
Copyright © 2013 Tech Science Press CMC, vol.36, no.1, pp.73-97, 2013

Multivariate Adaptive Regression Splines Model to Predict
Fracture Characteristics of High Strength and Ultra High

Strength Concrete Beams

P. Yuvaraj1, A. Ramachandra Murthy2, Nagesh R. Iyer3,
Pijush Samui4, S.K. Sekar5

Abstract: This paper presents Multivariate Adaptive Regression Splines (MARS)
model to predict the fracture characteristics of high strength and ultra high strength
concrete beams. Fracture characteristics include fracture energy (GF), critical
stress intensity factor (KIC) and critical crack tip opening displacement (CTODc).
This paper also presents the details of development of MARS model to predict
failure load (Pmax) of high strength concrete (HSC) and ultra high strength con-
crete (UHSC) beam specimens. Characterization of mix and testing of beams of
high strength and ultra strength concrete have been described. Methodologies for
evaluation of fracture energy, critical stress intensity factor and critical crack tip
opening displacement have been outlined. MARS model has been developed by
establishing a relationship between a set of predicators and dependent variables.
MARS is based on a divide and conquers strategy partitioning the training data
sets into separate regions; each gets its own regression line. Four MARS models
have been developed by using MATLAB software for training and prediction of
fracture parameters and failure load.MARS has been trained with about 70% of the
total 87 data sets and tested with about 30% of the total data sets. It is observed
from the studies that the predicted values of Pmax, GF , KIC and CTODC are in good
agreement with those of the experimental values.
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1 Introduction

Concrete has been one of the most commonly used construction materials in the
world. One of the major problems civil engineers face today is concerned with
preservation, maintenance and retrofitting of structures. The historical develop-
ment of concrete material may be marked and divided into several stages. The first
is the traditional normal strength concrete followed by high strength concrete, high
performance concrete and reactive powder concrete/UHSC. Since UHSC is a rela-
tively new material, the fracture behaviour of this material is not well understood
(Richard and Cheyrezy 1994, 1995, Mingzhe et al. 2010, Goltermann et al. 1997).
Concrete is a quasi-brittle material, which means its fracture process zone (FPZ)
size is not small compared with the typical specimen or structural dimension. Clas-
sical linear elastic fracture mechanics (LEFM) approach is unable to predict the
progressive failure of concrete specimens due to the presence of large FPZ of vari-
able size ahead of the crack tip and the cohesive stress transferred within FPZ of
the quasi-brittle materials like concrete (Bazant 2000). The LEFM based model-
ing approach assumes that once a crack propagates by a distance, this part of the
material loses its load carrying capacity suddenly and completely. The complex
nonlinear phenomena that take place in FPZ can be idealized and approximated
using nonlinear fracture approaches to predict the localized physical behaviour in
the vicinity of a crack and at the crack tip. Nonlinear fracture mechanics based
approach recognizes that FPZ exists in front of the crack tip, in which the mate-
rial can still carry loadings by mechanisms such as aggregate interlocking, surface
friction and material bonding (Murthy et al. 2010, Bhashya et al. 2011, Murthy et
al. 2012, Dong and Atluri 2013). As the crack propagates and opens, the material
in FPZ softens with gradual energy dissipation, which can be accurately modeled
by the fictitious crack model. The direction of the crack propagation is generally
assumed to be perpendicular to the direction of the maximum stress at the crack
tip. The cohesive crack model is one of such simplified nonlinear fracture models
that can simulate satisfactorily the behaviour of concrete fracture. Inspired by the
early stage of development of the fracture models (Barenblatt 1959, Dugdale 1960).
Hillerborg et al. (1976) initially applied cohesive crack method (or fictitious crack
model) as a suitable nonlinear model for mode I fracture to simulate the softening
damage of concrete structures.

This paper adopts Multivariate adaptive regression spline (MARS) for predicting
the fracture characteristics and failure load of HSC and UHSC beams. MARS is
relatively a new technique used for modeling data depicting non-linear relationship
(Friedman 1991). MARS establishes the relationship in non-linear form between
the response and predictor variables and identifies the interactions and conditional
relationships among the predicator variables. MARS attempts to adapt to the un-
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known functional form using a series of multi-linear piecewise regression splines.
MARS algorithm involves in the process of eliminating the overfitting of data and
other inconsistencies in the data. The MARS approach is capable of detecting in-
teraction among other variables. MARS is based on a divide and conquers strategy,
partioning the training data sets into separate regions; each gets its own regression
line.

MARS was successfully applied in various fields including biological sciences
(Prasad and Iverson 2000) cancer research (Malick et al. 1997), chemical studies
(Veaux et al. 1993), communication (Ekman and Kubin 1999), finance (Abraham
2002), Engineering (Jin and Chen 2000) and genetics (York and Eaves 2001).

Riedi (1997) used MARS for modeling segmental duration in speech synthesis for
predicting natural sounding durations for German language. Chun et al. (2003)
adopted MARS for simulation of pesticide transport in soils and mentioned that us-
ing limited training data, MARS can simulate complex physicochemical phenom-
ena. Chou et al. (2004) employed artificial neural network (ANN) and MARS in
developing diagnostic techniques that help in identifying breast cancer using a fine
needle aspiration cytology dataset. Leathwick et al. (2005) made use of MARS to
predict the distribution of New Zealand’s freshwater diadromous fish by determin-
ing relationship between fish species and different environmental variables. Loizos
and Karlaftis (2006) assessed the pavement condition by using ANN and MARS
models. Zhou and Leung (2007) predicted object-oriented software maintainability
using MARS and mentioned that the MARS is as accurate as the all other models in
other cases considered in their investigation. Nii et al. (2009) investigated on dow-
eled pavement performance by using MARS and hyperplanes (HHP) and made a
comparative analysis between them. Vidoli (2011) evaluated the water sector in
Italy through a two stage method using conditional robust non-parametric fron-
tier and MARS. From the limited available literature, it is observed that MARS
is employed in various fields and to the best of authors’ knowledge, no research
investigations are reported in the field of structural engineering.

