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Forced Vibration of the Pre-Stressed and Imperfectly
Bonded Bi-Layered Plate Strip Resting on a Rigid

Foundation

S.D. Akbarov1,2, E. Hazar3, M. Eröz3

Abstract: Within the scope of the piecewise homogeneous body model with uti-
lizing of the three dimensional linearized theory of elastic waves in initially stressed
bodies the influence of the shear-spring type imperfection of the contact condi-
tions between the layers of the pre-stressed bi-layered plate strip resting on the
rigid foundation, on the frequency response of this plate strip is investigated. The
corresponding mathematical problem is solved numerically by employing FEM
and numerical results illustrating the influence of the parameter characterizing the
degree of the mentioned imperfectness, on the frequency response of the normal
stress acting on the interface planes between the layers and between the plate and
rigid foundation are presented and discussed. In particular, it is established that
an increase in the value of the shear-spring parameter the absolute values of the
compressed normal stress decrease, but the values of the stretched normal stress
increase and this parameter has an influence also on the character of the action of
the initial stresses on the frequency response under consideration.

Keywords: bi-layered plate-strip with finite length, frequency response, initial
stress, shear-spring type imperfectness

1 Introduction

It is known that there are many factors on which the dynamical behavior of the
layered elastic systems depends significantly. Two of them are following ones:
(a) the imperfectness of the contact on the interface planes between the layers, (b)
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the static initial stresses in the layers which exist before the additional dynamical
loading.

Note that the factor (a), i.e. the imperfectness of the contact between layers may
arise as a defect caused by the corresponding technological process, as well as may
be considered as constructional requirements. Moreover, the mentioned imperfect-
ness can arise during the exploitation of the element of constructions fabricated
from the layered materials as a result of actions of various type external impacts.

The mentioned factor (b) above, i.e. the initial stresses in the layers of the layered
systems may also arise as a result of a technological process employing under its
assembly and as a result of the action of the environmental temperature. Moreover,
stresses caused by the exploitation of the external static loading can be also taken
as initial stresses with respect to the additional dynamic loading. It should be noted
that the influence of the initial stresses on the dynamical behavior of the deformed
(including layered) systems cannot be taken into account within the framework of
the classical linear theory of elastodynamics, because this influence regards the
non-linear effects in the dynamics of the deformed systems. Therefore, the theoret-
ical investigations of the noted influence require the use of the complicated geomet-
rical non-linear equations of dynamics of the deformable body. However, according
to the well-known mechanical considerations for the cases where the magnitude of
the initial loading is greater than that of the additional dynamic loading these in-
vestigations can be carried out within the framework of the Three-Dimensional
Linearized Theory of Elastic Waves in Initially Stressed Bodies (TDLTEWISB).

In the construction of the field equations of the TDLTEWISB, one considers two
states of a deformable solid. The first is regarded as the initial or unperturbed state,
and the second is a perturbed state with respect to unperturbed. By “the state of
deformable solid” is meant both motion and equilibrium (as a particular case of
motion). It is assumed that all values in a perturbed state can be represented as a
sum of the values of the initial state and perturbations. The latter is also assumed
to be small in comparison with the corresponding values in the initial state. It is
also assumed that both initial (unperturbed) and perturbed states are described by
the equations of non-linear solid mechanics. Due to the fact that perturbations are
small, the relationships for the perturbed state in the vicinity of appropriate values
for the unperturbed state are linearized and then the relationships for the unper-
turbed state are subtracted from them. The results are the equations of the TDL-
TEWISB. Since the equations contain the initial state variables, the TDLTEWISB
describes the influence of the initial stresses on the perturbations.

For the determination of initial (unperturbed) state in relatively rigid materials the
classical linear theory of elasticity is used. However the perturbed state is de-
scribed by the geometrically non-linear exact equations of the theory of elasticity.
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By linearizing these equations the aforementioned equations of the TDLTEWISB
are obtained. This and other versions of the TDLTEWISB are analyzed in the
monographs by Guz (1986a, 1986b, 2004) and in a paper by Akbarov (2012).

