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Problems of Micromorphic Elastic Bodies Approached by
Lagrange Identity Method

M. Marin1, S. R. Mahmoud 2,3 and K. S. Al-Basyouni4

Abstract: Taking advantage of the flexibility of Lagrange’s identity, we prove
the uniqueness theorem and some continuous dependence theorems without re-
course to any energy conservation law, or to any boundedness assumptions on the
constitutive coefficients. Also, we avoid the use of positive definiteness assump-
tions on the constitutive coefficients, even if these results are related to the difficult
mixed problem in elasticity of micromorphic bodies.
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1 Introduction

The micromorphic continuum theory is used to describe materials which possess a
significant microstructure and therefore exhibit scale-dependent behaviour. These
microstructures are viewed as so-called microcontinua, which are assumed to be
attached to each physical point and may experience both stretch and rotation de-
formations which are affine throughout the microcontinuum, nevertheless kinemat-
ically independent from the deformation on the macroscale.

The micropolar and microstretch continua may be considered as special cases of
the micromorphic theory, since here specific constraints apply on the deformation
of the microcontinuum. For instance in the case of the micropolar continuum, the
microcontinuum may only experience rotation

Not only the different microcontinuum theories are congeneric, additionally, close
relations between the latter and other nonlocal theories exist. Particularly the mi-
cromorphic and the second-order gradient theory can be transferred into each other
by limit considerations.
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Eringen was the one who initiated the theory of micromorphic elastic bodies, as
a generalization of the theory of microstretch elastic bodies (see [Eringen (1972,
1990, 1999)]). Micromorphic theory envisions a material body as a continuous col-
lection of deformable particle, each possesses finite size and inner structure, unlike
classical continuum mechanics which considers a material body as a continuous
collection of material points, each with infinitesimal size and no inner structure.

In micromorphic continua material particles are considered deformable. A mate-
rial point of this body possess twelve degrees of freedom: three for the motion of
particle, three for microrotations and six for the microdeformations of the particle.

This theory aims to eliminate discrepancies betwen classical elasticity and exper-
iments, since the classical elasticity failed to present acceptable results when the
effects of material microstructure were known to contribute significantly to the
body’s overall deformations, for example, in the case of granular bodies with large
molecules (e.g. polymers), graphite or human bones.

Other intended applications of this theory are to composite materials reinforced
with chopped fibers and various porous materials.

Recent results of the micromorphic theory has been applied to liquid crystals, the-
ory of turbulence, blood, anisotropic fluids and suspensions (see, for instance,
[Eringen (2005, 2009); Wang and Lee (2010)]).

After Eringen has established the theory of microstretch elastic solids, many other
papers are concerned with this theory. For instance, Ciarletta in [Ciarletta (1995)]
has used the basic results deduced by Eringen in order to investigate the isothermal
bending of microstretch elastic plates. Iesan in [Iesan (2002)] prove the existence of
a generalized solution in linear dynamic theory of micromorphic thermoelasticity.

The paper [Iesan (2011)] is concerned with the theory of micromorphic thermoe-
lastic solids of degree 1. In the context of this theory, the author sets the equa-
tions governing the infinitesimal deformations superposed on large deformations at
nonuniform temperature.

Also, the paper [Iesan and Nappa (2005)] of Iesan and Nappa deals with the prob-
lem of heat flow in a micromorphic continua. They obtain a new theory of heat
for materials with inner structure that permits propagation of heat as thermal waves
at finite speed. In our studies [Marin (2010)] and [Marin (2012)] we tackle some
questions with regards to these materials.

Previous papers on uniqueness and continuous dependence in elasticity or thermoe-
lasticity had been based almost exclusivelly on the assumptions that the elasticity
tensor or thermoelastic coefficients are positive definite (see, for instance the paper
[Wilkes (1980)]).

In other papers, the authors recourse to an energy conservation law, in order to
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derive the uniqueness or continuous dependence of solutions. For instance, an
uniqueness result was indicated in paper [Green and Laws (1972)] of Green and
Laws by supplementing the restrictions arising from thermodynamics with certain
definiteness assumptions.

The objective of our study is to examine by a new approach the mixed initial-
boundary value problem in the context of elasticity of micromorphic solids. The
approach is developed on the basis of Lagrange identity and its consequences.
Therefore, we establish the uniqueness and continuous dependence of solutions
with respect to body forces and body moments. We also deduce the continuous
dependence of solutions of our mixed problem with respect to initial data and, at
last, with respect to constitutive coefficients. The results are obtained for bounded
regions of the Euclidian three dimensional space.

