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Abstract: This paper presents the development of an improved concrete damage
model for projectile impact on concrete structural components. The improvement is
in terms of reduction of input material parameters for nonlinear transient dynamic
impact analysis by employing concrete damage model. The experimental data such
as pressure vs volumetric strain, triaxial compression failure and pressure vs stress
difference have been used for evaluation of the important parameters of concrete
damage model. Various contact algorithms have been outlined briefly to model
the interface between the projectile and target. The nonlinear explicit transient
dynamic analysis has been carried out by using finite element method to compute
the responses. It is observed that the computed penetration depth obtained in the
present study is in good agreement with those values of corresponding experimental
studies and LS-DYNA.
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1 Introduction

Concrete is a widely used material in civil and defense constructions. Potential
missiles/projectiles include kinetic munitions, vehicle and aircraft crashes, frag-
ments generated by military and terrorist bombing, fragments generated by acci-
dental explosions and other events (e.g. failure of a pressurized vessel, failure of
a turbine blade or other high-speed rotating machines), flying objects due to natu-
ral forces (tornados, volcanoes, meteoroids), etc. These projectiles vary broadly in
their shapes and sizes, impact velocities, hardness, rigidities, impact attitude (i.e.
obliquity, yaw, tumbling, etc.) and produce a wide spectrum of damage in the tar-
get.
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Numerous studies were carried out in the last 15 years for the development and
improvement of the macro-scale concrete models for high-pressure applications
[Govindjee et al. (1995); Malvar et al. (1997); Govindjee et al. (1994); Hentz
et al. (2004); Yonten et al. (2005); Farnam et al. (2010); Rama Chandra Murthy
et al. (2008)]. Various material models were proposed from relatively simple to
more sophisticated ones. Their capabilities in describing the actual nonlinear be-
haviour of concrete under different loading conditions vary. Besides, because of
the general complexity of the models, the determination of the model parameters
(i.e., the model parameterization) also plays an important role in the actual per-
formance of these models. This requires a sufficient understanding of the material
formulation and the associated considerations. There are three important methods
for studying local effects [Rama Chandra Murthy et al. (2009)] on a concrete tar-
get arising from projectile impact, namely experimental, analytical and numerical
methods. Experimental data are always of importance extending the understanding
of impact phenomena and for validating analytical and numerical models. Empir-
ical formulae based on experimental data are also important due to the simplified
expressions to represent complexity of the phenomena. Several design codes em-
ploy empirical formulae for the design of protective barriers. Simple and accurate
analytical models can be developed when the underpinning mechanics of the lo-
cal effects of the missile impact are understood. This approach offers the most
efficient and economic way of predicting impact effects and helps to extend the
range of validity of experimentally based empirical formulae. With the rapid de-
velopments of computational tools, computational mechanics, material constitutive
models and the numerical simulation of local projectile impact effects becomes
more reliable and economic. A number of commercial hydro codes such as AU-
TODYN (2001) and LS-DYNA (2003) are available for the general simulation of
structural nonlinear dynamic responses. However, such simulations can produce
reliable results for concrete structures, only if a material model capable of repre-
senting the essential mechanical processes of the material under varying stress and
loading rate conditions is available. It is observed from literature [Govindjee et
al. (1995); Malvar et al. (1997); Govindjee et al. (1994); Hentz et al. (2004);
Yonten et al. (2005); Farnam et al. (2010); Rama Chandra Murthy et al. (2008);
Rama Chandra Murthy et al. (2009); Hu et al. (2012)] that various material mod-
els such as soil/crushable foam model, isotropic elastic-plastic with oriented cracks
model, kinematic hardening cap model, soil/concrete model, brittle damage model,
JH model and Gebbeken-Ruppert model, Johnson and Holmquist concrete model,
concrete damage model etc., are generally used for concrete to represent the im-
pact phenomena. The concrete damage model is widely employed for simulation
of nonlinear behaviour of concrete. This model requires many input parameters,
which are to be obtained from experiments.
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The objective of this paper is to present the details of an improved concrete dam-
age model for projectile impact analysis and to conduct nonlinear transient dynamic
analysis of concrete structural components. Brief discussion on concrete damage
model, various contact algorithms and procedure to conduct nonlinear explicit tran-
sient dynamic analysis is provided.

