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Design of Aligned Carbon Nanotubes Structures Using
Structural Mechanics Modeling

Part 1: Theory and Individual Carbon Nanotube Modeling

J. Joseph1 and Y. C. Lu1

Abstract: Aligned carbon nanotubes structures are emerging new materials that
have demonstrated superior mechanical, thermal, and electrical properties and have
the huge potential for a wide range of applications. In contrast with traditional ma-
terials whose microstructures are relatively "fixed", the aligned carbon nanotube
materials have highly "tunable" structures. Therefore, it is crucial to have a rational
strategy to design and evaluate the architectures and geometric factors to help pro-
cess the optimal nanotube materials. Astructural mechanics based computational
modeling is used for designing the aligned carbon nanotubes structures. Part 1 of
the papers presents the theory of the computational method as well as the design
and modeling of individual nanotube. As the fundamental building block of the
aligned nanotube structures, the variations of geometric parameters of the individ-
ual nanotube on its mechanical properties are thoroughly examined.

Keywords: Aligned carbon nanotubes, Nanotubes, Finite element method.

1 Introduction

Since its discovery in the early 90’s [Iijima (1991, 1993)], carbon nanotube (CNT)
has continued to attract great interest due to its superior structures and properties.
An individual single-walled CNT may be visualized as originating from a single
layer sheet of graphene rolled up to form a tube structure. Depending on the direc-
tions of rolling vectors, the CNT can be in different configurations, i.e., armchair,
zigzag, and chiral. Carbon nanotube can also be in multi-walled structure, with
consists of a group of coaxial single-walled carbon nanotubes. Like diamond, car-
bon nanotube is also allotrope of carbon. A carbon atom in a CNT has six electrons
with two of them filling the 1s orbital and the other four filling the sp2 orbital. The
rolled structure of CNT causes σ −π rehybridization in which the three σ bonds
are slightly out of plane, which makes the π orbital more delocalized outside the
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nanotube. This has resulted in extremely strong carbon nanotubes, with possibly
the highest Young’s modulus and tensile strength. There have been numerous the-
oretical studies on the mechanical properties of an individual carbon nanotube [Kr-
ishnan et al. (1998); Wong et al. (1997); Lu (1997); Popov et al. (2000); Zhan and
Gu (2011); Zeng (2011)], and the Young’s modulus and shear modulus of a CNT
have been predicted to be as high as 1.25 TPa and 0.45 TPa, respectively. Due to
the small dimensions, the actual measurements on the properties of an individual
CNT has proven to be difficult. Treacy et al. have carried out the first successful
measurement of the Young’s modulus of individual CNT. By thermally inducing
a vibration on a CNT cantilever inside a transmission electron microscope, they
have reported the Young’s modulus of a multi-walled CNT as 1.8 TPa [Treacy et
al. (1996)]. Wong et al. (1997) have reported for multiwalled CNTs Young’s Mod-
ulus values of 0.69 - 1.87 TPa by using an AFM to bend the CNT. Yu et al. (2000)
have conducted nanoscale tensile test of a CNT by pulling the tip with an AFM
and observing it under SEM and reported Young’s modulus in the range 0.27 - 0.95
TPa.

Due to its small sizes (the tube diameter is only a few nanometers), a single car-
bon nanotube has very limited applications. Most devices would require that the
carbon nanotube be produced in large scales and at oriented forms. These have re-
sulted in a new form of carbon nanotubes: the aligned carbon nanotubes (A-CNTs)
structures. As sketched in Fig.1a, an A-CNT structure is comprised of numerous
individual CNTs adhered vertically to a flat substrate. The A-CNT structure was
first fabricated by Terrones et al. [Terrones et al. (1997)] through the method of
laser ablation. Latest technologies such as the chemical vapor deposition (CVD)
method have made it possible to produce the aligned CNTs at much large scales.
The aligned carbon nanotubes structures have found a wide range of applications
in areas such as electrical interconnects [Kreupl et al. (2002)], thermal interfaces
[Cola (2009)], energy dissipation devices [Liu et al. (2008)], microelectronic de-
vices [Fan et al. (1999)], and flow sensors on micro air vehicles [Zhang et al.
(2010)], etc.