2 Basic equations

We assume that a bounded region B of three-dimensional Euclidian space R3 is oc-
cupied by a micromorphic elastic body, referred to the reference configuration and
a fixed system of rectangular Cartesian axes. Let B̄ denote the closure of B and
call ∂B the boundary of the domain B. We consider ∂B be a piecewise smooth sur-
face and designate by ni the components of the outward unit normal to the surface
∂B. Letters in boldface stand for vector fields. We use the notation vi to designate
the components of the vector v in the underlying rectangular Cartesian coordinates
frame. Superposed dots stand for the material time derivative. We shall employ
the usual summation and differentiation conventions: the subscripts are understood
to range over integer (1,2,3). Summation over repeated subscripts is implied and
subscripts preceded by a comma denote partial differentiation with respect to the
corresponding Cartesian coordinate.

The spatial argument and the time argument of a function will be omitted when
there is no likelihood of confusion. We refer the motion of the body to a fixed
system of rectangular Cartesian axes Oxi, i = 1,2,3. Let us denote by ui the com-
ponents of the displacement vector and by ϕi j the components of the microdefor-
mation tensor.

As usual, we denote by ti j the components of the stress tensor, σi j the components
of the microstress tensor and mki j the components of the stress moment tensor over
B.
The equations of motion in elasticity of micromorphic bodies are (see, for instance,
[Iesan and Nappa (2005)]):

t ji, j +ρ fi = ρ üi,

mki j,k + t ji−σ ji +ρli j = I jkϕ̈ik,
(1)
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For an anisotropic and homogeneous micromorphic elastic body, the constitutive
equations have the form:

ti j = Ai jrs εrs +Ei jrsµrs +Fi jrspγrsp,

σi j = Ersi j εrs +Bi jrsµrs +Gi jrspγrsp,

mki j = Frsi jk εrs +Grsi jkµrs +Ci jkrspγrsp,

(2)

The components of the strain tensors εi j, µi j and γi jk are defined by means of the
geometric equations:

εi j = u j, i−ϕ ji, γi jk = ϕi j, k

µi j=
1
2
(ϕi j +ϕ ji) .

(3)

The above equations (1)-(3) are satisfied at all points (x, t)∈ B×(0,∞) and in these
equations we have used the following notations: ρ the reference mass density;
Ii j = I ji the components of microinertia tensor; fi the components of body force
vector; li j the components of body moment tensor; Ai jrs, Bi jrs, Ci jkrsp, Ei jrs, Fi jrsp

and Gi jrsp are the characteristic constitutive coefficients and we assume that these
coefficients satisfy the following symmetry relations

Ai jrs = Arsi j, Bi jrs = Brsi j = B jirs, Ci jkrsp =Crspi jk,

Ersi j = Ers ji, Gi jrsp = G jirsp.
(4)

One can assume that a positive constant λ0 exists such that

Ii jξiξ j ≥ λ0ξiξi, ∀ξi. (5)

We denote by ti the components of surface traction and by mi j the components of
surface moments, which at regular points of the surface ∂B are defined by ti = t jin j,
mi j = mki jnk, ni are the components of the outward unit normal of the surface ∂B.
Along with the system of equations (1)-(3) we consider the following initial condi-
tions:

ui(x,0) = ai(x), u̇i(x,0) = bi(x),

ϕi j(x,0) = βi j(x), ϕ̇i j(x,0) = φi j(x),
(6)

for ∈ B̄, and the following boundary conditions (t0 is some instant that may be
infinite)

ui = ūi, on ∂B1× [0, t0), ti = t̄i, on ∂Bc
1× [0, t0)

ϕi j = ϕ̄i j, on ∂B2× [0, t0), mi j = m̄i j, on ∂Bc
2× [0, t0),

(7)
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where ūi, t̄i, ϕ̄i j and m̄i j are prescribed continuous functions on their domain of def-
inition. Also, ∂B1 and ∂B2 with respective complements ∂Bc