2 Concrete Damage Model

The concrete damage model was first developed for DYNA3D [Govindjee et al.
(1995); Malvar et al. (1997); Farnam et al. (2010)]. The concrete damage model
uses three independent strength surfaces, namely, an initial yield surface, a maxi-
mum failure surface and a residual surface, with consideration of all the three stress
invariants (I1, J2 and J3). The strength surfaces are uniformly expressed as:

∆σ =
√

3J2 = f (p,J2,J3) (1)

where ∆σ and p denote, respectively, the principal stress difference and pressure,
and

f (p, J2, J3) = ∆σ
c ∗ r′ (2)

where ∆σ c represents the compressive meridian and r′ can be calculated by using
the formula given below.

r′ =
r
rc

=
2(1−ψ2)cosθ +(2ψ−1)

√
4(1−ψ2)cos2 θ +5ψ2−4ψ

4(1−ψ2)cos2 θ +(1−2ψ)2 (3)

where ψ = rt/rc(refer to Figure 1). The Lode angle, θ is a function of the second
and third deviatoric stress invariant and can be obtained by either of the following
two equations:

cosθ =

√
3

2
s1√
J2

or cos 3θ =
3
√

3
2

J3

J3/2
2

(4)

In Eq.4, s1 is the s1 is first principal deviatoric stress.

The compressive meridians of the initial yield surface ∆σ c
y , the maximum failure

surface ∆σ c
m and the residual surface ∆σ c

r are defined independently as [Malvar et
al. (1997)]:

∆σ
c
y = a0y +

p
a1y +a2y p

(5)

∆σ
c
m = a0 +

p
a1 +a2 p

(6)
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Figure 1: Typical deviatoric cross-section of strength surface.

∆σ
c
r =

p
a1 f +a2 f p

(7)

The eight free parameters, namely, a0y, a1y, a2y, a0, a1, a2, a1 f , and a2 f are to be
determined from experimental data.

With the specification of the three strength surfaces, the loading surfaces represent-
ing strain hardening after yield are defined as:

∆σL = η∆σm +(1−η)∆σy (8)

The post-failure surfaces, denoted by∆σp f , are defined in a similar way by interpo-
lating between the maximum failure surface ∆σm and the residual surface∆σr:

∆σp f = η∆σm +(1−η)∆σr (9)

The variable η in Eqs. (8) and (9) is called the yield scale factor, which is deter-
mined by a damage functionλ :

λ =


∫ ε p

0
dε p

[1+p/ ft ]
b1 p≥ 0∫ ε p

0
dε p

[1+p/ ft ]
b2 p < 0

(10)

where ft is the quasi-static concrete tensile strength, dε p is effective plastic strain

increment and dε p =
√

2
3 dε

p
i jdε

p
i j with dε

p
i j being the plastic strain increment ten-

sor.

It is to be noted that the damage function has different definitions for compression
(p≥ 0) and tension (p < 0) to account for different damage evolution of concrete
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in tension and compression. The evolution of the yield scale factor η follows a
general trend that it varies from “0” to “1” when the stress state advances from
the initial yield surface to the maximum failure surface and changes from “1” back
to “0”, when the stress softens from the failure surface to the residual surface.
Further, from Eq.8, it can be noted that η varies from 0 to 1 depending on the
accumulated effective plastic strain parameter λ . After reaching the maximum
surface the current failure surface is interpolated between the maximum and the
residual as shown in Eq.9. The function η(λ ) is input as a series of (η ,λ ) pairs.
This function (Eq.10) begin at 0 at λ = 0, increase to 1 at some value λ = λm and
then decrease to 0 at some larger value of λ .