Unlike traditional materials (metals, ceramics and polymers) whose microstruc-
tures are relatively "fixed", the aligned carbon nanotube materials have highly "tun-
able" structures. The optimal performance (thermal, electrical and mechanical) of
the A-CNTs highly depend upon their architectures and geometric parameters, in-
cluding the tube height, tube diameter, tube array density, tube distribution pattern,
inter-tube distance, tube-tube junction structure, and among many other factors.
Therefore, it is crucial to have a rational strategy to design and evaluate the archi-
tectures and geometric factors to help process the optimal nanotube materials.A
review of literature on carbon nanotubes has revealed that extensive works avail-
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able so far are on modeling and characterization of individual CNT as against fewer
works available/published on modeling and characterization of the A-CNT struc-
tures. The most commonly used method for modeling the individual CNT has been
the atomistic approach, which includes the classical molecular dynamics [Cornwell
and Wille (1997); Popov et al. (2000)], tight binding molecular dynamics [Her-
nandez et al. (1998, 1999)], and density functional theory [Sanchez-Portal et al.
(1999)]. Although the atomistic approach is successful for handling an individual
nanotube, it is too computational expensive for modeling an aligned CNT structure
that is consisted of millions or even billions of individual tubes in a square cen-
timeters. The present papers present a frame work for designing and modeling the
aligned carbon nanotubes structures by using the structural mechanics approach,
i.e., the finite element method. Part 1 presents the theory and the modeling of an
individual nanotube, which is the fundamental building block of the aligned nan-
otube structures. Part 2 presents the detailed design and modeling of the aligned
carbon nanotube structures.

2 Modeling Procedures for Individual Carbon Nanotubes

2.1 Finite Element Formulation

The approach in this work is based on the principle of structural mechanics (fi-
nite element method (FEM)). As illustrated in Fig.1a, an aligned carbon nanotubes
structure is composed of numerous individual nanotubes that are packed vertically
on flat substrates. Each individual carbon nanotube may be understood as geo-
metrical space frame structures with primary bonds between any two neighboring
atoms acting as load bearing members and the atoms may be visualized as joints
for these load bearing members (Fig.1b). Therefore, the 3D space beam elements
were deemed to be appropriate and effective for modeling the carbon nanotubes
structures (Fig.1c). The general purpose finite element programs are often based
on displacement or stiffness based finite element formulation, wherein the govern-
ing equations are expressed in terms of nodal displacements using equations of
equilibrium describing the behavior of an element in matrix form and represented
as below [Logan (2002)].

{ f}e = [k]e{q}e (1)

where

[k]e = Element stiffness matrix

{q}e = Element displacement vector

{ f}e = Element force vector
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Figure 1: (a) A sketch for align carbon nanotubes structure (not to scale); (b) A
sketch for an individule carbon nanotube; and (c) A 3D beam element in space.

For a beam element that is arbitrarily oriented in space as shown in Fig.1c, the
stiffness matrices considering bending about two axes ŷ (for bending in x̂− ẑ plane
) and ẑ (for bending in x̂− ŷ plane), upon direct superposition with the axial stiffness
matrix & the torsional stiffness matrix yields the element stiffness matrix [k]e for
the beam element in 3-D space as below.

[k]e =
[

kii ki j

k ji k j j

]
(2)
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where
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and k ji = kT

i j

The corresponding element displacement and force vectors are

{q}e = [ui,vi,wi,θxi,θyi,θzi,u j,v j,w j,θx j,θy j,θz j]
T

{ f}e = [ fxi, fyi, fzi,mxi,myi,mzi, fx j, fy j, fz j,mx j,my j,mz j]
T

The element stiffness equation is established for each of the beam element in the
space frame followed by appropriate transformation of reference frame from local
to global coordinate system and solution to nodal displacement. The individual
element equations are then added together using a method of superposition referred
to as direct stiffness method in order to obtain the global equations for the whole
aligned nanotubes structure with the final assembled/global equation

{F}= [K]{Q} (3)

where

[K] = Structure global stiffness matrix
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{Q}= Vector of generalized displacements

{F}= Vector of global nodal forces

The system of simultaneous linear equations can then be solved by applying bound-
ary conditions to obtain the nodal force, displacements, and element stresses.
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Figure 2: Sketches showing a beam under (a) pure tension, (b) bending and (c)
torsion.

It is generally accepted that the C-C bonds in a carbon nanotube are circular in cross
section. From structural mechanics principles, the expression for strain energy of a
uniform beam subjected to a pure axial force ‘N’ as shown in Fig.2(a) is given by

UN =
1
2

∫ ∫ ∫
σxεydV =

1
2
(
EA
L

)(∆L)2 (4)

where ‘∆L’ is the axial deformation due to stretching.

Similarly the strain energy of a beam subject to pure bending moment ‘M’ as shown
in Fig.2(b) is given by

UM =
1
2

∫ ∫ ∫
σbεbdV =

1
2
(
EI
L
)(2α)2 (5)

where ‘α’ is the rotation due to bending.