1 and ∂Bc
2 are subsets

of the surface ∂B such that

∂B1∩∂Bc
1 = ∂B2∩∂Bc

2 = /0

∂B1∪∂Bc
1 = ∂B2∪∂Bc

2 = ∂B

We assume that ai, bi, βi j, φi j, ūi, t̄i ϕ̄i j and m̄i j prescribed functions in their do-
mains. Taking into account the constitutive equations (3), from (1) and (2) we
obtain the following system of equations

ρ üi = (Ai jrsεrs), j +(Ei jrsµrs), j +(Fi jrspγrsp), j +ρ fi,

I jkϕ̈ik =
(
Frsi jkεrs

)
,k +

(
Grsi jkµrs

)
,k +

(
Ci jkrspγrsp

)
,k +Ai jrsεrs

+Ei jrs (εrs−µrs)+(Fi jrsp−Gi jrsp)γrsp−Bi jrsµrs +ρli j

(8)

By a solution of the mixed initial boundary value problem of the theory of elasticity
of micromorphic bodies in the cylinder Ω0 = B× [0, t0) we mean an ordered array
(ui, ϕi j) which satisfies the system of equations (8) for all (x, t)∈Ω0, the boundary
conditions (7) and the initial conditions (6).

3 Main result

Let us consider f (t,x) and g(t,x) two functions assumed to be twice continuously
differentiable with respect to the time variable t. By direct calculations, it is easy
to deduce that

d
dt

(
f ġ− ḟ g

)
= ḟ ġ+ f g̈− f̈ g− ḟ ġ = f g̈− f̈ g.

For the sake of simplicity, the spatial argument and the time argument of the func-
tions f (t,x) and g(t,x) are omitted because there is no likelihood of confusion.

In the above equality, we substitute the functions f (t,x) and g(t,x) by the functions
Ui(x, t) and Vi(x, t), which are, also, assumed to be twice continuously differentiable
with respect to the time variable and then we obtain the following well known
Lagrange’s identity:∫

B
ρ(x)

[
Ui(x, t)V̇i(x, t)−U̇i(x, t)Vi(x, t)

]
dV

=
∫ t

0

∫
B
ρ(x)

[
Ui(x,s)V̈i(x,s)−Üi(x,s)Vi(x,s)

]
dV ds

+
∫

B
ρ(x)

[
Ui(x,0)V̇i(x,0)−U̇i(x,0)Vi(x,0)

]
dV

(9)
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Let us denote by (u(α)
i , ϕ

(α)
i j ), (α = 1, 2) two solutions of the mixed initial bound-

ary value problem defined by (8) (6) and (7) which correspond to the same bound-
ary and initial data, but to different body forces and body moments, ( f (α)

i , l(α)
i j ),

(α = 1, 2). We introduce the following notations:

vi = u(2)i −u(1)i , ψi j = ϕ
(2)
i j −ϕ

(1)
i j (10)

We are now in position to prove first basic result.
Theorem 1. For the differences (vi, ψi j) of two solutions of the mixed initial bound-
ary value problem (8), (6) and (7), the Lagrange identity becomes:

2
∫

B

[
ρvi(t)v̇i(t)+ I jkψi j(t)ψ̇ik(t)

]
dV

=
∫ t

0
ds
∫

B
ρ [vi(2t−s)Fi(s)−vi(s)Fi(2t−s)+

+ψi j(2t−s)Li j(s)−ψi j(s)Li j(2t−s)]dV

(11)

where we have used the notations

Fi = f (2)i − f (1)i , Li j = l(2)i j − l(1)i j . (12)

Proof. Clarly, since of the linearity of the problem defined by (8), (6) and (7), we
deduce that the differences (vi, ψi j) from (10) represent the solution of a mixed ini-
tial boundary value problem anallogous to (8), (6) and (7) in which the loads are Fi

and Li j from (12), but the corresponding initial conditions and the corresponding
boundary conditions become homogeneous. By setting

Ui(x,s) = vi(x,s), Vi(x,s) = vi(x,2t− s), s ∈ [0,2t], t ∈ [0, t0/2),

then the identity (9), after some straightforward calculus, becomes

2
∫

B
ρvi(t)v̇i(t)dV =

∫ t

0
ds
∫

B
ρ[vi(2t−s)v̈i(s)−v̈i(2t−s)vi(s)]dV (13)

where we have used the fact that the initial and boundary data are null. If we employ
the symmetry conditions of the coefficients Ii j such that we can write

I jk
d
dt

[
Wik(t)ψ̇i j(t)−Ẇik(t)ψi j(t)

]
= I jk

[
Wik(t)ψ̈i j(t)−Ẅik(t)ψi j(t)

]
.