3 An Improved Concrete Damage Model

The original concrete damage material model decouples the volumetric and devia-
toric responses. An equation of state gives the pressure as a function of current and
previous minimum (most compressive) volumetric strain. The volumetric response
is easily captured via a tabulated input data such as the one in equation of state.
However, the deviatoric response present some shortcomings, which are addressed
with modifications. Due to the decoupling of volumetric and deviatoric responses,
this model has the limitation of not incorporating shear dilation, which is generally
observed with concrete. For the case of significant structural lateral restraints and
low damage levels, this will result in responses softer than expected. During ini-
tial loading or reloading, the deviatoric stresses remain elastic until the stress point
reaches the initial yield surface. The deviatoric stresses can then increase further
until the maximum yield surface is reached. Beyond this stage, the response can be
perfectly plastic or soften to the residual yield surface (see Figure 2). Whenever the
stress point is on the yield surface and the stress increment corresponds to loading
on that surface, plastic flow occurs in accordance with a Prandtl-Reuss (volume
preserving) flow rule, which is represented implemented by the well known “ra-
dial return” algorithm. The model also incorporates a tensile cut-off and a pressure
cut-off, which are detailed in the following.

It is well known that the concrete damage model requires eight constants, namely,
a0y, a1y, a2y, a0, a1, a2, a1 f , and a2 f , which are generally obtained from appropriate
experimental data. In addition, an-equation-of-state is to be defined for this model.
Tabulated values consisting of pressure versus volume is to be given as input to
define equation-of-state, which is generally obtained from the experiments.

Schwer and Malvar (2005) characterized 45.6 MPa unconfined compression strength
concrete, which is commonly used as the ‘standard concrete’ in many numerical
simulations. The experimental data can be used as input for numerical simulation,
which will reduce the evaluation of constants. The following modifications are
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Figure 2: Three failure surfaces .

carried out to the existing concrete damage model:

• Generalization of equation-of-state

• Evaluation of constants, ao, a1 and a2 based on triaxial compression failure
test data

• Determination of yield surface parameters, a0y, a1y and a2y based on triaxial
failure surface

• Evaluation of residual failure surface constants, a1 f and a2 f from the triaxial
compression test

• Computation of damage scaling factor, b1, b2 and b3 based on uniaxial and
triaxial tensile path

3.1 Generalization of equation-of-state

Figure 3 shows the pressure versus volume strain response for the 45.6 MPa con-
crete under isotropic compression. This laboratory test was performed on right
circular cylinders of concrete, where loads (pressures) are applied independently
to the top and lateral surfaces the axial and lateral strains were measured on the
outer surface of the specimen. For this isotropic (hydrostatic) compression test, the
applied axial and lateral pressures are equal. The pressure versus volume strain
response has three general phase:

1. An initial elastic phase as low pressure and volume strains; the slope of this
portion of the response curve is the elastic bulk modulus.
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2. A large amount of straining as the void in the concrete are collapsed, while
the pressure increases less dramatically (lower slope).

3. The final phase of compaction is reached, when all the voids are collapsed
and the material response stiffens.

4. The slope of unloading path shown in Figure 3 provides an estimate of the
bulk modulus of the fully compacted concrete.

Table 1 shows the data of pressure vs volumetric strain for 45.6 MPa concrete
[Schwer and Malvar (2005)].

Table 1: Pressure vs Volumetric strain data.
Pressure Volumetric

strain
Pressure Volumetric

strain
Pressure Volumetric

strain
1.16248 7.57E-05 411.611 0.045375 224 0.047136
18.5027 0.001735 449.668 0.049521 195.193 0.04509
60.3243 0.004609 491.171 0.054118 147.532 0.041987
109.024 0.008462 528.066 0.058189 102.417 0.037837
137.795 0.011928 557.958 0.061955 67.8194 0.034068
195.268 0.019233 483.157 0.059285 45.9539 0.031431
233.256 0.023754 422.501 0.056474 25.3202 0.028496
286.079 0.030757 344.337 0.052902 13.9447 0.02639
325.187 0.035578 301.145 0.051077 9.65501 0.024139
360.919 0.039572 257 0.0493 0.784643 0.02121