It should be noted that the investigations carried out up to now in this field can
be divided into two groups. Investigations of the first group related to the wave
propagation in the initially stressed bodies and systematic analyses of results of
these investigations were made in monographs by Guz (1986a, 1986b, 2004). The
review of the results obtained before 2002 was made in the paper by Guz (2002),
but the review of the investigations obtained before 2007 was made in Akbarov
(2007b). At the same time the review of the resent investigation was detailed in the
paper by Akbarov (2012).

Investigations of the second group relate to the time harmonic Lamb’s problem
for the elastic systems consisting of the pre-stressed half-spaces and with the pre-
stressed covering layer (see Akbarov (2006a, 2006b, 2007a), Akbarov, Emiroglu
and Tasci (2005), Emiroglu, Tasci and Akbarov (2009), Akbarov and Guler (2007),
Akbarov and Ilhan (2008, 2009, 2010)), as well as to the time harmonic dynamic
stress field problem for the system consisting of the pre-stressed two layers rest-
ing on a rigid foundation (see Akbarov (2006c), Akbarov and Salmanova (2009),
Akbarov, Zamanov and Suleimanov (2005) and others).

We note that, as in last three papers by Akbarov (2006c), Akbarov and Salmanova
(2009), Akbarov, Zamanov and Suleimanov (2005), the subject of the present paper
regards also the time-harmonic dynamic stress field in a bi-layered slab which rests
on the rigid foundation. Moreover, we note that in the mentioned last three papers
it was assumed that the length and width of the layers in the medium considered are
infinite. Namely, this assumption simplifies the mathematical solutions of the cor-
responding problems. However, this assumption cannot be applicable for the cases
where the thickness and length of the layers in the bi-layered systems have com-
mensurable quantities. Consequently, in such cases the corresponding problems
for plates with finite length were investigated in papers by Akbarov, Yildiz and
Eröz (2011b) (for single-layer plate) and Akbarov, Yildiz and Eröz (2011a) (for
bi-layered plate). However, in these papers it was assumed that between the layers,
as well as between the plate and rigid foundation the complete contact conditions
satisfy. However, in many cases, it is unrealistic to assume a perfectly bounded
interface between the constituents of the elastic systems (see, an instance, a paper
by Selvadurai and Nikopour (2012)). In order to apply the results of the theoret-
ical investigations related to the forced vibration of the bi-layered slab (or plate)
resting on the rigid foundation to practice real cases, it is necessary to take into
account the factor (a) noted above, i.e. the imperfectness of the contacts between
the constituents under these investigations.
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Taking the foregoing discussions into account, in the present paper the forced vi-
bration of the imperfectly bonded, pre-stressed bi-layered plate with finite length
resting on the rigid foundation is studied within the scope of the piecewise ho-
mogeneous body model with the use of the TDLTEWISB. Numerical results are
obtained by employing Finite Element Method (FEM). Under this study it is as-
sumed that the shear-spring type imperfect contact conditions satisfy between the
layers, but between the plate and the rigid foundation the complete contact condi-
tions. It should be noted that the investigations carried out in this paper can be also
considered as development of the investigations carried out in the paper by Ak-
barov, Yildiz and Eröz (2011a) for the case where between the layers of the plate
the shear-spring type imperfect contact condition are satisfied.

2 Formulation of the Problem

Consider the bi-layered plate-strip with geometries shown in Fig.1 and determine
the positions of the points of that by the Lagrangian coordinates in the Cartesian
system of coordinates Ox1x2x3. We assume that the length of the plate is infinite in
the direction of Ox3 axis and all investigations are made for plane-strain state in the
Ox1x2 plane. The layers of the plate occupy the regions

Ω1 = { −a≤ x1 ≤+a ; −h1 < x2 ≤ 0 }
Ω2 = { −a≤ x1 ≤+a ; −h≤ x2 ≤−h1 }

(1)

The values related to the upper (lower) layer occupying the region Ω1 (Ω2) will be
indicated by upper index (1) ( (2) ).