This paper presents the details of characterization and casting of high strength and
ultra high strength concrete beams. Methodologies for evaluation of fracture char-
acteristics have been explained in brief. Applicability of MARS to predict fracture
characteristics of high strength and ultra high strength concrete beams has been
examined.

2 Experimental investigations

Three different mixes designated as HSC, HSC1 and UHSC are characterized and
their mix proportions have been derived by using appropriate method and several
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trials. For HSC, the ingredient materials are Portland cement, coarse aggregate,
fine aggregate and water, whereas for HSC1, the materials are Portland cement,
silica fume, quartz sand, high range water reducer, water and steel fibers. Further,
for UHSC, the materials are Portland cement, silica fume, quartz sand, quartz pow-
der, high range water reducer, water and steel fibers. The main difference between
HSC1 and UHSC is the absence of quartz powder in the case of HSC1 mix. Bureau
of Indian Standard code has been used for HSC mix design, whereas HSC1 and
UHSC mixes have been designed based on the limited literature available and sev-
eral trials. Several trials have been attempted before arriving at a final mix design.
The final mix proportions and ratio obtained are given in Table 1.

Table 1: Mix Proportions for HSC, HSC1 and UHSC

Property HSC HSC1 UHSC
Water/cement ratio 0.45 0.33 0.23
Cement, kg/m3 452.44 811.7 838.93
Silica fume, kg/m3 - 202.9 209.73
Quartz sand, kg/m3 - 1217.5 922.82
Quartz powder, kg/m3 - - 335.57
Fine aggregate, kg/m3 565.55 - -
Coarse aggregate, kg/m3 1127.01 - -
Water, kg/m3 203.6 267.9 192.95
Steel Fiber, kg/m3 157.20 158.50
Superplasticizer(SP),
(% weight of cement content in mix)

- 2.5% 3.5 %

2.1 Specimen Preparation

Preparation, demoulding and curing of HSC specimens is in conventional way,
whereas the procedure for specimen preparation for HSC1 and UHSC is outlined
below.

• A Hobart mixer machine (15 kg capacity) or Eirich type mixer (150 liter
capacity) is used to mix the concrete mixtures.

• Well mixed dry binder powder is then slowly poured in to the bowl while the
mixer is rotating at a slow speed.

• The speed of the mixer is increased and the mixing process is continued for
about two to three minutes.
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• Water is then added.

• Additional mixing is performed at this speed until a uniform mixture is achieved.

• Fibers are added after mixing all the ingredients such as cement, quartz sand,
quartz powder and silica fume with water and superplasticizer.

• Fresh mixture is poured in to the moulds using a steel scoop.

• Compaction is done by placing the filled moulds on a laboratory table vibra-
tor for about 2 minutes.

• The specimens are demoulded after a lapse of 24 hours.

• Immediately after demoulding, the specimens are fully immersed in potable
water at room temperature for 2 days. After 2 days of normal water curing,
the specimens are placed in a autoclave and maintained at 90˚C for 2 days.
Further, the specimens are placed in oven and maintained at 200˚C for 1 day
followed by autoclave curing.

Mechanical Properties
Various mechanical properties such as compressive strength, spilt tensile strength
of HSC, HSC1 and UHSC mix at 28 days are shown in Table 3. From Table 3, it can
be observed that the split tensile strength for the case of HSC is 4.0 MPa. It is about
7% of compressive strength. In the case of HSC1, the split tensile strength is about
18% of compressive strength. The increase in strength is large compared to HSC.
The increase in strength may be due to various sizes of ingredients and steel fibres.
Further, it can be observed from Table 2 that UHSC has high compressive strength
and tensile strength. The high strengths can be attributed to the contribution at
different scales viz., at the meso scale due to the fibers and at the micro scale due
to the close packing of grains, which is on account of good grading of the particles.

Table 2: Mechnanical properties of HSC, HSC1 and UHSC

S. No Mix ID Compressive
Strength
(MPa)

Split tensile
Strength
(MPa)

Modulus of
elasticity
(MPa)

1. HSC 57.14 3.96 35,780
2. HSC1 87.71 15.38 37,890
3. UHSC 122.52 20.65 42,987
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Casting of Beams
Different beams, namely, small, medium and large size with various notch depths
have been cast to study the fracture behaviour. The experimental setup consists of
MTS 2500 kN capacity servo hydraulic UTM with online data acquisition system.
All the specimens have been tested under displacement control at a rate of 0.02
mm/min. The mid-span downward displacement is measured using linear variable
displacement transducer (LVDT), placed at center of the specimen under bottom of
the beam. A clip gauge is used to measure the crack mouth opening displacement
(CMOD). The data acquisition records load, CMOD, mid-span displacement and
time. Appropriate load cells have been used for testing.

3 Fracture Characteristics

Fracture characteristics such as fracture energy (GF) based on work-of fracture,
fracture toughness (KIC) and CTODc - Crack tip opening displacement for HSC,
HSC1 and UHSC specimen have been estimated based on the experimental ob-
servations. Brief description on the evaluation of GF , KIC and CTODC has been
outlined below.

3.1 Fracture energy (GF)

In general, concrete structures contain voids and flaws. These flaws grow and prop-
agate leading to failure. The fracture energy is one of the important parameter in the
analysis of cracked concrete structures. Fracture energy, GF is an important frac-
ture mechanic parameter to describe the resisting properties of concrete fracture.
In fact the fracture energy can be seen as a measure for the ductility of concrete
and it is considered as a material parameter. The fracture energy, GF is defined as
the amount of energy necessary to create a crack of unit surface area projected in a
plane parallel to the crack direction.

