plates ([±θ2]s, a=20 cm, b=20.1 cm). The funda-
mental frequencies, from [0˚]8 to [90˚]8 are 33.84 Hz, 24.37 Hz, 17.74 Hz, 11.71
Hz, 8.60 Hz, respectively. The analytical and experimental excitation frequencies
for different fiber orientation of composite plates are shown in Table 1. Figure 8
shows the excitation frequency at the tip of each instability region versus fiber ori-
entation of composite plates. The excitation frequencies include the simple and the
combination resonances. The experimental results agree well with the analytical
ones at twice the fundamental frequency.

Table 1: Analytical and experimental excitation frequency for different fiber orien-
tation of composite plates

Fiber
orientation

2ω1 ω1 +ω2 2ω2 ω1 +ω3 ω2 +ω3 2ω3 2ω1,exp

0◦ 67.7 78.8 89.9 122.2 133.3 176.7 59.8
30◦ 48.7 83.1 117.4 152.4 186.8 256.1 47.2
45◦ 35.5 79.9 124.4 130.2 174.7 225.0 33.0
60◦ 23.4 64.2 105.0 88.4 129.2 153.4 23.9
90o 17.2 34.1 50.9 66.5 83.3 115.7 18.3

 Figure 8: Excitation frequency versus fiber orientation of composite plates.
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The excitation frequency varies with the fiber orientation of the composite plate,
depending on the mode shape. The excitation frequency decreases with the fiber
orientation of the composite plate at twice the fundamental frequency 2ω1 as ex-
pected since this bending mode has the highest rigidity at θ=0˚. The excitation
frequency reaches a maximum at θ=45˚ for the simple resonance 2ω2 due to the
torsional nature of the second mode. The excitation frequency reaches a maximum
at θ=30˚ for the third simple resonance 2ω3 due to the complex nature of the third
mode shape.

4.2.2 Effect of Aspect Ratio

The aspect ratio was varied to evaluate their effects on the instability behavior of
composite plates ([0˚]8, a=20 cm, b=20.2 cm). The aspect ratios (a/b) used were
1.0, 0.9, 0.8, 0.7, 0.6 and 0.5, in which the experiment was unable to perform due to
limited space on the fixture for a/b= 0.6 and 0.5. The analytical and experimental
excitation frequencies for different aspect ratio of composite plates are shown in
Table 2. Figure 9 shows the excitation frequency at the tip of each instability region
versus aspect ratio of composite plates. The excitation frequencies of both the
simple and the combination resonances decrease for larger aspect ratios, i.e., for
the longer plates, which possess lower natural frequencies at a fixed width.

Table 2: Analytical and experimental excitation frequency for different aspect ratio
of composite plates.

Aspect
ratio

2ω1 ω1 +ω2 2ω2 ω1 +ω3 ω2 +ω3 2ω3 2ω1,exp

0.5 236.9 277.4 317.9 312.3 352.8 387.7 –
0.6 170.0 197.2 224.3 234.9 262.1 299.9 –
0.7 128.9 148.5 168.1 188.4 208.0 247.8 121.8
0.8 101.4 116.7 131.9 158.0 173.3 214.6 94.7
0.9 82.0 94.7 107.3 137.2 149.8 192.3 70.3
1.0 67.7 78.8 89.9 122.2 133.3 176.7 59.8

4.2.3 Effect of Number of Layers

The number of layers of the composite plate was varied as 4, 8, 12 and 16 to in-
vestigate their effects on the instability behavior of composite plates ([0˚]8, a=20
cm, b=20 cm). It was observed that a maximum instability region occurred at twice
the fundamental frequency 2ω̄1. The analytical and experimental excitation fre-
quencies for different number of layers of composite plates are shown in Table 3.
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 Figure 9: Excitation frequency versus aspect ratio of composite plates.

 Figure 10: Excitation frequency versus number of layers of composite plates.
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Figure 10 shows the excitation frequency at the tip of each instability region versus
number of layers of composite plates. The excitation frequencies of both the simple
and the combination resonances increase for thicker composite plates. The thicker
plates have larger rigidity, and thus higher natural frequencies for the simple and
the combination resonances.

Table 3: Analytical and experimental excitation frequency for different number of
layers of composite plates.

Layers 2ω1 ω1 +ω2 2ω2 ω1 +ω3 ω2 +ω3 2ω3 2ω1,exp

4 26.7 33.3 39.9 52.2 58.8 77.7 25.8
8 67.7 78.8 89.9 122.2 133.3 176.7 59.8
12 110.1 125.8 141.6 193.9 209.6 277.6 -
16 185.0 209.5 234.0 320.5 345.0 456.0 -

5 Conclusions

In this paper, the dynamic instability of rectangular graphite/epoxy composite plates
under parametric excitation was investigated analytically and experimentally. The
parameters, including the fiber orientation, the aspect ratio and the layer numbers,
were considered to evaluate their effects on the dynamic instability behavior of the
composite plates. The following conclusions can be drawn.

1. The instability regions agreed well with the analytical ones for the simple
resonances at twice the fundamental frequency. The non-contacting electro-
magnetic exciter used in experiment acted on the composite plate transverse-
ly, the effects caused by the geometric imperfection, the eccentricity of the
planar excitation forces could be avoided effectively.

2. The effect of the fiber orientation on the instability region depends on the
mode shapes of the composite plates. The excitation frequency decreases
with the fiber orientation of the composite plate with [±θ2]s for the bending
mode instability and reaches a maximum at θ=45˚ for the torsional mode
instability.

3. The excitation frequency at the tip of each instability region decreases for
higher aspect ratios.

4. The excitation frequency at the tip of each instability region increases for
thicker composite plates.
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