Figure 1: The geometry of the bilayered plate-strip for the considered problem

Before compounding with one another and with the rigid foundation, the layers
are loaded separately with uniformly distributed normal forces acting at the ends
of those, as a result of which a uniaxial homogeneous initial stress state appears in
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each of them. The values related to this initial state will be indicated with additional
upper index 0.

Assume that the layers’ materials are moderately rigid and foregoing initial stress
state in the layers is determined within the scope of the classical linear theory of
elasticity as follows

σ
(m),0
11 = cm ; m = 1,2 , σ

(m),0
i j = 0 for i j 6= 11, (2)

where cm is known constant for each layer. As we consider the case where the initial
stress state in the layers is determined by the classical linear theory of elasticity, the
distinction between the coordinates regarding the natural and the initial states is so
slight that it need not be taken into account.

Thus, given the statements above, we assume that on the upper free face of the
upper layer line-located time-harmonic dynamical force acts as shown in Fig.1.
This is required to determine the dynamical response of the considered system to
this load under the plane-strain state in Ox1x2 plane.

According to Guz (2004), the equations of motion of TLTEWISB for the small
initial deformation considered are

∂σ
(m)
i j

∂x j
+σ

(m),0
11

∂ 2u(m)
i

∂x2
1

= ρ
(m) ∂ 2u(m)

i
∂ t2 , i; j; m = 1,2. (3)

The materials of the layers are assumed to be isotropic and mechanical relations for
those are written as follows

σ
(m)
i j = λ

(m)
θ
(m)

δi j +2µ
(m)

ε
(m)
i j , m = 1,2 (4)

where

ε
(m)
i j =

1
2

(
∂u(m)

i
∂x j

+
∂u(m)

j

∂xi

)
, m = 1,2. (5)

In equations (3)-(5) and below conventional notation is used. According to the
foregoing discussions, on the upper plane of the upper layer and on the ends of the
plate the following boundary conditions satisfy

σ
(1)
12 |x2=0 = 0 , σ

(1)
22 |x2=0 =−Pδ (x1)eiω t . (6)(

σ
(m),0
11

∂u(m)
j

∂x1
+σ

(m)
1 j

)∣∣∣∣∣
x1=±a

= 0 , m; j = 1,2. (7)



28 Copyright © 2013 Tech Science Press CMC, vol.36, no.1, pp.23-48, 2013

In Eq. (6), δ (x1) denotes the Dirac’s delta function.

Now we consider the formulation of the imperfect contact conditions on the inter-
face plane between the lower and upper layers. It should be noted that, in general,
the imperfectness of the contact conditions is identified by discontinuities of the
displacements and forces across the mentioned interface. A review of the mathe-
matical modeling of the various types of incomplete contact conditions for elasto-
dynamics problems has been detailed in a paper by Martin (1992). It follows from
this paper that for most models the discontinuity of the displacement u+ and force
f+ vectors on one side of the interface are assumed to be linearly related to the dis-
placement u− and force f− vectors on the other side of the interface. This statement,
as in the paper by Rokhlin and Wang (1991), can be presented as follows:

[f] = Cu−+Df−, [u] = Gu−+Ff−, (8)

where C, D, G and F are three-dimensional (3×3) matrices and the square brackets
indicate a jump in the corresponding quantity across the interface. Consequently,
if the interface is at x2 =−h1, then:

[u] = u|x2=−h 1+0− u|x2=−h 1−0 , [f] = f|x2=−h 1+0− f|x2=−h 1−0 . (9)

It follows from (8) that we can write incomplete contact conditions for various
particular cases by selection of the matrices C, D, G and F. One such selection was
made in the paper by Jones and Whitter (1967), according to which, it was assumed
that C = D = G = 0. In this case the following can be obtained from (9):

[f] = 0, [u] = Ff−, (10)

where F is a constant diagonal matrix. The model (10) simplifies significantly the
solution procedure of the corresponding problems and is adequate in many real
cases. Therefore, this model (i.e. the model (10)) is called a shear-spring type
resistance model and has been used in many investigations carried out within the
framework of classical elastodynamics by Jones and Whitter (1967), Berger, Mar-
tin and McCaffery (2000), Kepceler (2010) and by Akbarov and Ipek (2010, 2012).
According to this statement, we also use the model (10) for the mathematical for-
mulation of the imperfectness of the contact conditions and these conditions are
written as follows.
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σ
(1)
i2 |x2=−h1 = σ