3.2 Evaluation of constants, a0, a1 and a2

Constants, a0, a1 and a2 are obtained by using the test data of triaxial compression
failure surface [Schwer and Malvar (2005)]. It is well known that the concrete dam-
age model uses a three parameter function to represent the variation of compressive
shear strength with mean stress of the form

SD = a0 +
P

a1 +a2P
(11)

where, SD is the stress difference and P is the mean stress in a triaxial compression
failure test, and the parameters (a0, a1, a2) are determined by a regression fit of Eq.
(11) to the available laboratory data. Table 2 shows the experimentally obtained
data form triaxial compression failure test for 45.6 MPa concrete. Figure 4 shows
the fit to the experimental data and then predicts the failure strength.
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Figure 3: Pressure versus volume strain response.

Table 2: Stress difference and mean stress
Mean stress

(MPa)
Stress difference

(MPa)
Mean stress

(MPa)
Stress difference

(MPa)
0.74707 8.00122 297.332 346.943
17.1825 61.6862 342.903 382.297
38.1003 98.2235 374.28 394.818
91.1419 154.137 434.045 425.577
132.978 192.926 486.339 450.635
184.525 232.842 531.163 471.133
208.431 241.945 566.275 481.361
232.337 278.478 609.605 496.148
252.508 308.159 648.453 507.513
280.149 329.828 700.747 522.284

3.3 Determination of initial yield surface parameters, aoy, a ly, a2y

The yield surface, the maximum failure surface and residual failure surface were
determined by evaluating the parameters, namely, aoy, a1y, a2y, ao, a1, a2, a1 f and
a2 f . The surface is approximately the locus of points at ∆σ = 0.45∆σm on triaxial
compression paths as shown in Figure 5. For a point (p,∆σm) on the maximum
failure surface, the corresponding point p′,∆σy on the yield surface is

∆σy = 0.45∆σm and p′ = p− 0.55
3

∆σm (12)
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Figure 4: Triaxial compression failure surface test data.

From the later equation, p can be obtained as a function of p’:

p =− 1
2

[
a1

a2
− p′− 0.55

3

(
a0 +

1
a2

)]

− 1
2

√[
a1

a2
− p′− 0.55

3

(
a0 +

1
a2

)]2

+4
(

0.55a0a1

3a2
+

a1

a2
p′
) (13)

while the former equation gives ∆σy as a function of p is obtained from curve fitting
as:

∆σy = 0.45
(

a0 +
p

a1 +a2 p

)
, (14)

enabling ∆σy to be computed as a function of p’. A plot of ∆σy is included in
Figure 5. Since the proposed formulation has three parameters, the curve ∆σy(p′)
can be approximated by choosing three points from the curve and solving for the
parameters (aoy, a1y, a2y). By picking the first point at p’= 0, which gives (∆σy =
a0y), only two equations with two unknowns have to be solved for a1y and a2y. Table
3 shows the experimental data for determination of initial yield surface parameters.

3.4 Determination of residual failure surface parameters, a1 f and a2 f

Similar procedure as explained above can be followed to obtain the residual pa-
rameters, a1 f and a2 f . Table 4 shows the experimental data for determination of
residual failure surface parameters.

Similar procedure has been followed to evaluate the parameters for concrete of
strength around 60MPa [Davidson et al. (2004)].
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Figure 5: Yield surface determination based on triaxial compression tests

Table 3: Pressure vs Stress difference values for yield failure surface.