Because the differences satisfy null initial data, the following identity is obtained∫
B
I jk

d
dt

[
Wik(t)ψ̇i j(t)−Ẇik(t)ψi j(t)

]
dV =

∫ t

0

∫
B
I jk
[
Wik(t)ψ̈i j(t)−Ẅik(t)ψi j(t)

]
dV ds.
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In this equality we use the substitution

Wi(s)→ ψi j(2t− s), s ∈ [0,2t], t ∈ [0, t0/2)

which leads us to the equality

2
∫

B
I jkψik(t)ψ̇i j(t)dV =

∫ t

0

∫
B
I jk[ψik(2t−s)ψ̈i j(s)−ψ̈ik(2t−s)ψi j(s)]dV ds. (14)

We will add member by member relations (13) and (14) thus obtained

2
∫

B

[
ρvi(t)v̇i(t)+ I jkψik(t)ψ̇i j(t)

]
dV

=
∫ t

0

∫
B
{ρ[vi(2t−s)v̈i(s)−v̈i(2t−s)vi(s)]+

+I jk [ψik(2t−s)ψ̈i j(s)−ψ̈ik(2t−s)ψi j(s)]
}

dV ds.

(15)

We shall eliminate the inertial terms on the right-hand side of the relation (15) by
means of the equations of motion for the differences (vi, ψi j). So, in view of the
equation (1)1, we have

ρ [vi(2t− s)v̈i(s)− v̈i(2t− s)vi(s)]

= [vi(2t−s)t ji(s)−vi(s)t ji(2t−s)], j
+[t ji(2t−s)v j,i(s)−t ji(s)v j,i(2t−s)]

+ρ [Fi(s)vi(2t− s)−Fi(2t− s)vi(s)]

(16)

Taking into account the equation (1), we have

I jk[ψik(2t−s)ψ̈i j(s)−ψ̈ik(2t−s)ψi j(s)]

= ψik(2t−s)
[
m jik, j(s)+tki(s)−σki(s)+ρlki(s)

]
−ψi j(s)

[
mki j,k(2t−s)+ti j(2t−s)−σi j(2t−s)+ρli j(2t−s)

]
=
[
ψik(2t−s)m jik(s)−ψik(s)m jik(2t−s)

]
, j

−m jik(s)γ jik(2t+s)+m jik(2t−s)γ jik(s)

+tki(s)ψik(2t−s)−ti j(2t−s)ψi j(s)+σi j(2t−s)ψi j(s)

−σki(s)ψik(2t−s)+ρ[Li j(s)ψi j(2t−s)−Li j(2t−s)ψi j(s)]

(17)

If we add the relations (16) and (17) we are led to the equality
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ρ [vi(2t− s)v̈i(s)− v̈i(2t− s)vi(s)]

+ I jk [ψik(2t− s)ψ̈i j(s)− ψ̈ik(2t− s)ψi j(s)]

= [vi(2t−s)t ji(s)−vi(s)t ji(2t−s)], j
+
[
ψik(2t− s)m jik(s)−ψik(s)m jik(2t− s)

]
, j

−m jik(s)γ jik(2t− s)+m jik(2t− s)γ jik(s)

+ ti j(2t− s)εi j(s)− ti j(s)εi j(2t− s)

+σi j(2t− s)µi j(s)−σi j(s)µi j(2t− s)

+ρ [Fi(s)vi(2t− s)−Fi(2t− s)vi(s)]

+ρ [Li j(s)ψi j(2t− s)−Li j(2t− s)ψi j(s)]

(18)

In the right side of the identity (18) we use geometric equations (2) and then obtain

ρ [vi(2t− s)v̈i(s)− v̈i(2t− s)vi(s)]

+ I jk [ψik(2t− s)ψ̈i j(s)− ψ̈ik(2t− s)ψi j(s)]

= [vi(2t−s)t ji(s)−vi(s)t ji(2t−s)], j
+
[
ψik(2t− s)m jik(s)−ψik(s)m jik(2t− s)

]
, j

+ρ [Fi(s)vi(2t− s)−Fi(2t− s)vi(s)]

+ρ [Li j(s)ψi j(2t− s)−Li j(2t− s)ψi j(s)]