(2)
i2 |x2=−h1 , i = 1,2, u(1)2 |x2=−h1 = u(2)2 |x2=−h1 ,

u(1)1 |x2=−h 1−u(2)1 |x2=−h 1 = F
h1

µ(1) σ
(1)
12 |x2=−h 1 , F > 0 (11)

Moreover, we assume that between the lower layer of the plate and the rigid foun-
dation the complete clamped conditions occur

u(2)i |x2=−h = 0, i = 1,2, (12)

where h = h1 +h2.

We will estimate below the degree of the shear-spring type imperfectness of the
contact conditions (11) through the parameter F in (11). Note that the case where
F = 0 corresponds the full contact of the layers, but the case where F = ∞ to the
full slipping contact between the layers of the plate.

This completes the formulation of the problem. It should be noted that in the case
where σ

(m),0
11 = 0 (m = 1,2), the problem formulation described above transforms

into the corresponding one within the scope of the classical linear theory of elasto-
dynamics.

3 Solution Method: Finite Element Formulation

Since the applied lineal located load is time-harmonic and the steady state is con-
sidered, all the dependent variables are also time-harmonic and can be represented
as

{ u(m)
i ,ε

(m)
i j ,σ

(m)
i j }= { ū(m)

i , ε̄
(m)
i j , σ̄

(m)
i j }e

iωt . (13)

where the superposed bar denotes the amplitude of the corresponding quantity.
Hereafter the bars will be omitted. Substituting expression (13) into the forego-
ing equations and conditions, with the change (∂ 2u(m)

j /∂ t2) and Pδ (x1)eiω t by

(−ω2u(m)
j ) and Pδ (x1) respectively, we obtain the same equations and conditions

for the amplitude of the sought values. To find the analytical solution of the formu-
lated problem is impossible, therefore we attempt to solve this problem numerically
by employing FEM.

First, we introduce the dimensionless coordinate system by the following transfor-
mation

x̂1 =
x1

h
, x̂2 =

x2

h
.



30 Copyright © 2013 Tech Science Press CMC, vol.36, no.1, pp.23-48, 2013

For the FEM modeling of the boundary-value - contact problem which are obtained
for the amplitude from equations (3)-(12) by substituting the expression (13) into
them we propose the following functional

J(u(m)) = 1
2

2
∑

m=1

∫ ∫̂
Ωm

[
T (m)

11
∂u(m)

1
∂ x̂1

+T (m)
12

∂u(m)
2

∂ x̂1
+T (m)

21
∂u(m)

1
∂ x̂2

+T (m)
22

∂u(m)
2

∂ x̂2
−ω2ρ(m)

(
u(m)

1 u(m)
1 +u(m)

2 u(m)
2

)]
dx̂1dx̂2

+1
2

a/h∫
−a/h

Fh1
h2

(
∂u(1)1
∂ x̂2

+
∂u(1)2
∂ x̂1

)∣∣∣∣
x2=−h1/h

(
∂u(1)1
∂ x̂2

+
∂u(1)2
∂ x̂1

)∣∣∣∣
x2=−h1/h

dx̂1

+
+a/h∫
−a/h

Pδ (x̂1)u
(1)
2 |x̂2=0dx̂1,

(14)

where u(m) = u(m)(u(m)
1 ,u(m)

2 ). Note that the underlined term in the functional (14)
characterizes the imperfectness of the contact conditions between the layers of the
plate. In the expression (14) the following notation is used

