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Effects of Transverse Shear on Strain Stiffening of
Biological Fiber Networks

H. Jiang'-?, B. Yang' and S. Liu®

Abstract:  Actin, fibrin and collagen fiber networks are typical hierarchical bi-
ological materials formed by bundling fibrils into fibers and branching/adjoining
fibers into networks. The bundled fibrils interact with each other through weak
van der Waals forces and, in some cases, additional spotted covalent crosslinks.
In the present work, we apply Timoshenko’s beam theory that takes into account
the effect of transverse shear between fibrils in each bundle to study the overall me-
chanical behaviors of such fiber networks. Previous experimental studies suggested
that these fibers are initially loose bundles. Based on the evidence, it is hypothe-
sized that the fibers undergo transitions from an initially loose to a tightened (due
to strain effects) and finally back to a loose (due to damage) bundle under pro-
gressive loading. In correspondence, there can be identified three stages of strain
stiffening and softening for the overall network deformation, consistent with results
of a recent experimental in-situ neutron scattering study of fibrin networks. Finite
element models are developed to examine these effects.

Keywords: fiber network, transverse shear deformation, Timoshenko’s beam,
bundle mechanics.

1 Introduction

A fibrin network is characterized as semiflexible, which is between a synthetic
polymer network of very thin and long macromolecules and a totally stiff network
of short bars (such as bridges and roofs made of trusses) [Wen and Janmey (2011)].
Since the existing theories do not apply well to such a network (including other
similar semiflexible biological hierarchical networks such as those of actin and col-
lagen), it poses a great challenge to the biomechanics community [Jahnel, Waigh
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et al. (2008); Weisel (2008); Brown, Litvinov et al. (2009); Kang, Wen et al.
(2009); Piechocka, Bacabac et al. (2010); Weisel (2010); Bai, Missel et al. (2011);
Weigandt, Porcar et al. (2011)]. Evidently, the literature has seen a recent surge of
publications attempting to interpret such experimental observations as strain stiff-
ening that is vital to the survival of a biological system from external forces and
to tackle the underlying physics [Onck, Koeman et al. (2005); Storm, Pastore et
al. (2005); Buehler (2007); Chaudhuri, Parekh et al. (2007); Huisman, van Dillen
et al. (2007); Janmey, McCormick et al. (2007); Lieleg, Claessens et al. (2007);
Bendix, Koenderink et al. (2008); Huisman, Storm et al. (2008); Stylianopoulos,
Aksan et al. (2008); Brown, Litvinov et al. (2009); Conti and MacKintosh (2009);
Hatami-Marbini and Picu (2009); Kang, Wen et al. (2009); Lugovskoi, Gritsenko
et al. (2009); Vader, Kabla et al. (2009); Broedersz, Kasza et al. (2010); Buell, Rut-
ledge et al. (2010); Hudson, Houser et al. (2010); Kasza, Broedersz et al. (2010);
Lindstrom, Vader et al. (2010); Piechocka, Bacabac et al. (2010); Bai, Missel
et al. (2011); Broedersz and MacKintosh (2011); Huisman and Lubensky (2011);
Piechocka, van Oosten et al. (2011); Stein, Vader et al. (2011); Kurniawan, Wong
etal. (2012); Wen, Basu et al. (2012); Shayegan and Forde (2013)]. Unfortunately,
many of those studies drew conclusions contradictory to one another [Weigandt,
Porcar et al. (2011)].

Mesoscopic modeling and entropic elasticity have been used to describe the me-
chanical properties of molecules and assembly of these molecules [Storm, Pastore
et al. (2005); Buehler (2006); Buehler and Wong (2007)]. In these models, the
fibers were treated by using Euler-Bernoulli’s beam theory where their transverse
shear deformation is neglected/ignored or as a chain of beads that do not resist
any shear stress at all. Stein et al. [Stein, Vader et al. (2011)] modeled collagen-
I networks by adding torsional compliance at the ends of Euler-Bernoulli beams
and predicted more closely to the experimental results, implying that the Euler-
Bernoulli beams are too rigid for modeling these fibers. Weigandt et. al [Weigandt,
Porcar et al. (2011)] recently showed, by a neutron scattering technique, interesting
three stages of deformation, two stages of strain stiffening at small and large strains,
respectively, and an intermediate stage of strain softening, in fibrin networks under
shear. They suggested that there could be present small fibers that bear significant
entropic energy for an explanation of the first stage of stiffening at small strains.
The last stage of strain stiffening coincided with the fiber alignment detected by
the neutron scattering measurement, which confirmed an earlier theoretical result
of fiber alignment effects [Onck, Koeman et al. (2005); Huisman, van Dillen et al.
(2007)]. However, it is unexplained why there occurred the intermediate stage of
strain softening.