Further, the strain energy of a beam subject to pure torsional moment ‘T ’ as shown
in Fig.2(c), developing circumferential shear stress ‘τ’ and corresponding shear
strain ‘γ’ is given by

UT =
1
2

∫ ∫ ∫
τγdV =

1
2
(
GJ
L
)(∆β )2 (6)

where ‘∆β ’ is the torsional rotation.

By comparing the above strain energy equations with the steric potential energy
equations obtained from molecular mechanics [Cornell et al. (1995)], the structural
beam parameters can be related to the molecular force constants as follows

ka =
EA
L

; kθ =
EI
L

; kτ =
GJ
L

(7)
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Assuming a circular cross-section for the C-C- bond beam with a diameter d, the
geometric properties become A=πd2/4, I=πd4/64, and J=πd4/32. Substituting them
into Eq.7 yield

d = 4

√
kθ

kr
; E =

k2
r L

4πkθ

; G =
k2

r kτL
8πk2

θ

(8)

The force constants values were selected as ka = 938 Kcal mol−1 Å−2, kθ = 126
Kcal mol−1rad−2 and kτ = 40 Kcal mol−1rad−2 [Cornell et al. (1995)]. Using these
values, the elastic modulus of the C-C bond beams can be calculated and then used
in the finite element analysis for the nanotube structures.

2.2 FE Models of Individual Carbon Nanotubes

The CNTs are classified into three types: (i) armchair, (ii) zigzag, and (iii) chi-
ral. It is noticed that when the chiral angles become 0◦ and 30◦, the chiral CNT
essentially becomes the zigzag and armchair tubes, respectively. Therefore, the
CNTs with zigzag and armchair configurations were the primary concern in the
present study. First, individual carbon nanotube in zigzag and armchair configura-
tions were geometrically modeled using the modeling capability of ANSYS soft-
ware. The solid nanotube models were then imported into ABAQUS CAE where
the nanotube models were meshed using 3D beam elements (Fig.3). Both linear
(B31) and quadratic (B32) formulation beam elements were used in the analyses.
Appropriate beam section orientation, geometric sectional properties, and material
properties obtained from the molecular-structural correlation were implemented.
The thickness of the nanotube was varied from 0.066 nm to 0.69 nm. The beam
elements were modeled assuming circular cross sections for which the diameters
were assigned equivalent to the values of the thickness identified. The diameter of
the overall nanotube was varied between 0.5 nm - 2.5 nm. The nanotubes were sub-
jected to tensile loading by way of imposing displacements at the free ends and with
the other ends of the nanotubes constrained in all the degrees of freedom. Analyses
were run by varying the mesh size, i.e., by varying the number of elements in the
nanotube FE models. Hence a convergence study was conducted before arriving at
the final results.

3 Results and Discussion

3.1 Variation of Young’s Modulus with Nanotube Wall Thickness

The individual nanotube is the fundamental building block of the aligned nanotube
structures, therefore, the structure and properties of the individual are first analyzed.
The complete FE model for the individual nanotubes were setup in the FE software
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(a)                                                                   (b)  

Figure 3: Finite element models for individual carbon nanotube (CNT) at (a) zigzag
(14, 0) configuration and (b) armchair (8,8) configuration.

ABAQUS with appropriately calculated beam properties for the C-C bonds of the
nanotubes. The effect of nanotube wall thickness on the Young’s modulus of the
carbon nanotube was evaluated. Several values of nanotube thickness have been re-
ported in the literature. In this analysis, the commonly reported values of thickness
viz. 0.066 nm [Krishnan et al. (1998)], 0.075 nm [Wong et al. (1997)], 0.147 nm
[Salvetat et al. (1999)], 0.154 nm (which is the diameter of carbon atom), and 0.34
nm (which is the interwall spacing of graphite) have been used for modeling the
nanotubes. The Young’s modulus of the nanotube structure is then evaluated using
the relation

E =
PL
Aδ

(9)

where

P = Applied load

δ = Elongation of the nanotube

L = Length of the nanotube

A = Cross sectional area of the nanotube
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A convergence study was first conducted by using linear beam elements (B31) hav-
ing linear displacement function as well as using quadratic beam elements (B32)
having 3 nodes /quadratic displacement function and by varying the mesh size.
Fig.4 shows the plot of convergence of Young’s modulus for a zigzag (14, 0) nan-
otube with the increase in number of nodes. It is seen that a coarse FE mode (fewer
nodes) would yield inaccurate results. Fig.5 shows the results of combining both
the variation of ‘E’ with nanotube thickness as well as with higher order elements
and with increased number of elements. It is seen that the Young’s modulus of the
nanotubes decreases in a linear fashion with increasing nanotube wall thickness.
This trend has been observed in several works reported in the literature while the
exact values are widely scattered [Lu (1997); Prylutskyy et al. (2000); Popov et al.
(2000)]. The graph also shows the mesh convergence behavior of the nanotube FE
model. It is evident that the results of analysis obtained when modeled with ele-
ment type “linear beam” using four elements approaches the results obtained when
modeled with “quadratic beam” using two elements. Thus it can be concluded that
the Young’s modulus of the nanotube is sensitive to the wall thickness, consistent
with the works reported in the literature.