The area under the load-displacement plot is considered as the work of fracture
(WF) and is defined as

WF(w) =
w∫

0

Pdw (1)

where “w” is the crack mouth opening displacement, WF is the work of fracture, P
is the applied load.

According to RILEM method of Hillerborg, the fracture energy GF is the average
energy given by dividing the total work of fracture by the projected fracture area
(RILEM 1985, Karihaloo 1995). In case of a specimen of depth d and initial crack



Multivariate Adaptive Regression Splines Model 79

length a0, the fracture energy is given by

GF =
WF

(d−a0)t
(2)

d = Depth of the beam, a0 = Initial crack length, t = Thickness of the beam,

WF = Area below the measured total load- displacement plot

3.2 Fracture toughness KIC and CTODc - Crack tip opening displacement

Critical stress intensity factor (KIC) and critical crack tip opening displacement
CTODc have been derived from Jenq and Shah effective elastic crack model called
the two parameter fracture model (TPFM) (Jenq and Shah 1985). The details are
given below:

The TPFM requires at least one cycle to obtain the loading (Ci) and unloading (Cu)
compliances, and also the peak load (Pc). The self-weight (P0) of the specimen
is also included. The critical effective elastic crack length (ac) at the peak load is
calculated from the modulus of elasticity obtained with the loading and unloading
compliance, E1 and E2, respectively.

E1 =
6Sa0g2 (α0)

CiD2t
, (3)

E2 =
6Sacg2 (αc)

CuD2t
, (4)

α0 =
(a0 +HO)

(D+HO)
, αc =

(ac +HO)

(D+HO)
, (5)

g2 (α) = 0.76−2.28α +3.87α
2−2.04α

3 +
0.66

(1−α)2 (6)

where, ao= initial crack depth, D = depth of the beam

By equating E1 and E2, the critical effective elastic crack length ac can be obtained.

Using the following LEFM relationship, KIC and CTODc can be calculated given
the geometric function (g1) for the TPB specimen.

KIC = 3(Pc +0.5P0S/L)
S
√

πacg1 (ac/D)

2D2t
, (7)

where

g1

(ac

D

)
=

1.99− (ac/D)(1−ac/D)
[
2.15−3.93(ac/D)+2.70(ac/D)2

]
√

π [1+2(ac/D)] [1− (ac/D)]3/2 (8)
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(for S/D = 4.0)

CTODc = 6(Pc +0.5P0S/L) Sacg2(ac/D)
ED2t[

(1−β0)
2 +
[
1.081−1.149

(ac
D

)](
β0−β 2

0
)]1/2

,
(9)

where,

β0 =
ao

ac
(10)

4 Multivariate Adaptive Regression splines (MARS)

MARS is widely accepted by researchers and practitioners for the following rea-
sons. Firstly,(i) MARS is capable of modeling complex non-linear relationship
among variables without strong model assumptions, (ii) MARS can capture the rel-
ative importance of independent variables to the dependent variable when many
potential independent variables are considered and (iii) MARS does not need long
training process and hence can save lots of model building time, especially when
the dataset is huge. Finally, the highlighting advantage feature of MARS over other
regression and classification techniques is the resulting model can be easily inter-
preted. MARS points out the variables that are important in developing the model.
It also indicates the particular function that belongs to a specific class in case of
classification when the built rules are satisfied.

In order to build a MARS are model, training data, including the input variables and
the expected output targets, is required. The MARS model splits the training data
into several splines on an equivalent interval basis. In each spline, MARS splits the
data further into many subgroups and creates several knots, which can be located
between different input variables or different intervals in the same input variable,
to separate the subgroups. The MARS model approximates a regression function,
called a basis function (BF), using smoothing splines to generally represent the
data in each subgroup (Friedman 1991, Sephton 2001). Between any two knots,
the model can characterize the data either globally or by using linear regression.
The BF is unique between any two knots, and is shifted to another BF at each
knot (Abraham and Steinberg 2001, Friedman 1991). The two BFs in two adjacent
domains of data intersect at the knot to make model outputs continuous (Sephton
2001). Thus, MARS creates a bended regression line to fit the data from subgroup
to subgroup and from spline to spline. To avoid over-fitting and over-regressing,
the shortest distance between two neighboring knots is pre-determined to prevent
too few data in a subgroup.

The ultimate aim of the model is to capture the relationship between the dependent
variable and the independent variable from the data. In general, MARS function
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can be represented by using the following equation (Firedman 1991)

y =
∧
f (x) = a0 +

M

∑
m=1

amB(q)
m (x) (11)

where,

a0 = coefficient of the constant basis function, or the constant term

{am}M
1 = vector of coefficients of the non-constant basis functions, m= 1, 2, . . . , M

B(q)
m are the basis functions that are selected for inclusion in the model of qth order

B(q)
m (x) =

km

∏
k−1

[
skm.

(
xv(k,m)− tkm

)]q
+

(12)

where

B(q)
m (x) = vector of non-constant (truncated) basis functions, or the tensor product

spline basis m = number of non-constant basis functions (1, 2. . . M)

q = the power to which the spline is raised in order to control the degree of smooth-
ness of the resultant function estimate, which in this case is equal to 1

‘+’ = denotes that only positive results of the right-hand side of the equation are
considered; otherwise, the functions evaluate to 0.

skm = indicates the (left/right) sense of truncation, which assumes only 2 values (±
1), representing the standard basis function and its mirror image. For Skm equal to
+1, the basis function will have a value x-t if x>t and 0 if x ≤ t. If it is -1, the basis
function will have a value t-x when x<t, while 0 if x ≥t

xv(k,m) = value of the predictor

v(k,m) = label of the predictor (1≤ v(k,m)≤ n)

n = number of predictors

tkm = “knot” location on the corresponding predictor space or region, or value that
defines an inflection point along the range of the predictor

K= maximum level or order of interaction, or the number of factors, in the mth basis
function (1, 2, . . . , Km)

Basis functions are a set of functions used to represent the information contained
in one or more variables. Like principal components, basis functions re-express the
relationship of the predictors with the dependent variable.