T (m)
11 = σ

(m)
11 +σ

(m),0
11

∂u(m)
1

∂x1
= ω

(m)
1111

∂u(m)
1

∂x1
+ω

(m)
1122

∂u(m)
2

∂x2
,

T (m)
12 = σ

(m)
12 +σ

(m),0
11

∂u(m)
2

∂x1
= ω

(m)
1212

∂u(m)
1

∂x2
+ω

(m)
1221

∂u(m)
2

∂x1
,

T (m)
21 = σ

(m)
12 = ω

(m)
2112

∂u(m)
1

∂x2
+ω

(m)
2121

∂u(m)
2

∂x1
,

T (m)
22 = σ

(m)
22 = ω

(m)
2211

∂u(m)
1

∂x1
+ω

(m)
2222

∂u(m)
2

∂x2
, (15)

where

ω
(m)
1111 = λ

(m)+2µ
(m)+σ

(m),0
11 , ω

(m)
1122 = λ

(m),

ω
(m)
1212 = µ

(m), ω
(m)
1221 = µ

(m)+σ
(m),0
11 ,

ω
(m)
2112 = µ

(m), ω
(m)
2121 = µ

(m), ω
(m)
2211 = λ

(m),

ω
(m)
2222 = λ

(m)+2µ
(m)+σ

(m),0
11 . (16)
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We attempt to prove the validity of the functional (14)-(16). For this purpose we
consider the first variation of this functional which after some mathematical ma-
nipulations can be presented as follows:

δ J(u(m)) =
2

∑
m=1

∫ ∫
Ω̂m

[(
ω

(m)
1111

∂u(m)
1

∂ x̂1
+

1
2

ω
(m)
1122

∂u(m)
2

∂ x̂2
+

1
2

ω
(m)
2211

∂u(m)
2

∂ x̂2

)
∂

(
δu(m)

1

)
∂ x̂1

+

(
ω

(m)
2222

∂u(m)
2

∂ x̂2
+

1
2

ω
(m)
2211

∂u(m)
1

∂ x̂1
+

1
2

ω
(m)
1122

∂u(m)
1

∂ x̂1

)
∂

(
δu(m)

2

)
∂ x̂2

+

(
1
2

ω
(m)
1212

∂u(m)
2

∂ x̂1
+ω

(m)
2112

∂u(m)
1

∂ x̂2
+

1
2

ω
(m)
2121

∂u(m)
2

∂ x̂1

)
∂

(
δu(m)

1

)
∂ x̂2

+

(
1
2

ω
(m)
1212

∂u(m)
1

∂ x̂2
+ω

(m)
1221

∂u(m)
2

∂ x̂1
+

1
2

ω
(m)
2121

∂u(m)
1

∂ x̂2

)
∂

(
δu(m)

2

)
∂ x̂1

−ω
2
ρ
(m)
(

u(m)
1 δu(m)

1 +u(m)
2 δu(m)

2

)]
dx̂1dx̂2

+
1
2

+a/h∫
−a/h

Fh1

h2

(
∂u(1)1
∂ x̂2

+
∂u(1)2
∂ x̂1

)∣∣∣∣∣
x̂2=−h1/h

(
∂u(1)1
∂ x̂2

+
∂u(1)2
∂ x̂1

)∣∣∣∣∣
x̂2=−h1/h

dx̂1

−
+a/h∫
−a/h

Pδ (hx̂1)δu(1)2 |x̂2=0dx̂1 (17)

Using the expression (16) by direct verification it is proven that ωi jnm =ωmn ji. Tak-
ing these equalities into account the following expression for δ J(u(m)) is obtained
from equation (17):

δ J(u(m)) =
2
∑

m=1

∫ ∫̂
Ωm

[
T (m)

11
∂

(
δu(m)

1

)
∂ x̂1

+T (m)
22

∂

(
δu(m)

2

)
∂ x̂2

+T (m)
21

∂

(
δu(m)

1

)
∂ x̂2

+T (m)
12

∂

(
δu(m)

2

)
∂ x̂1

−ω2ρ(m)
(

u(m)
1 δu(m)

1 +u(m)
2 δu(m)

2

)]
dx̂1dx̂2

+1
2

+a/h∫
−a/h

Fh1
h2

(
∂u(1)1
∂ x̂2

+
∂u(1)2
∂ x̂1

)∣∣∣∣
x̂2=−h1/h

(
∂u(1)1
∂ x̂2

+
∂u(1)2
∂ x̂1

)∣∣∣∣
x̂2=−h1/h

dx̂1

−
+a/h∫
−a/h

Pδ (hx̂1)δu(1)2 |x̂2=0dx̂1

.