−Frs jikεrs(s)γ jik(2t− s)−Grs jikµrs(s)γ jik(2t− s)

−C jikrspγrsp(s)γ jik(2t− s)+Frs jikεrs(2t− s)γ jik(s)

+Grs jikµrs(2t− s)γ jik(s)+C jikrspγrsp(2t− s)γ jik(s)

+Ai jrsεrs(2t− s)εi j(s)+Ei jrsµrs(2t− s)εi j(s)

+Fi jrspγrs(2t− s)εi j(s)−Ai jrsεrs(s)εi j(2t− s)

−Ei jrsµrs(s)εi j(2t− s)−Fi jrspγrsp(s)εi j(2t− s)

+Ersi jεrs(2t− s)µi j(s)+Bi jrsµrs(2t− s)µi j(s)

+Gi jrspγrsp(2t− s)µi j(s)−Ersi jεrs(s)µi j(2t− s)

−Bi jrsµrs(s)µi j(2t− s)−Gi jrspγrsp(s)µi j(2t− s)

(19)
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In identity (19) we use the symmetry relations (4) so that it becomes

ρ [vi(2t− s)v̈i(s)− v̈i(2t− s)vi(s)]

+ I jk [ψik(2t− s)ψ̈i j(s)− ψ̈ik(2t− s)ψi j(s)]

= [vi(2t−s)t ji(s)−vi(s)t ji(2t−s)], j
+
[
ψik(2t− s)m jik(s)−ψik(s)m jik(2t− s)

]
, j

+ρ [Fi(s)vi(2t− s)−Fi(2t− s)vi(s)]

+ρ [Li j(s)ψi j(2t− s)−Li j(2t− s)ψi j(s)]

(20)

Substituting the result of (20) in equality (15) we use the divergence theorem then
take into account the fact that we have null initial data and null boundary data. Thus
we obtain equality (11) and the proof of Theorem 1 is complete. With the help of
identity (11) we will prove the uniqueness of solution of the mixed initial-boundary
value problem which consists of equations (8), boundary data (7) and initial data
(6).
Thus, in the following Theorem 2 we first prove the uniqueness of solution of the
mentioned problem.
Theorem 2. Assume that the symmetry relations (4) are satisfied. Then the mixed
initial-boundary value problem for micromorphic elastic body has at most one so-
lution.
Proof. Suppose, by contrary, that our problem has two solution (u(α)

i , ϕ
(α)
i j ),

α = 1,2. If we denote by

vi = u(2)i −u(1)i , ψi j = ϕ
(2)
i j −ϕ

(1)
i j (21)

then we should prove that

vi(x, t) = ψi j(x, t) = 0, ∀ (x, t) ∈ B× [0, t0). (22)

Because of linearity, the differences defined in (21) also represent a solution to
our problem, but corresponding to null body force and null body moment. In this
particular case, the identity (11) received the form∫

B

[
ρvi(t)v̇i(t)+ I jkψi j(t)ψ̇ik(t)

]
dV = 0.

If we integrate this equality on the interval [0,τ], τ ∈ [0, t0/2) we are led to∫
B

[
ρvi(τ)vi(τ)+ I jkψi j(τ)ψik(τ)

]
dV = 0 (23)
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Because of the conditions imposed to the density ρ and microinertia Ii j, identity
(23) ensures that

vi(x, t) = ψi j(x, t) = 0, ∀ (x, t) ∈ B× [0, t0/2). (24)

If t0 is infinite, then the proof of Theorem 2 is completed. Where t0 is finite, proof
of Theorem 2 continues as follows. We set

vi(x, t0/2) = v̇i(x, t0/2) = 0, ψi j(x, t0/2) = ψ̇i j(x, t0/2) = 0

and repeat the above procedure on the interval [t0/2, t0/2+ t0/4] so we can ex-
tend the conclusion (24) on B× [0,3t0/4) and so on. As a result the differences
(vi(x, t), ψi j(x, t)) are null on B× [0, t0) and this concludes the proof of Theorem 2.
In the next step we can formulate and prove a result on continuous dependence with
regard to body force and body moment. This feature refers to the solution of the
mixed initial boundary value problem consisting in system of differential equations
(8), initial conditions (6) and the boundary conditions (7).
Theorem 3. Let (u(α)

i , ϕ
(α)
i j ) (α = 1,2) be two solutions of the above mixed prob-

lem which correspond to the same initial and boundary data but to different body
force and body moment ( f (α)

i , l(α)
i j ) (α = 1,2). We will use the notation

Fi = f (2)i − f (1)i , Li j = l(2)i j − l(1)i j .