Figure 4: Convergence of Young’s modulus nanotube of the nanotube with the
number of nodes. The nanotube used is the zigzag (14, 0) structure.

Furthermore, it is observed that the Young’s modulus of the nanotube at armchair
configuration is slightly higher than that at zigzag configuration (Fig.6). The dif-
ference becomes magnified when the wall thickness of the nanotube is small. This
is mostly attributed by the positions of the hexagonal carbon rings in the two types
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(a)

(b)

Figure 5: Variation of Young’s modulus as a function of nanotube wall thickness
for (a) zigzag (14, 0) CNT and (b) armchair (8, 8) CNT.
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Figure 6: Comparison of Young’s modulus from two different CNT configurations.
Results are obtained by using 3-node, quadratic beam elements (B32).

of nanotubes, as illustrated in Fig.3. Consider a single hexagonal carbon ring in
both tubes: when subjected to axial loading (tension or compression), the load in
armchair tube is carried by the two horizontal arms while the load in zigzag tube is
only carried by two vertices. Therefore, the nanotube in armchair structure may be
stronger than the naotube in zigzag structure.

3.2 Variation of Young’s Modulus with Poisson’s Ratio

By structural mechanics analogy, we visualize the bond between any two neighbor-
ing carbon atoms as a space frame structure. The effect of Poisson’s ratio of this
C-C bond on the Young’s modulus of the nanotube is studied. Similar to the several
values of thickness reported in the literature, an equally good number of values of
Poisson’s ratio have been reported as well [Lu (1997); Chang and Gao (2003); Zhao
and Shi (2011)]. Values of Poisson’s ratio viz. 0.16, 0.19, 0.22, 0.30 and 0.49 have
been commonly observed. With these Poisson’s ratio values, the Young’s modulus
of the nanotubes are evaluated. The results are displayed in Fig.7 for both zigzag
and armchair configurations. Overall, the Young’s modulus of the nanotubes is
seen to decrease linearly with increasing values of Poisson’s ratio. Once again, it
is observed that the Young’s modulus of the nanotube at armchair configuration is
higher than that at zigzag configuration, consistent with the trend obtained earlier
by varying the nanotube wall thickness (Fig.6).
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Figure 7: Variation of Young’s modulus as a function of nanotube Poisson’s ratio
for both zigzag and armchair configurations.

3.3 Variation of Nanotube Young’s Modulus with Nanotube Diameter

One of the key parameters in designing a carbon nanotube is its diameter. In present
study, nanotubes in the diameter range from 0.392 nm to 2.351 nm were considered
in order to evaluate the variation of elastic modulus with the nanotube diameter.
The wall thickness of these nanotubes was fixed at 0.34 nm, which is one of the
widely accepted values in the literature. It may be noted that the value of this
thickness assigned to small diameter nanotubes is contradictory since the thickness
is close to the diameter as already has been pointed out by several researchers in
the nanotube community. However this scenario was still included for the analyses
in this work to observe a general trend. The carbon nanotube FE models with
diameter variation from 0.392 nm until 2.351 nm were set up for tensile loading
experiment in ABAQUS. The material properties for the beam material simulating
the bonds were based on the initially evaluated values that were obtained upon
equivalence of molecular and structural mechanics parameters. The Poisson’s ratio
value of 0.16 was applied for the carbon bonds as discussed in previous analysis.
Beam element (B32) with quadratic interpolation having three displacement and
three rotation degrees of freedom at each node was used. The nanotube was first
subjected to an axial displacement and a linear static analysis with NLGEOM=
OFF was conducted and the resulting reaction forces were evaluated. From these
uniaxial loading experiments, the Young’s modulus (E) of the nanotubes at various
nanotube diameters were evaluated by using Eq. 9.
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Fig.8(a) shows the displacement contour along the length of a zigzag (14, 0) nan-
otube upon subjecting it to an axial displacement. The evaluated values of Young’s
modulus of several zigzag nanotubes are plotted as seen in Fig.8(b). As may be ob-
served from the graph the Young’s modulus starts with a value of 0.74 TPa for the
(5, 0) zigzag configuration and increases almost linearly until a value of 0.753 TPa
for the (8, 0) zigzag configuration beyond which the value of Young’s modulus al-
most stabilizes there until for the (11, 0) zigzag configuration and further increases
to 0.757 TPa for nanotube diameters of 1.646 nm and beyond. The Young’s mod-
ulus of the zigzag configuration nanotubes increases at a much steeper rate with
diameter for small diameter nanotubes as compared to large diameter nanotubes.
The trend and values obtained are in close agreement with several results reported
in the literature [Lu (1997); Prylutskyy et al. (2000); Popov et al. (2000)].
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Figure 8: (a) Deformation contour of a zigzag CNT under tension; (b) Variation of
Young’s modulus as a function of nanotube diameter for a zigzag CNT.
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3.4 Variation of Nanotube Shear Modulus with Nanotube Diameter