Pressure (MPa) Stress Difference (MPa)
0 0

1.5 -0.74074
38.6749 34.8148
68.2714 65.9259
96.5173 85.9259
120.585 101.481
145.369 113.333
157.239 118.519
169.466 122.222
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Table 4: Pressure vs Stress difference values for residual failure surface.
Pressure (MPa) Stress Difference (MPa)

7.70821 0.818278
19.0754 18.761
33.6322 45.259
51.822 75.1673

70.4732 109.359
88.6631 139.267
108.21 167.454
132.5 196.471
150.5 218.5
158.5 226.325
167.7 235.4

4 Contact Algorithms

Several contact algorithms are available in the literature, namely, frictional slid-
ing, single surface contact, nodes impacting on a surface, tied interfaces, one-
dimensional slide lines, rigid walls, material failure along interfaces, penalty and
Lagrangian projection options for constraint enforcement and fully automatic con-
tact. Details of the typical algorithm, ‘contact-automatic-single-surface’ are pre-
sented below.

This algorithm uses a penalty method to model the contact interface between the
different parts. In this approach, the slave and master surfaces are generated auto-
matically within the code. The method consists of placing normal interface springs
to resist interpenetration between element surfaces. An example of this approach
is illustrated in Figure 6. As shown in Figure 6 , when a slave node penetrates
a master surface in a time step, the code automatically detects it, and applies an
internal force to the node (indicated by the spring) to resist penetration and keep
the node outside the surface. The internal forces added to the slave nodes are a
function of the penetrated distance and a calculated stiffness for the master surface.
The stiffness is computed as a function of the bulk modulus, volume and face area
of the elements in the master surface. A static and dynamic coefficient of friction
of 0.8 is used between the different parts in contact.
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 Figure 6: Penalty method for contact algorithm

5 Nonlinear Transient Explicit Finite Element Analysis

Explicit finite element method (FEM) was originally developed to solve problems
in wave propagation and impact engineering, but they are currently used for many
other applications such as sheet metal forming, underwater simulations, failure
analysis, glass forming, metal cutting, pavement design, and earthquake engineer-
ing, among others [Benson (2001)].

Implicit FEM is expensive, when thousands of time steps must be taken to solve
a dynamic problem, because of the cost of inverting stiffness matrices to solve the
large sets of nonlinear equations, especially for models with thousands of degrees
of freedom or when nonlinearities are present. In an explicit FEM, the solution
can be achieved without forming a global stiffness matrix. The solution is obtained
on an element-by-element basis and therefore, a global stiffness matrix need not
be formed. As a result, explicit methods can treat large three-dimensional models
(thousands of degrees of freedom) with comparatively modest computer storage re-
quirements. Other advantages include easy implementation and accurate treatment
of general nonlinearities. However, explicit methods are conditionally stable and
therefore, small time steps must be used. For stable computations, the time step
is selected such that the time step is less than the time required for a stress wave
to travel through the shortest element and therefore, this could result in excessive
execution times as the level of discretization increases.

Central-difference method, which is characteristic of explicit methods in general,
for direct time integration can be used. In this method, the solution is determined
in terms of historical information consisting of displacements and time derivatives
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of displacements. By using this method, the finite element solution is then obtained
by using the following equations (with no damping):

u̇n+1/2 = u̇n−1/2 +∆t.M−1
(

Fexternal−
∫

BT
σdv

)
(15)

un+1 = un−1 +∆t.u̇n+1/2 (16)

where Fexternal is the vector of applied forces associated with the boundary condi-
tions and body forces, M is the mass matrix and BT σdv is the internal force vector
[15]. At each time step the velocities and displacements are updated. In general ,
explicit methods have the form

un+1 = f
(
un, u̇n, ün,un−1, · · ·

)
(17)

and therefore, the current nodal displacements can be determined in terms of com-
pletely historical information consisting of displacements and time derivatives of
displacements at previous time steps. If a diagonal mass matrix is used Eq. (17)
is a system of linear algebraic equations and a solution can be obtained without
solving simultaneous equations. Once displacements are updated, strains can be
computed, which are then used to determine stresses and eventually nodal forces.
Stable integration by using the central difference method for undamped problems
requires the following time step limit:

∆t ≤ L
cw

(18)

where L is related to the element size and cw is the wave speed (speed at which
stress waves travel in the element). The physical interpretation of this condition for
linear displacement elements is that it must be small enough, so that information
does not propagate across more than one element in a time step. The shortcoming
in using an explicit FEM, especially to model a quasi-static experiment is the fact
that it can result in excessive execution times. Therefore, the time step will depend
upon the smallest element size.