Parameters of Mars can be estimated by the Penalized Least Squares (PLS) with
the form:

P(x) = min∑

(
yi−

∧
f (xi)

)2

+λ

∫
f n(xi)dxi (13)
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In the above equation the first term represents the residual sum of squares and the
second term represents the roughness penalty term, which is weighted by λ (known
as the smoothing constant)

The penalty term is large when the integrated second derivative of the regression
function f "(x) is large – that is, when f (x)is ‘rough’ (with rapidly changing slope).
At one extreme, when the λ is set to zero (and if all the values of x are distinct), the
objective function simply interpolates the data. At the other extreme, if λ is very
large, then the objective function will be selected so that its second derivative is
everywhere zero, implying a globally linear least-squares fit to the data (Fox 2002).

When fitting a MARS model, knots are chosen in an iterative (recursive, i.e., from
low to high interaction order) forward stepwise procedure. One of the most useful
applications of variable nesting in MARS is in dealing ith missing values among
the independent variables. MARS creates two basis functions for any variable with
missing data, one for the presence of missing values and one for the absence (Fran-
cis 2007). However, MARS does not consider interactions with missing value in-
dicators to be genuine interactions. Thus, if MARS is directed to generate only
an additive model, it may still contain interactions involving these missing value
indicators (Salford Systems 2001). After over-fitting the model with so many basis
functions, a backward spurning or snubbing procedure is applied in which those
basis functions that contribute least to model fit are progressively removed. At this
stage, a predictor variable can be dropped from the model completely if none of its
basis functions contribute meaningfully to predictive performance. The sequence of
models generated from this process is then evaluated using the Generalized Cross-
Validation (GCV), and the model with the best predictive fit is finally selected.

The GCV can be expressed as follows

GCV (M) =

1
N

N
∑

i=1

[
yi−

∧
f

M
(xi)

]2

[
1− C(M)

N

]2 (14)

where,

The numerator denotes lack-of-fit on the training data (sort of “bias”) and the de-
nominator accounts the (inverse) penalty for increasing model complexity C(M)
(sort of “variance”)

N = observations

C(M) = Cost penalty measures of a model

M = basis functions

Fm(xi)= basis function model
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MARS minimizes GCV (M), which reduces the bias of the model estimates but
at the same time increases the variance due to additional parameters included to
improve the fit of the model. Friedman and Silverman (1989) suggested using
equation (13) as a lack-of-fit criterion but with an increased cost complexity func-
tion

∼
C(M) to reflect the additional (basis Function) parameters that, along with the

expansion coefficients (a0,. . . , aM), are being fit to the data. Such a cost complexity
function can be expressed as:
∼
C(M) =C(M)+d.M (15)

where

C (M) = number of parameters being fitted

M = number of non-constant basis functions in the model, which is proportional to
the number of (non-linear) basis function parameters

d = cost for each basis function optimization and is a (smoothing) parameter of the
procedure; larger values leads to fewer knots being placed and thereby smoother
function estimates Moreover, in order to reveal considerable information about the
predictive relationship between the dependent variable and a set of predictors, equa-
tion (11) can be recast into the following form:

∧
f (x) = a0 + ∑

Km=1
fi (xi)+ ∑

Km=2
fi j (xi,x j)+ ∑

Km=3
fi jk (xi,x j,xk)+ ... (16)

This is referred to as the ANOVA decomposition of the MARS model. The first
sum is over all basis functions that involve only a single variable. The second
sum is over all basis functions that involve exactly two variables, representing (if
present) two-variable interactions. Similarly, the third sum represents (if present)
the contributions from three-variable interactions and so on.

MARS can also address the missing value problems using virtual or the dummy
variable skills. By allowing any arbitrary shape for the function and interactions,
MARS is capable of tracking very complex data structures that hide in high dimen-
sional frequently data. More details regarding the model building process can be
found in Friedman (1991) and Salford systems (2001).

4.1 Mars based analysis

In order to predict the failure load (Pmax) and the fracture characteristics (GF ,
CTODc and KIc) of HSC and UHSC beams, four individual MARS models have
been developed. MATLAB software is used for development of MARS models.

The data that forms an input vector has different quantitative limits as shown in the
Table 3 Normalization of the data is to be carried out before presenting the input
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Table 3: Training Data Sets for MARS
S.
No

L
(mm)

A
(cm2)

a0
(mm)

w/c fck
(MPa)

σ t
(MPa)

E
(GPa)

Pmax
(KN)

GF
(N/m)

KIC
(Mpa√

m)

CTODC
(mm)