Piechocka et al. [Piechocka, Bacabac et al. (2010)] showed that the fibrin fibers ex-
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hibit resistance to bending by a couple of orders of magnitude lower than what may
be anticipated with their axial modulus and diameter according to Euler-Bernoulli’s
beam theory. They suggested that the fibrin fibers must be loose bundles of protofib-
rils before loading. Their entropy due to thermal vibration should be small. How-
ever, because the protofibrils are only loosely connected side-to-side, the transverse
shear modulus must be small in the fibers. According to Timoshenko’s beam the-
ory, a small transverse shear modulus can throw a profound impact to the beam
bending and hence characteristically change the mechanical behavior of the struc-
ture. Piechocka et al. [Piechocka, Bacabac et al. (2010)] later showed that the
collagen fibers are also loose bundles of fibrils.

In the present work, Timoshenko’s beam theory is applied to study the overall me-
chanical behavior of the hierarchical fiber networks under shear by taking into ac-
count the effects of transverse shear. The results capture two distinct stages of
strain stiffening, due to tightening of initially loose bundles, which translates into
an increase of transverse shear modulus, at small deformations, and due to fiber
alignment at large deformations, respectively. It is also suggested that there may
emerge an intermediate stage of strain softening if the crosslinks and other bond-
ing mechanisms between fibrils in a fiber fail under high stress. The predictions
are consistent with experimental results by Weigandt et al. [Weigandt, Porcar et
al. (2011)]. The present analysis suggests that the effects of transverse shear in
individual fibers may play a profound role in the early and intermediate stages of
deformation in biological fiber networks.

The rest of the paper is organized as follows. In Sec. 2, the Timoshenko beam
model is described for a fiber of bundled fibrils. In Sec. 3, the finite element
model based on Timoshenko’s beam theory is summarized. In Sec. 4, the finite
element method is applied to examine the networks of hexagonal and triangular
lattices. In Sec. 5, the results are discussed, which demonstrates a strong effect
of the fiber transverse shear on the deformation of the networks. Three stages of
strain stiffening and softening are suggested to interpret the recent experimental
observations of Weigandt et al. [Weigandt, Porcar et al. (2011)]. In Section 6,
conclusions are drawn.

2 Timoshenko Beam Model of a Bundled Fiber

Let us consider a fiber of bundled fibrils simply supported and subjected to a con-
centrated force at the middle point as schematically shown in Fig. 1a. The fiber is
modeled as a Timoshenko beam where the transverse shear is allowed to contribute
to the total deflection of the fiber. The deflection at the middle point is given as a
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(a) (b) (c)

Figure 1: Schematic of a fiber of bundled fibrils with (a) a point force exerted at the
middle point; (b) stack configuration; and (c) rod configuration.
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The effective flexural rigidity D* under the loading condition in Fig. 1a is defined
as
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where D (= EI) is the flexural rigidity. It can be seen that a beam is always predicted
to be more flexural by the Timoshenko theory than by the Euler-Bernoulli theory.

Further let us consider a rectangular cross section of uniformly arranged fibrils
[Buehler and Wong, (2011)], as shown in Fig. 1b. Assuming that the fibrils are
closely packed, the axial Young’s modulus E of the fiber would be unaltered from
that of the fibril. The transverse shear modulus G of the fiber is in contrast dictated



Effects of Transverse Shear on Strain Stiffening 65

by the interfacial interaction between the fibrils. By realizing the nature of covalent
bonding within individual fibrils and secondary interaction between them, it may be
inferred that £ >> G. If the (rectangular) fiber consists of n x m fibrils with n and
m indicating the numbers of fibrils in the height and base directions, respectively,
the flexural and shear rigidities of the fiber, D and GA, are related to those of the
fibrils, Dy and GAy , as