6 Performance Studies

Forrestal et al. (1994) conducted experiments to find depth of penetration with
ogive nose projectiles and concrete targets with confined compressive strengths
of 14, 35, 97MPa. The experimental data has been used in the present study for
finite element analysis (FEA). Penetration depths are computed for various veloc-
ities by employing different material models available in NONTRANS module of
FINEART. The computed penetration depth is compared with the corresponding
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experimental values and LS-DYNA software. Parametric studies have been carried
out by employing concrete damage model. The studies include, effect of rein-
forcement on penetration depth by using various options, namely, model option
reinforcement, smeared model and discrete model.

The details of projectile are shown in Figure. 7. The projectile is with diameter of
1.059 in, Shank length, l1: 8.142in, Nose edge length, l2: 1.401in and material used
is Rc (38-40) steel. The density of steel is 2.826e-4 kips/in3 and Young’s modulus
is 29.36x106psi and Poisson’s ratio is 0.33. The material of the target is of concrete.
The target is of cylindrical shape with target diameter of 48.03in and target length
of 72.05in.

 

1.401in 

1
.0

5
in

 

 

9.54 in 

Figure 7: Projectile geometry

 

Figure 8: FE model of the projectile

Geometry and FE modeling has been carried out by using general purpose FEA
software, ANSYS/LS-DYNA. Figs. 8 & 9 show the FE model of the projectile
and target. Eight noded solid element has been employed to idealize the projectile
and target. Each node has three degrees of freedom, namely, ux, uyand uz. Total
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Figure 9: FE Model of the Target

Table 5: Concrete damage model

Mass density, RO 8E-5lb/in3

Poisson’s ratio, PR 0.19
Max. principal stress for failure, SIGF 450 psi
Cohesion, A0 1478.0 psi2

Pr. hardening coefficient, A1 0.4463psi
Pr. hardening coefficient, A2 0.1616e-4
Cohesion for yield, A0Y 1116.0psi
Pr. hardening coefficient for yield limit, A1Y 0.625
Pr. hardening coefficient for yield material, A2Y 0.515e-4
Pr. hardening coefficient for jailed material, A1F 0.4417
Pr. hardening coefficient for jailed material, A2F 0.2366e-4
Damage scale factor, B1 15.0
Damage scale factor for uniaxial tensile path, B2 50.0
Damage scale factor for triaxial tensile path, B3 0.01
% reinforcement, PER 0
Elastic modulus for reinforcement, ER 0
Poisson ratio for reinforcement, PRR 0
Initial yield stress, SIGY 0
Tangent modulus/ Plaster, ETAN 0
Load curve ID for principal material, LCP 0
Load curve ID for reinforcement, LCR 0
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Table 6: Damage function coefficients

X1 – 0 X7 – 0.8e-4
X2 – 0.8e-5 X8 – 0.32e-3
X3 – 0.24e-4 X9 – 0.52e-3
X4 – 0.4e-4 X10 – 0.57e-3
X5 – 0.56e-4 X11 – 0.1e+1
X6 – 0.72e-4 X12 – 0.1e+2
X13 – 0.1e11
E0 = 0, Gamma = 0, V0 = 1.0

Table 7: Scale factor values
X1 – 0 X7 – 0.97
X2 – 0.85 X8 – 0.5
X3 – 0.97 X9 – 0.1
X4 – 0.99 X10 – 0
X5 – 1.0 X11 – 0
X6 – 0.99 X12 – 0
X13 – 0

Table 8: Volumetric strain data vs volumetric pressure values

εv1 − 0 εv6 − -3.2e-2 C1 – 0 C6 –0.1017e+5
εv2 − -0.6e-2 εv7 − -0.788e-1 C2 – 0.325e+4 C7 – 0.1667e+5