1 250 25 5 0.45 57.14 3.96 35.78 2.71 115.84 1.126 0.031
2 250 25 4 0.45 57.14 3.96 35.78 2.62 123.31 1.129 0.03
3 250 25 10 0.45 57.14 3.96 35.78 1.98 91.12 1.092 0.0183
4 250 25 9 0.45 57.14 3.96 35.78 1.98 86.65 1.08 0.0186
5 250 25 10 0.45 57.14 3.96 35.78 1.84 74.32 1.083 0.0178
6 250 25 16 0.45 57.14 3.96 35.78 1.14 55.18 0.916 0.0081
7 250 25 15 0.45 57.14 3.96 35.78 1.42 68.61 0.902 0.008
8 500 50 9 0.45 57.14 3.96 35.78 4.53 144.02 1.348 0.049
9 500 50 10 0.45 57.14 3.96 35.78 4.10 130.26 1.349 0.0485
10 500 50 18 0.45 57.14 3.96 35.78 3.79 92.72 1.174 0.035
11 500 50 19 0.45 57.14 3.96 35.78 3.63 115.42 1.173 0.0345
12 500 50 28 0.45 57.14 3.96 35.78 2.58 89.12 0.984 0.0149
13 1000 100 19 0.45 57.14 3.96 35.78 7.27 165.25 1.467 0.1026
14 1000 100 19 0.45 57.14 3.96 35.78 7.32 146.28 1.461 0.1
15 1000 100 19 0.45 57.14 3.96 35.78 6.99 148.25 1.456 0.098
16 1000 100 39 0.45 57.14 3.96 35.78 6.01 135.85 1.224 0.0601
17 1000 100 39 0.45 57.14 3.96 35.78 6.32 140.56 1.201 0.06
18 1000 100 58 0.45 57.14 3.96 35.78 4.54 115.12 1.012 0.0281
19 1000 100 60 0.45 57.14 3.96 35.78 4.70 104.22 0.998 0.026
20 250 25 5 0.33 87.71 15.38 37.89 4.20 4157.28 7.984 0.3434
21 250 25 5 0.33 87.71 15.38 37.89 4.15 4102.2 7.941 0.321
22 250 25 10 0.33 87.71 15.38 37.89 3.37 3464.6 7.398 0.2213
23 250 25 10 0.33 87.71 15.38 37.89 3.26 3880.1 7.362 0.218
24 250 25 15 0.33 87.71 15.38 37.89 2.79 3301.2 6.961 0.098
25 250 25 15 0.33 87.71 15.38 37.89 2.88 3410 6.981 0.1
26 250 25 20 0.33 87.71 15.38 37.89 1.98 2892.06 6.118 0.053
27 250 25 20 0.33 87.71 15.38 37.89 2.05 2988.52 6.3 0.051
28 500 50 10 0.33 87.71 15.38 37.89 8.35 4811 8.479 0.456
29 500 50 10 0.33 87.71 15.38 37.89 8.20 4200.1 8.453 0.45
30 500 50 20 0.33 87.71 15.38 37.89 5.10 4516.1 7.401 0.3268
31 500 50 20 0.33 87.71 15.38 37.89 4.99 4266.5 7.386 0.32
32 500 50 20 0.33 87.71 15.38 37.89 5.07 3828.57 7.365 0.318
33 500 50 30 0.33 87.71 15.38 37.89 3.80 3579.89 6.682 0.203
34 500 50 30 0.33 87.71 15.38 37.89 3.79 3865.2 6.701 0.206
35 500 50 40 0.33 87.71 15.38 37.89 2.99 3970.95 6.201 0.093
36 500 50 40 0.33 87.71 15.38 37.89 3.08 3406.67 6.196 0.09
37 250 25 4 0.23 122.52 20.65 42.987 9.99 10349.24 12.601 0.433
38 250 25 5 0.23 122.52 20.65 42.987 10.01 10376.22 12.652 0.44
39 250 25 10 0.23 122.52 20.65 42.987 7.81 8308.49 11.762 0.281
40 250 25 9 0.23 122.52 20.65 42.987 7.43 7900 11.801 0.279
41 250 25 15 0.23 122.52 20.65 42.987 6.20 6925.54 11.092 0.141
42 250 25 15 0.23 122.52 20.65 42.987 5.99 6694.51 11 0.142
43 250 25 20 0.23 122.52 20.65 42.987 4.07 4386.6 7.581 0.0875
44 250 25 19 0.23 122.52 20.65 42.987 3.99 4306.29 7.412 0.0861
45 250 25 20 0.23 122.52 20.65 42.987 4.18 4511.36 7.51 0.085
46 400 40 9 0.23 122.52 20.65 42.987 14.23 11557.07 13.541 0.483
47 400 40 8 0.23 122.52 20.65 42.987 13.98 11354.02 13.582 0.49
48 400 40 16 0.23 122.52 20.65 42.987 10.85 8888.75 11.949 0.3898
49 400 40 15 0.23 122.52 20.65 42.987 10.62 8700.84 11.892 0.383
50 400 40 25 0.23 122.52 20.65 42.987 7.58 7145.19 11.201 0.2515
51 400 40 24 0.23 122.52 20.65 42.987 7.61 7171.63 11.221 0.249
52 400 40 32 0.23 122.52 20.65 42.987 5.56 5021.25 8.471 0.1216
53 400 40 31 0.23 122.52 20.65 42.987 5.60 5058.14 8.45 0.12
54 650 65 13 0.23 122.52 20.65 42.987 19.49 12052.38 13.984 0.581
55 650 65 12 0.23 122.52 20.65 42.987 19.31 11944.13 13.801 0.563
56 650 65 25 0.23 122.52 20.65 42.987 13.37 8076 12.013 0.3069
57 650 65 25 0.23 122.52 20.65 42.987 13.51 8892.69 12 0.301
58 650 65 39 0.23 122.52 20.65 42.987 10.12 6965.9 11.321 0.181
59 650 65 39 0.23 122.52 20.65 42.987 10.30 7085.13 11.103 0.172
60 650 65 52 0.23 122.52 20.65 42.987 7.46 5919.23 9.691 0.094
61 650 65 52 0.23 122.52 20.65 42.987 7.69 6109.05 9.598 0.093



Multivariate Adaptive Regression Splines Model 85

Note of table 3: L- length, A- c/s area, a0- Notch depth, w/c-Water- cementations material ratio,
SP- SuperPlasticizer, fck-compressive strength, σ t -Split tensile strength, E- modulus of elasticity,
Pmax- Failure load, GF - Fracture energy, KIC- critical stress intensity factor, CTODC- Critical
crack tip opening displacement.

patterns to the MARS. Equation 16 is used for the linear normalization of the data
to the data values between 0 and 1.

xn
i =

xa
i − xmin

i

xmax
i − xmin

i
(17)

where, xa
i and xn

i are the ith components of the input vector before and after normal-
ization, respectively, and xmax

i and xmin
i are the maximum and minimum values of

all the components of the input vector before the normalization.