Continuing with a similar analysis as above, the shear modulus (G) of the carbon
nanotubes at various nanotube diameters were evaluated. The thickness of nan-
otube used was set as 0.34 nm, same as used in previous analysis. The zigzag CNT
FE models with diameter variation from 0.392 nm to 2.351 nm are set up for torsion
experiment in ABAQUS. The nanotubes were subjected to a torsional moment and
linear static analysis with NLGEOM= OFF were conducted. From the analysis, the
resulting twist angles of the nanotubes were evaluated. The shear modulus (G) of
the nanotubes were computed by using Eq. 10.
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Figure 9: (a) Deformation contour of a zigzag CNT under torsion; (b) Variation of
shear modulus as a function of nanotube diameter for a zigzag CNT.

G =
T L
Jθ

(10)
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where

T = Torque applied to the nanotube

L = Length of the nanotube

J = Polar moment of inertia of nanotube

θ = Angle of twist of the nanotube

Fig.9(a) shows the displacement contour of a nanotube subject to a torsional load.
The evaluated values of shear modulus of several zigzag nanotubes are plotted as
seen in Fig.9(b). As may be observed from the graph, the shear modulus starts with
0.267 TPa for the (5, 0) zigzag configuration and increases almost linearly until
0.304 TPa for the (14, 0) zigzag configuration beyond which the value of shear
modulus almost stabilizes at around 0.30 TPa for nanotube diameters up to 2.5 nm
and beyond, approaching close to that of shear modulus of graphite. In general,
the shear modulus of the nanotubes increases with diameter for small diameter
nanotubes and tends to become constant for large diameter nanotubes.

3.5 Variation of Young’s Modulus with Nanotube Length

Figure 10: Variation of Young’s modulus as a function of nanotube height.

Another key parameter in designing a carbon nanotube is its length or height. Ex-
perimentally, the length of the carbon nanotubes can be adjusted by controlling the
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growth conditions such as temperature, time, and pressure. It is interested to know
the effect of nanotube length on the resultant properties of the nanotube structures.
In this study, the FE models for nanotubes with various lengths (heights) were
constructed and the elastic modulus were evaluated. The nanotubes used were in
zigzag configuration with a fixed wall thickness of 0.34 nm. The effect of nanotube
length on Young’s modulus is depicted in Fig.10. Overall trend indicates an almost
linear relationship between the modulus and the length. The higher the nanotube,
the lower the modulus. The overall trend is consistent with the classical Euler’s
beam buckling equation, where the buckling force is inversely proportional to the
beam length.

4 Summary

The structural mechanics based computational modeling has been used to design
and characterize the individual carbon nanotubes, which are the fundamental build-
ing block of aligned carbon nanotubes structure. Based on an understanding of
carbon nanotubes at the atomic/molecular level, the equivalent truss structure mod-
els of the CNTs were constructed by using space beam elements. The geometric
parameters of the individual nanotube on its mechanical properties are thoroughly
examined. It is observed that the Young’s modulus and shear modulus of the nan-
otube are sensitive to the atomic structure of the tubes, where the CNTs in armchair
configuration generally have higher stiffness than the CNTs in zigzag one. The
strength of the CNTs further depends upon the diameter of the C-C bonds (tube
wall thickness). As the wall thickness increases, the Young’s modulus of the nan-
otubes decreases. The modulus of the nanotubes is also affected by the overall tube
diameter. The Young’s modulus generally increases at a much steeper rate with
diameter for small diameter nanotubes and then becomes stabilized for large diam-
eter nanotubes. Finally, the modulus of the nanotubes is inversely proportional to
the tube length.
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