εv3 − -1.08e-2 εv8 − -3.56e-1 C3 – 0.4973e+4 C8 – 0.7053e+5
εv4 − -1.72e-2 εv9 − -0.4e+1 C4 – 0.7086e+4 C9 – 0.7213e+6
εv5 − -2.4e-2 εv10 − -0.4e+4 C5 – 0.8906e+4 C10 – 0.7213e+6

Table 9: Penetration depth by using concrete damage model

Velocity (m/s)
Experimental Results (mm) Penetration depth (mm)

(Forrestal et al. 1994) LS-DYNA NONTRANS
431 411 361 377
590 729 619 648
773 866 701 813
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Table 10: The revised constants for concrete damage model

a0 1300 ps2
i Cohesion Constant

a1 0.4 psi Pressure hardening coefficient
a2 0.15e-4 Pressure hardening coefficient
a0y 1000 psi Cohesion for Yield
a1y 0.5 Pressure hardening coefficient for yield
a2y 0.5e-4 Pressure hardening coefficient for yield
a1 f 0.4 Pressure hardening coefficient for failed material
a2 f 0.2e-4 Pressure hardening coefficient for failed material

Table 11: Velocity vs penetration depth by using an improved concrete damage
model

Velocity (m/sec) LS-DYNA
Penetration depth (mm)

Experimental
(Forrestal et al. 1994)

NONTRANS

431 361 (12.16%) 411 365 (11.19%)
590 619.7 (14.99%) 729 632.1 (14.53%)
773 701.4 (19.0%) 866 765.8 (11.57%)

no. of elements in the target and projectile are 46928 and the total no. of nodes
in the target and projectile are 51013. A rigid material model is employed for the
projectile. Input details related to the above material models are given in Tables 5
to 8.

Contact algorithm employed between target and projectile is surface-to-surface-
automatic. Input details of projectile velocity are given in Table 9. Nonlinear
explicit transient dynamic analysis has been carried out by using LS-DYNA and
NONTRANS. Table 9 also shows the penetration depth computed for various ve-
locities by using LS-DYNA and NONTRANS.

Concrete damage material model has been modified with the revised constants.
These constants are given as input to the material model and carried out analysis by
using NONTRANS module of FINEART. Input data and the dimensions for target
and projectile are same as explained above, except the values for the constants a0,
a1, a2, a0y, a1y, a1 f and a2 f . The parameters are given in Table 10.

Table 11 shows the computed penetration depth values by using an improved con-
crete damage model along with the corresponding values of LS-DYNA and exper-



94 Copyright © 2013 Tech Science Press CMC, vol.37, no.2, pp.77-96, 2013

imental studies. From Table 11, it can be observed that the computed values by
using an improved concrete damage model is in good agreement with the corre-
sponding experimental studies [Forrestal et al. (1994)].

Penetration of projectile into concrete target, variation of energy, resultant velocity
and σzz- stress are shown in Figure 10 for impact velocity of 590 m/s.

 

      

(a) Penetration of projectile into concrete target          (b) Energy variation 

 

    

(c) Resultant velocity variation                     (d) 
zz

-stress contour 

 Figure 10: Responses of concrete target for impact velocity of 540 m/s

7 Summary & Concluding Remarks

Nonlinear transient dynamic analysis has been carried out for simulation of pro-
jectile impact on concrete structural components by using an improved concrete
damage model. The improvement is in terms of reduction of input parameters for
the concrete damage model. The experimental values available in the literature have
been used for evaluation of parameters. Various contact algorithms used to model
the interface between the projectile and target have been discussed. The procedure
for nonlinear transient explicit FEA has been presented. Based on the methodolo-
gies, program modulus have been developed and integrated with the NONTRANS
module of FINEART. Numerical studies have been carried out by using FINEART
and LS-DYNA software. The penetration depth is computed for different impact
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velocities. The computed penetration depths obtained by using NONTRANS by
employing the improved concrete damage model are in good agreement with the
corresponding experimental values, whereas LS-DYNA estimates lesser value. In
general, it is observed that the penetration depth increases with increase of impact
velocity.
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