Model I Failure load (Pmax)

The MARS equation for the prediction of failure load is given by equation no 17.
It can be directly identified that the number of interaction effects and, in particular,
interactions between efforts (as captured by basis function B3(x)). Such interac-
tions can be seen in equation (17), when basis functions are part of the definition
of other basis functions, e.g., B3(x) in B6(x), B7(x) etc.

The presence of many such interactions suggests that the model is far from being
additive and those interactions will play an important role in building an accurate
model for code inspections. The user defined basis functions for over fitting the
model was limited to 32 basis functions and the allowable highest degree of inter-
action was set to 2. The final model had 18 Basis functions as listed below. Thus
for this model equation (11) becomes

y = Pmax = 0.329+
18

∑
m=1

amB(1)
m (x) (18)

where,

The ANOVA decomposition is specified in row wise for each ANOVA function.
The columns represent summary quantities for corresponding ones. The first col-
umn lists the function number. The second gives the standard deviation (STD) of
the function. This gives indication of its (relative) importance to the overall model
and can be interpreted in a manner similar to a standard regression coefficient in a
linear model. The third column provides another indication of the importance of
the corresponding

ANOVA function, by listing the GCV score for a model with the entire basis func-
tions corresponding to that particular ANOVA function removed. This can be used
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Basis function B(1)
m (x) Equation Co-efficient (am)

B1(x) max (0, fck -0.468) 1.453
B2(x) max (0, 0.468 - fck) -0.354
B3(x) max(0, L -0.333) -0.501
B4(x) max(0, 0.333 -L) -0.899
B5(x) max(0, a0 -0.222) -2.213
B6(x) B3(x) * max(0, a0 -0.370) -7.0594
B7(x) B3(x) * max(0, 0.370 - a0) 6.209
B8(x) B5(x) * max(0, L -0.2) 6.423
B9(x) B4(x) * max(0, a0 -0.185) 3.433
B10(x) B4(x) * max(0, 0.185 - a0) 1.412
B11(x) B5(x) * max(0, w/c -0) 0.692
B12(x) B4(x) * max(0, E -0.293) -1.097
B13(x) B4(x) * max(0, 0.293 -E) 1.0686
B14(x) max(0, 0.222 - a0) * max(0, fck -0.468) 5.267
B15(x) max(0, a0 -0.370) 0.786
B16(x) B1(x) * max(0, a0 -0.389) 2.817
B17(x) B1(x) * max(0, 0.389 - a0) -3.603
B18(x) B1(x) * max(0, a0 -0.185) -2.945

to judge whether this ANOVA function is making an important contribution to the
model, or whether it just slightly helps to improve the global GCV score. The
fourth column gives the number of basis functions comprising the ANOVA and the
last column of Table 4 gives the particular predictor variables associated with the
ANOVA function.

Table 4: ANOVA decomposition – Failure load (Pmax)

Func. STD GCV #basis variable(s)
1 0.127 0.102 2 L
2 0.329 0.31 2 a0
3 0.421 0.483 2 fck
4 0.273 0.201 5 L & a0
5 0.106 0.028 2 L & E
6 0.107 0.027 1 a0 & w/c
7 0.144 0.07 4 a0 & fck

The value of coefficient of correlation (R) is determined by using the following
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formula

R =

n
∑

i=1

(
Eai−Ea

)(
Epi−E p

)
√

n
∑

i=1

(
Eai−Ea

)√ n
∑

i=1

(
Epi−E p

) (19)

where Eai and Epi are the actual and predicted values, respectively, Ea and E p are
mean of actual and predicted E values corresponding to n patterns.

Model II- Fracture Energy (GF)

The predicted model for GF is given below

y = GF = 0.305+
8

∑
m=1

amB(1)
m (x) (20)

where

Basis function B(1)
m (x) Equation Co-efficient (am)

B1(x) max(0, w/c -0.454) -0.551
B2(x) max(0, 0.455-w/c) * max(0, a0 -0.389) -8.782
B3(x) max(0, 0.455-w/c) * max(0, 0.389- a0) 4.716
B4(x) max(0, 0.455-w/c) * max(0, L -0.2) 0.362
B5(x) max(0, 0.455-w/c) * max(0, 0.2 -L) -2.463
B6(x) B4(x) * max(0, a0 -0.370) 13.455
B7(x) B4(x) * max(0, 0.370- a0) 4.498
B8(x) max (0, 0.455-w/c) * max(0, a0 -0.185) 3.307

Table 5 shows the details ANOVA decomposition

Table 5: ANOVA decomposition - Fracture energy
Func. STD GCV #basis variable(s)
1 0.135 0.039 1 w/c
2 0.084 0.015 2 L & w/c
3 0.31 0.127 3 a0 & w/c
4 0.196 0.054 2 L, a0 & w/c

Model III – Critical Stress Intensity Factor (KIC)
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The predicted model for KICis given below.

y = KIC = 0.421+
14

∑
m=1

amB(1)
m (x) (21)

where,

Basis function B(1)
m (x) Equation Co-efficient (am)

B1(x) max(0, w/c -0.455) -0.767
B2(x) max(0, 0.454-w/c) 0.835
B3(x) B2(x) * max(0, a0 -0.389) -1.759
B4(x) B2(x)* max(0, 0.389 - a0) -3.015
B5(x) B2(x)* max(0, L -0.2) 0.554
B6(x) B2(x)* max(0, 0.2 -L) -0.201
B7(x) max(0, a0 -0.370) 0.250
B8(x) max(0, 0.370- a0) 0.690
B9(x) B7(x)* max(0, L -0.333) -0.347
B10(x) B7(x)* max(0, 0.333-L) -13.071
B11(x) B8(x) * max(0, w/c -0.455) -0.983
B12(x) B8(x)* max(0, 0.455-w/c) 3.019
B13(x) max(0, 0.2 –L) -0.478
B14(x) B13(x) * max(0, 0.684-σt) 0.319

Table 6 shows the details of ANOVA decomposition for KICmodel.