3
12
GA = G(md)(nd) = mnGA 7

Substituting Egs. (6) and (7) in Eq. (4) yields

kr = n*kro ®)

where k7o (= o éi’o) 1) is the Timoshenko factor as if there is only one fibril. Finally,

the effective flexural rigidity of the fiber is related to the fibrils parameters as
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Figure 2: Variation of (1 — %}0) with %;0 for a stack of fibrils. The original

data were obtained from [Buehler and Wong, (2011)].
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Buehler and Wong [Buehler and Wong, (2011)] conducted a numerical experiment
of collagen fibril and fiber by employing molecular dynamics simulation and ob-
tained the fiber flexural rigidity as a function of fibril number. We took their data

from Fig. 6 therein, and replotted them as (1 — mrg*l)()) VS. mlr?;o with a slope equal
to k7o, according to Eq. (9). As clearly shown in Fig. 2, these data fall on a straight
line, resulting in k79 = 0.0076. The value of krg is rather small relative to one unit.
However, since a fibrin or collagen fiber can consist of thousands of fibrils, Eq. (9)
indicates that the transverse shear effect can become significant in those situations.
For the case of a circular cross section shown as Fig. 1c, the derivation process is
the same and the definitions of flexural and shear rigidities will be replaced based

on the change of cross section geometry.

3 Timoshenko Beam Model of a Fiber Network

Individual fibers can be modeled by using the Timoshenko beam theory. A hierar-
chical network is formed by joining the Timoshenko beams. Based on the Timo-
shenko beam theory, the transverse shear effect on the network mechanics can be
captured. In this section, uniform fiber networks with hexagonal, square, and trian-
gular unit cells are considered. As each knot in a biological fiber network usually
has 3 ~ 7 branches, a real random network can be regarded as a combination of
these basic arrangements. Each fiber may consist of # fibrils and with that, the fiber
thickness b is defined. All the length scales used in this model are normalized by
the persistent, knot-to-knot length of the fibers. The transverse shear modulus is
denoted by Gy , which is normalized by the Young’s modulus E of an individual
fibril. Our objective is to find out how the overall shear modulus G of the fiber
network varies with Gg and fiber thickness b.

%
Y I
u%r/ uy 6} H:«?r/ Ty
631/ 533/

Figure 3: Schematics of a finite beam element.
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The fibers in the network are discretized into initially straight finite beam elements,
as shown in Fig. 3. The nodal displacements a = { up u uz 6 6, 6 }T

and the nodal forces/moments b={ f1 fo f3 m my m3 }T can be related
as

[k]{ji}z{ii}, (10)

where superscripts 1 and 2 indicate either end of the element. Both a and b are
measured in the local Lagrangian reference frame. The stiffness matrix [k],,,, is
symmetric and the non-zero terms in the upper triangle area are listed as follows
[Cook, Malkus et al. (2001)]:

kig=—ki7=ki7= %, (11a)
taa = —has = ks = g (11b)
ko = ko2 = —kes = —ks.12 = (IEE(I)’YZ)LZ, (110)
ke, 12 = W’ (11d)
ke = k12,12 = m, (11e)
k33 = —kso=koo = (lfiiy)b’” (116)
—k3 5= —k3 11 =ksg =ko 11 = (1?5<PIZY)L2’ (11g)
kss = ki1 Zm, (11h)
ks i1 = m, (11i)
ka4 = —ka 10 = k10,10 = %, (11j)
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where E is the axial Young’s modulus, Gy is the shear modulus within the cross-
section plane, Iy and I are the moments of inertia of the cross section about the
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transverse Y and Z axes, respectively, J is the polar moment of inertia, A is the
cross-section area, ¢ is the geometrical factors, and L is the element length. All
of the above quantities are measured upon a body frame being continuously up-
dated with the element over time during a simulation. It is assumed that both the
linear and angular displacements in the body frame are small. By transforming the
above equations to the global reference system, enforcing the equilibrium condi-
tion at each node, and transforming each quantity back to its own body frame, the
following system of algebraic equations can be derived,

a B!
a? B?

[K]9 . =9 . : (12)
aV BY

where B = { h FE F5 M M, M; }T , F and M are the external forces and
moments, and [K] is the structural stiffness matrix assembled from the elemental
stiffness matrix [k] over all elements; for the sake of brevity, its explicit expression
is omitted.

4 Simulation Results of a Fiber Network

In this section, a rectangular sample of a hierarchical fiber network is considered,
as shown in Fig. 4. Suppose that the bottom boundary of the fiber network is
fixed and a shear force F is applied on the top boundary. In order to examine
the unit cell configuration effects on the entire network behavior, the hexagonal,
square, and triangular lattices are considered. The problem is solved by using the
finite beam elements described above. The overall strain induced by the loading
shear force is recorded as y . The simulation is run for ¥ = 0 ~ 0.6 to examine
the deformation characteristics in the low strain regime, intermediate strain regime,
and high strain regime. The overall shear moduli of the fiber network during the
progressive loading are calculated.