If there is t∗ ∈ (0, t0) such that,

∫ t∗

0

∫
B

ρFi(t)Fi(t)dV dt ≤M2
1 ,
∫ t∗

0

∫
B

ρLi j(t)Li j(t)dV dt ≤M2
1∫ t∗

0

∫
B

ρui(t)ui(t)dV dt ≤ K2,
∫ t∗

0

∫
B

I jkϕik(t)ϕi j(t)dV dt ≤M2
(25)

then we have the following estimate of solutions (for τ ∈ [0, t0/2))∫
B

[
ρvi(τ)vi(τ)+ I jkψi j(τ)ψik(τ)

]
dV

≤ t∗K
[∫ t∗

0

∫
B

ρFi(t)Fi(t)dV dt
]1/2

+ t∗M
[∫ t∗

0

∫
B

ρLi j(t)Li j(t)dV dt
]1/2 (26)

Proof. The proof will be based on the identity (11). For each integral in the right-
side of this identity, we apply the Schwarz’s inequality.
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For instance∫ t

0
ds
∫

B
ρvi(2t− s)Fi(s)dV ds

≤
[∫ t

0

∫
B

ρFi(τ)Fi(τ)dV dτ

]1/2[∫ t

0

∫
B

ρui(2t− τ)ui(2t− τ)dV dτ

]1/2

=

[∫ t

0

∫
B
ρFi(τ)Fi(τ)dV dτ

]1/2[∫ 2t

t

∫
B

ρui(τ)ui(τ)dV dτ

]1/2

≤ K
[∫ t∗

0

∫
B
ρFi(τ)Fi(τ)dV dτ

]1/2

(27)

where, at last, we have used the substitution 2t − τ → τ . Proceeding in a simi-
lar manner to second integral in the right-side of identity (11), we will obtain an
estimate similar to (27). Finally, we integrate the resulting inequality over [0,τ],
τ ∈ [0, t∗/2] and we are led to the estimate (26) which conclude Theorem 3. Now,
we will state and prove a continuous dependence result with regard to initial data.
Theorem 4. Suppose that the symmetry relations (4) are satisfied and consider(

u(1)i , ϕ
(1)
i j

)
,
(

u(1)i + vi, ϕ
(1)
i j +ψi j

)
two solutions of our mixed problem which correspond to the same body force and
body moment, to the same boundary data, but to different initial data(
a1

i , b1
i , β

1
i j, φ

1
i j
)
,
(
a2

i , b2
i , β

2
i j, φ

2
i j
)

where

a2
i = a1

i +Ai, b2
i = b1

i +Bi, β
2
i j = β

1
i j +Ci j, φ

2
i j = φ

1
i j +Di j

Perturbations (Ai, Bi, Ci j, Di j) are subject to the following restrictions

∫
B

ρ (AiAi +BiBi)dV ≤M2
3 ,
∫

B
ρ (Ci jCi j +Di jDi j)dV ≤M2

4 .

We define the functions Ui(x, t), Φi j(x, t) by

Ui(x, t) =
∫ t

0

∫ s

0
vi(x,τ)dτds, Φi j(x, t) =

∫ t

0

∫ s

0
ψi j(x,τ)dτds (28)
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If the functions Ui(x, t), Φi j(x, t) satisfy the restrictions (25)2, then is valid the esti-
mate∫

B

[
ρUi(t)Ui(t)+ I jkΦi j(t)Φik(t)

]
dV

≤ t∗K
[(

t∗+
t∗
2

)∫
B

ρAiAidV +

(
t2
∗
2
+

t3
∗
3

)∫
B

ρBiBidV
]1/2

+ t∗M
[(

t∗+
t∗
2

)∫
B

I jkCikCi jdV +

(
t2
∗
2
+

t3
∗
3

)∫
B

dV + I jkDikDi jdV
]1/2

(29)

Proof. If we integrate by parts the integrals in (28) we obtain

Ui(x, t) =
∫ t

0
(t− s)vi(x,s)ds, Φi j(x, t) =

∫ t

0
(t− s)ψi j(x,s)ds (30)

Clarly, the difference functions (vi(x, t), ψi j(x, t)) satisfy the equations of motion
as in (8), but with null body force and null body moment fi = li j = 0. Also, it is
easy to prove that the difference functions satisfy the following initial conditions

vi(x,0) = Ai(x), v̇i(x,0) = Bi(x),

ψi j(x,0) = Ci j(x), ψ̇i j(x,0) = Di j(x).