Table 6: ANOVA decomposition – KIC

Func. STD GCV #basis variable(s)
1 0.046 0.014 1 L
2 0.076 0.046 2 a0
3 0.339 0.147 2 w/c
4 0.055 0.008 2 L & a0
5 0.03 0.01 2 L & w/c
6 0.014 0.009 1 L & σt
7 0.079 0.014 4 a0& w/c

Model IV – Critical Crack Tip Opening Displacement (CTODC)
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The predicted model for CTODcis given below

y =CTODC = 0.387+
14

∑
m=1

amB(1)
m (x) (22)

where,

Basis function B(1)
m (x) Equation Co-efficient (am)

B1(x) max(0, w/c -0.455) -0.626
B2(x) max(0, 0.455-w/c) 0.183
B3(x) B2(x) * max(0, a0 -0.389) -4.272
B4(x) B2(x) * max(0, 0.389- a0) 2.994
B5(x) max(0, a0 -0.222) -0.283
B6(x) max(0, 0.222- a0) 2.638
B7(x) max(0, L -0.2) 0.224
B8(x) max(0, 0.2 -L) -1.488
B9(x) B6(x) * max(0, fck -0.468) -17.852
B10(x) B6(x) * max(0, 0.468- fck) -5.428
B11(x) B8(x) * max(0, w/c -0.455) 2.391
B12(x) max (0, 0.455-w/c) * max(0, L -0.2) * 9.224

max(0, a0 -0.370)
B13(x) max (0, 0.455-w/c) * max(0, L -0.2) * 12.822

max(0, 0.370- a0)
B14(x) B2(x) * max (0, 0.185- a0) 19.470

Table 7 shows the details of ANOVA decomposition for CTODc.

Table 7: ANOVA decomposition -CTODc

Func. STD GCV #basis variable(s)
1 0.185 0.082 2 L
2 0.223 0.098 2 a0
3 0.183 0.07 2 w/c
4 0.084 0.02 1 L & w/c
5 0.529 0.46 3 a0 & w/c
6 0.471 0.479 2 a0 & fck
7 0.15 0.043 2 L, a0 & w/c

Table 8 shows the complete statistics for all the developed MARS models. The
GCV was computed using the equation 13 and the coefficient of correlation (R)
was computed using equation 18.
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Table 8: Testing of MARS
MARS results Pmax GF KIC CTODC
User defined max. no. of Basis func-
tions

32 12 20 18

Interactions Ratio allowed 2 4 2 4
Final no. of basis functions 18 8 14 14
Mean Square Error (MSE) Train 7.48E-05 4.51E-04 1.73E-04 6.79E-04

Test 9.77E-04 0.0011 0.0047 0.004
Root Mean Square Error (RMSE) 0.0313 0.0335 0.0683 0.0629
Generalized Cross Validation 3.75E-04 0.0011 9.64E-04 0.0038
Coefficient of correlation (R) Train 0.998 0.9976 0.9988 0.9947

Test 0.9993 0.9977 0.9993 0.996

Table 9: Test results of MARS model (Pmaxand GF)

L
(mm)

A
(cm2)

a0
(mm)

w/c fck
(MPa)

σt
(MPa)

E
(GPa)

Pmax (kN) GF (N/m)

Exptl. MARS Exptl MARS
250 25 4 0.45 57.14 3.96 35.78 2.412 2.161 114.9 101.6
250 25 17 0.45 57.14 3.96 35.78 1.321 1.248 47.4 101.6
500 50 29 0.45 57.14 3.96 35.78 2.575 2.323 96.2 101.6
500 50 28 0.45 57.14 3.96 35.78 2.321 2.301 100.3 101.6
500 50 10 0.33 87.71 15.38 37.89 8.102 8.046 4142.2 4351.2
1000 100 40 0.45 57.14 3.96 35.78 6.278 6.204 110.2 101.6
500 50 10 0.45 57.14 3.96 35.78 4.312 4.318 137.0 101.6
250 25 10 0.33 87.71 15.38 37.89 3.121 3.062 3763.1 3838.7
650 65 51 0.23 122.52 20.65 42.987 7.312 7.233 5806.5 5719.1
500 50 30 0.33 87.71 15.38 37.89 3.991 4.085 4623.5 3666.7
250 25 9 0.23 122.52 20.65 42.987 7.667 8.169 8155.0 8489.0
250 25 14 0.23 122.52 20.65 42.987 6.128 5.868 6844.0 6560.3
400 40 8 0.23 122.52 20.65 42.987 14.08 14.198 11435.2 11489.8
400 40 16 0.23 122.52 20.65 42.987 10.514 10.715 8613.2 8459.5
650 65 24 0.23 122.52 20.65 42.987 13.498 13.723 8155.1 8114.3
650 65 13 0.23 122.52 20.65 42.987 19.126 19.489 11829.1 11818.5
650 65 39 0.23 122.52 20.65 42.987 10.013 10.212 6889.1 7057.5
250 25 5 0.23 122.52 20.65 42.987 10.136 10.012 10504.7 10358.7
250 25 20 0.33 87.71 15.38 37.89 2.102 1.928 2894.0 3471.1
400 40 31 0.23 122.52 20.65 42.987 5.312 5.443 4797.2 4809.5
250 25 5 0.33 87.71 15.38 37.89 4.101 4.067 4056.4 4153.3
500 50 40 0.33 87.71 15.38 37.89 3.194 2.965 2897.9 3042.3
1000 100 58 0.45 57.14 3.96 35.78 4.412 4.353 111.9 101.6
400 40 25 0.23 122.52 20.65 42.987 7.31 6.997 6887.1 6986.8
500 50 18 0.45 57.14 3.96 35.78 3.87 3.680 105.3 101.6
250 25 15 0.33 87.71 15.38 37.89 2.841 2.605 3685.1 3600.7
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Table 10: Test results of MARS model (KIC and CTODc)