When the lattice is configured as hexagonal, each node in the lattice has three near-
est neighbors. For fiber diameter-to-length ratio b/l= 0.2, a set of simulations are
carried out with various values of transverse shear modulus, Go/E = 0.001, 0.01,
0.1, 1, 10, and 100. The overall shear moduli are obtained as shown in Fig. 5(a).
It can be seen that the overall shear modulus of the fiber network increases with
increasing shear strain for each fixed value of transverse shear modulus Gy. In
the low strain regime, the overall shear modulus increases slowly. As the loading
strain increases, the overall shear modulus changes faster and reaches an approx-
imately linear stage in the large strain regime. Also, the overall shear modulus of
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Figure 4: Loading conditions of a fiber network sample and unit cell configurations.

the fiber network apparently varies with Gy especially when the shear modulus is
small compared to the fibril Young’s modulus. When the transverse shear modulus
is very small such as 0.001FE, the overall shear modulus is about 0. In this case, the
fibrin network can be regarded as a spring network. By increasing the transverse
shear modulus Gy , different curves of overall shear modulus are obtained. When
the shear modulus changes from 10E to 100E, the overall moduli are almost iden-
tical. The convergent effect implies that when the fiber transverse shear modulus
is high enough, the results obtained based on Timoshenko’s beam theory should be
the same as the results obtained based on Euler-Bernoulli’s beam theory.

Figure 5(b) shows the effects of fiber transverse shear deformability on the overall
shear modulus of the network for fiber diameter-to-length ratio b//=0.1. Similar be-
haviors of the overall shear modulus as in Fig. 5(a) are obtained. It increases only
slowly initially but more rapidly at higher strains. Eventually it increases nearly
linearly. By comparing the results shown in these two figures, it can be seen that
the overall effective rigidity of the network decreases with increasing fiber slender-
ness. When the deformation is small, the difference introduced by transverse shear
modulus is relatively small. The result implies that Euler-Bernoulli’s beam theory
is capable to model the hierarchical fiber network approximately only when the
fibers have large aspect ratios and only when the small strain regime is considered.

When the lattice is configured as square unit cell, each node in a square unit cell
has four nearest neighbors. Fig. 6(a) and (b) give the results of the transverse
shear modulus effects on the overall shear modulus when fiber diameter-to-length
ratio b/l= 0.1 and 0.2, respectively. By comparing with the results of a hexago-
nal lattice shown in Fig. 5, it can be seen that the characteristic behavior of the
network remains the same. However, with the higher number of coordination, the
network becomes stiffer. Also, the network of a triangular lattice whose coordina-
tion number is six was examined, which shows the same trend of stiffening with
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Figure 5: Variation of overall shear modulus with shear strain in a hexagonal fiber
network with fiber radius to persistence length ratio /1 = (a) 0.2, (b) 0.1.
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Figure 6: Variation of overall shear modulus with shear strain in a square fiber
network with fiber radius to persistence length ratio /1 = (a) 0.2, (b) 0.1.




72 Copyright © 2013 Tech Science Press CMC, vol.38, no.2, pp.61-77, 2013

the coordination number. This trend implies that the unit cell configuration in the
network would essentially change little the underlining physics.

We also calculated the bending energy and the shear deformation energy during the
loading process. It is clearly shown in the calculations that the network deformation
is dominantly shearing when the transverse shear modulus of fibers is small. It turns
into dominantly bending when the transverse shear modulus of fibers is large.

5 Discussion

As shown in Eq. (9), the effective flexural rigidity of a fiber of bundled fibrils de-
pends on the flexural rigidity of an individual fibril, bundled fibril number, and the
2
Gl
verse shear effect on the fiber flexural rigidity. When the Timoshenko factor ap-
proaches zero, the model reduces to the Euler- Bernoulli beam theory. Equation
(4) shows that the Timoshenko factor is due to the ratio of Young’s modulus and
transverse shear modulus E /Gy and fiber diameter-to-length ratio b/1. If the fib-
ril Young’s modulus and the fiber aspect ratio can be held constant, the transverse
shear modulus Gy would be the only varying material parameter. When Gy in-
creases, the Timoshenko factor would decrease. During a progressive loading pro-

cess, would Gy vary?