By direct calculations, we deduce that the functions (vi(x, t), ψi j(x, t)) defined in
(28) satisfy the equations of motion as in (8), but with the following body force and
body moment

fi(x, t) = Ai(x)+ tBi(x),

li j(x, t) = Ci j(x)+ tDi j(x)

These latest specification enables us to conclude that the estimate (29) is obtained
from estimate (26) of Theorem 3 such that Theorem 4 is concluded.

A further consequence of Theorem 3 is the following continuous dependence result
of the solution to the problem (8), (7) and (6) upon constitutive coefficients.
Theorem 5. Suppose that the symmetry relations (4) are satisfied and consider(

u(1)i , ϕ
(1)
i j

)
,
(

u(1)i + vi, ϕ
(1)
i j +ψi j

)
two solutions of our mixed problem which correspond to the same body force and
body moment, to the same boundary data, to the same initial data, but to different
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constitutive coefficients, respectively(
A(1)

i jrs, E(1)
i jrs, F(1)

i jrsp, B(1)
i jrs, G(1)

i jrsp , C(1)
i jkrsp

)
(

A(1)
i jrs+Ai jrs,E

(1)
i jrs+Ei jrs,F

(1)
i jrsp+Fi jrsp,

B(1)
i jrs+Bi jrs,G

(1)
i jrsp+Gi jrsp,C

(1)
i jkrsp+Ci jkrsp

)
If the difference functions (vi(x, t), ψi j(x, t)) satisfy the restrictions (25), then any
solution (ui(x, t), ϕi j(x, t)) of the initial boundary value problem for elastic micro-
morphic bodies that satisfies the condition∫ t∗

0

∫
B

(
ui, jui, j +ui, jkui, jk + u̇i, ju̇i, j+

+ϕi j,kϕi j,k +ϕi j,kmϕi j,km + ϕ̇i j,kϕ̇i j,k

)
dV dt ≤M2

5

depends continuously on th constitutive coefficients on interval [0, t∗/2] with regard
to the measure∫

B

[
ρvi(t)vi(t)+ I jkψik(t)ψi j(t)

]
dV

Proof. By direct calculations we are led to the conclusion that the differences of
two solution of our mixed problem, that is (vi(x, t), ψi j(x, t)), satisfy null initial
conditions, null boundary conditions and the equations of motion (8) in which the
constitutive coefficients are actually(

A(1)
i jrs, E(1)

i jrs, F(1)
i jrsp, B(1)

i jrs, G(1)
i jrsp , C(1)

i jkrsp

)
Also, the body force ρ fi and body moment ρli j, in the equations of motion, have
the following expressions

ρ fi =
(
Ai jrsε

(2)
rs +Ei jrsµ

(2)
rs +Fi jrspγ

(2)
rsp

)
, j

ρli j =
(
Frsi jkε

(2)
rs +Grsi jkµ

(2)
rs +Ci jkrspγ

(2)
rsp

)
, j

+Ai jrsε
(2)
rs +Ei jrsµ

(2)
rs +Fi jrspγ

(2)
rsp

−Ersi jε
(2)
rs −Bi jrsµ

(2)
rs −Gi jrspγ

(2)
rsp

ε
(2)
rs , µ

(2)
rs and γ

(2)
rsp are the strain tensors which correspond to the second considered

solution, that is,(
u(1)i + vi, ϕ

(1)
i j +ψi j

)
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Considering these specifications, we deduce that the problem has become analo-
gous to the problem of Theorem 4. As a consequence, taking into account the
estimates (29) and (26) we are led to the desired result and the proof of Theorem 5
is completed.

4 Conclusion

Usualy, the uniqueness and continuous dependence results, with regard to solutions
of mixed initial boundary value problem, are obtained imposing strong restrictions.
In our study these results are obtained without recourse to any conservation law or
to boundedness assumptions on the constitutive coefficients. Also, we avoid to use
the hypothesis that constitutive coefficients are positive definite tensors.
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