L
(mm)

A
(cm2)

a0 w/c fck
(MPa)

σt
(MPa)

E
(GPa)

KIC (Mpa√
m)

CTODC(mm)

(mm) Exptl. MARS Exptl. MARS
250 25 4 0.45 57.14 3.96 35.78 1.121 1.0176 0.029 0.026
250 25 17 0.45 57.14 3.96 35.78 0.923 1.0267 0.008 0.011
500 50 29 0.45 57.14 3.96 35.78 0.998 1.0059 0.015 0.013
500 50 28 0.45 57.14 3.96 35.78 0.979 0.9956 0.015 0.016
500 50 10 0.33 87.71 15.38 37.89 8.462 8.5571 0.432 0.402
1000 100 40 0.45 57.14 3.96 35.78 1.234 1.0267 0.062 0.065
500 50 10 0.45 57.14 3.96 35.78 1.356 1.4699 0.051 0.057
250 25 10 0.33 87.71 15.38 37.89 7.312 7.2664 0.213 0.213
650 65 51 0.23 122.52 20.65 42.987 9.601 9.6302 0.091 0.078
500 50 30 0.33 87.71 15.38 37.89 6.721 6.5705 0.206 0.186
250 25 9 0.23 122.52 20.65 42.987 11.857 11.9744 0.283 0.293
250 25 14 0.23 122.52 20.65 42.987 11.183 11.1451 0.145 0.140
400 40 8 0.23 122.52 20.65 42.987 13.655 13.536 0.494 0.502
400 40 16 0.23 122.52 20.65 42.987 11.901 12.174 0.38 0.376
650 65 24 0.23 122.52 20.65 42.987 11.98 12.0755 0.289 0.311
650 65 13 0.23 122.52 20.65 42.987 13.882 13.8742 0.571 0.572
650 65 39 0.23 122.52 20.65 42.987 11.201 11.0854 0.162 0.184
250 25 5 0.23 122.52 20.65 42.987 12.716 12.6366 0.443 0.432
250 25 20 0.33 87.71 15.38 37.89 6.317 6.6781 0.055 0.058
400 40 31 0.23 122.52 20.65 42.987 8.463 8.6686 0.119 0.110
250 25 5 0.33 87.71 15.38 37.89 7.912 8.0206 0.33 0.348
500 50 40 0.33 87.71 15.38 37.89 6.214 6.2699 0.096 0.135
1000 100 58 0.45 57.14 3.96 35.78 1 1.1057 0.027 0.011
400 40 25 0.23 122.52 20.65 42.987 11.198 10.8392 0.25 0.229
500 50 18 0.45 57.14 3.96 35.78 1.176 1.1394 0.036 0.045
250 25 15 0.33 87.71 15.38 37.89 6.993 6.5692 0.101 0.092
Note of table 10: L- length, A- c/s area, a0- Notch depth, w/c-Water- cementations material
ratio, SP- SuperPlasticizer, fck -compressive strength, σ t -Split tensile strength, E- modulus
of elasticity, Pmax- Failure load, GF - Fracture energy, KIC- critical stress intensity factor,
CTODC- Critical crack tip opening displacement.

On successful development of MARS model with 61 dataset, the model is veri-
fied with remaining 26 dataset. The results are shown in Tables 9 and 10. The
output vector obtained from the MARS model is a normalized data and hence, the
normalized data is reverted to its actual value by using equation (23).

xa
i = xn

i
(
xmax

i − xmin
i
)
+ xmin

i (23)

where, xn
i is the normalized result obtained after the test for the ith component. xa

i is
the actual result obtained for ith componenet, and xmax

i and xmin
i are the maximum
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and minimum values of all the compoents of the corresponding input vector before
the normalization.

From Tables 7 and 8, it can be observed that the predicted values of Pmax,GF,KIc

and CTODc, are in very good agreement with each other. Figs. 1 to 4 show the
comparison of predicted and experimental Pmax, GF , KIC and CTODC respectively.
From Figures 1 to 4, it can be observed that the developed models are robust and
reliable.

Figure 1: Experimental vs predicted failure load (Pmax)

Figure 2: Experimental vs predicted GF
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Figure 3: Experimental vs predicted KI

Figure 4: Experimental vs predicted CTODc

5 Summary and conclusion

Fracture mechanics based MARS model has been developed to predict the fracture
characteristics of HSC and UHSC. Fracture characteristics include fracture energy
(GF), critical stress intensity factor (KIC) and critical crack tip opening displace-
ment (CTODc). MARS model has also been developed to predict the failure loads
under the three point bending test for HSC and UHSC beam specimens. Character-
ization of mix of high strength and ultra high strength concrete has been described.
An overview of experimental details of beams tested under static loading has been



94 Copyright © 2013 Tech Science Press CMC, vol.36, no.1, pp.73-97, 2013

shown and methodologies for evaluation of fracture energy, critical stress intensity
factor and critical crack tip opening displacement have been outlined. MARS estab-
lishes a relationship between a set of predicators and dependent variables. MARS
is based on a divide and conquers strategy partitioning the training data sets into
separate region; each gets its own regression line Four MARS models have been
developed using MATLAB software for training and prediction of the three fracture
parameters and failure load. MARS has been trained with about 70% of the total
87 data sets and tested with about 30% of the total data sets. It is observed that
the predicted values of failure load, facture energy, critical stress intensity factor
and critical crack tip opening displacement are in good agreement with those of the
experimental values. The developed models will be readily useful for prediction of
fracture parameters of HSC and UHSC beams.
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