Timoshenko factor. The Timoshenko factor kr (: o ) measures the trans-

Let us consider the example of a fibrin fiber. The experimental evidence suggests
that a fibrin fiber is a bundle of fibrils loosely connected side-to-side [Piechocka,
Bacabac et al. (2010)]. Upon loading, the bundle of fibrils would tighten up due
to shear and/or axial straining. While the specific tightening mechanism is open
for investigation, it is clear that the transverse shear modulus of a fibrin fiber is
small before loading but increases upon loading when the bundle tightens up. The
transverse shear would result in apparent bending rigidity to be lower than that
of an Euler-Bernoulli beam. This bundle tightening process can manifest itself as
initial stiffening of individual fibers and consequently apparent stiffening of fibrin
network at small strains. At a point the fibrin fibers being bent and sheared increas-
ingly would yield that can turn a tightened bundle back to a loose bundle. At this
critical point, the fibrin fibers would lose their shear and bending resistances and
become chain- or rope-like that can only sustain axial tensile loading. This may
cause the network to apparently soften temporarily. Upon the transformation, the
hierarchical network essentially becomes a network of linear springs. At higher
loading, the fibrin fibers would align themselves with the loading direction, result-
ing in another stage of strain stiffening [Onck, Koeman et al. (2005); Huisman, van
Dillen et al. (2007)].

According to the above understanding, one may expect the overall shear modu-
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Figure 7: Suggested deformation path in a realistic fibrin network experiencing
strain stiffening due to tightening of bundled fibrils (stage I), strain softening due
to damage (stage II), and strain stiffening again (due to fiber alignment).

lus to follow the dark dotted line with increasing strain during a shear experiment
[Weigandt, Porcar et al. (2011)], as shown in Fig. 7. The bunch of reference curves
are for fixed values of Gy /E copied from Fig. 5a. The dark dotted curve navigates
among these curves with evolving Gy/E as discussed above.

When the fiber is not stretched, the shear modulus between fibrils in such a loose
bundle is at a low level. Let us suppose that the fiber internal shear modulus starts
at 0.001E. When the fiber is stretched, the distance between fibril in the fiber gets
smaller and the bundle becomes firmer, which implies an increase of the transverse
shear modulus. This is the first strain stiffening phase, depicted as stage I in Fig.
7. In this phase, the strain stiffening effect is due to tightening of initially loose
bundles. It can be seen that the overall effective shear modulus climbs up across
the contour lines with increasing transverse shear modulus. When the overall strain
continues to increase, the bundle is tightened and the overall effective shear mod-
ulus reaches the highest level, say, the line of Gy/E = 100. At this point, the fiber
behaves like an Euler-Bernoulli beam, and the overall shear modulus saturates with
any further increase of Go/E. However, as the loading continues to rise, the fibrin
fiber will reach its yielding point. As discussed above, the fibrin fibers would lose
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their ability to resist shear and bending, and this event manifests itself as an abrupt
decrease of transverse shear modulus, marked as stage II in Fig. 7. During this
phase, the overall shear modulus drops/softens. As the loading rises further, the
weakened fibers align themselves with the loading direction. This alignment effect
has been understood to apparently stiffen the network, depicted as stage III in Fig.
7. These understandings are consistent with experimental results by Weigandt et al.
[Weigandt, Porcar et al. (2011)].

It may be worth noting that if the crosslinks are strong enough to survive the loading
before the fiber alignment effect emerges, the intermediate strain softening stage
may not be observed. The behavior of overall shear modulus depends on the com-
petition between the decreasing effect due to the transverse shear yielding of each
fiber and the increasing effect induced by the fiber alignment. Possible buckling
of some fibers in the network may also contribute to the decrease of overall shear
modulus of the network.

6 Conclusion

Timoshenko’s beam theory that takes into account the effects of transverse shear
is applied to study the overall mechanical behavior of a general hierarchical fiber
networks under shear. A uniform lattice consist of connected beams is used to
model the fibrin network for demonstration. By subjecting a shear loading on the
lattice, we ran calculations of the model with finite deformation effects taken into
account. The overall shear moduli of the network represented by unit cells with
various symmetries for various values of transverse shear modulus are plotted. The
results show the overall shear modulus of a hierarchical fiber network is apparently
changed with the values of transverse shear modulus. By analyzing the mechanism
of a loose bundle, a deformation path of the network is suggested that captures the
two strain stiffening stages due to the tightening of initially loose bundles and the
fiber alignment, respectively. A possible intermediate stage of strain softening due
to the crosslinks and/or other bonding mechanisms between fibrils failing under
high shear stress is also considered that explains well the experimental observation
[Weigandt, Porcar et al. (2011)].
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