(18)
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Using the equation

δ J =
2

∑
m=1

∫ ∫
Ωm

[·]dx1dx2 =

a∫
−a

 0∫
−h1

[·]dx2

dx1 +

a∫
−a

 −h1∫
−h

[·]dx2

dx1 = 0, (19)

after performing some well-known transformations the equations ∂T (m)
i j /∂xi −

ω2u(m)
j = 0, boundary and contact conditions given for forces in (6), (7) and (11)

are attained.

In this way the validity of the functional (14)-(16) is proven. Then the regions Ω1
and Ω2 given in (1) are divided into finite number rectangular Lagrange family of
quadratic elements (Zienkiewicz and Taylor (1989)). The number of these finite el-
ements is determined from the numerical convergence requirement. By employing
usual procedure, we obtain the equation

(K−ω
2M)a = r (20)

from relation (19), where K is the stiffness matrix, a is the vector whose compo-
nents are the values of the displacements at selected nodes, r is a force vector and
M is a mass matrix. To reduce the size of the paper the explicit expressions for cal-
culation of components of the matrices K, M and vector r are not given here. But,
note that these expressions are derived from equations (15), (16), (17) and (19),
by employing the known procedures. Thus, with the above-stated we exhaust the
consideration of the FEM modeling of the formulated problem.

4 Numerical Results and Discussions

The main aim of the present numerical investigations is to study the influence of the
shear-spring parameter Fon the frequency response of the bi-layered plate which
rests on the rigid foundation. Before the analysis of the numerical results related to
this aim we consider the verification of the algorithm and PC programs which are
composed by the authors and used under obtaining these results.

Let us introduce the notation

Ω =
ωh1

c(1)2

, ηm =
σ
(m),0
11

µ(m)
, e =

E(1)

E(2) (21)

where c(1)2 =
√

µ(1)/ρ(1) and assume that ρ(1)/ρ(2) = 1, ν(1) = ν(2) = 0.33, h1 =
h2 = h/2.

For validation of the used programs we consider the case where Ω= 0, η1 =η2 = 0,
F = 0 and e= 1. Note that this case under ν = 0.33 for the plate with infinite length
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was considered in Uflyand (1963) and corresponding problem was solved by em-
ploying Fourier integral transformation method. According to the known mechan-
ical consideration, the results obtained by the use of the present FEM approach in
the particular case which is noted above must converge to the corresponding ones
attained in Uflyand (1963) as h/2a→ 0. This prediction is proven by the graphs
given in Fig.2 which show the distribution of the normal stress σ22h

/
P acting be-

tween the layer and absolute rigid foundation with respect to x1
/

h. In Fig.2, the
starred graph denotes the one given in Uflyand (1963). In this way, the validity and
trustiness of the used algorithm and programs are proved.

Figure 2: The dependencies between σ22h/P and x1/h at the bottom surface for
various h/2a for the case where E1/E2 = 1, Ω = 0 , and η1 = η2 = 0. The notation
[...] means Uflyand (1965)

Now we consider numerical results related the influence of the shear-spring param-
eter F on the distribution of the stress σ22h

/
P with respect to x1

/
h under the static

loading case, i.e. in the case where Ω = 0. Graphs related to this distribution are
given in Fig. 3 which are constructed in the cases where x2

/
h = −h1

/
h (Fig. 3a)

and x2
/

h =−1 (Fig. 3b) under e = 1.5, h
/

2a = 0.2, η1 = η2 = 0. It follows from
Fig. 3 that an increase in the values of the parameter F causes a decrease of the
absolute values of the σ22h

/
P in the certain region 0≤ x1

/
h≤

(
x1
/

h
)
∗. However,

for the region x1
/

h >
(
x1
/

h
)
∗ an increase in the values of the parameter F causes

an increase in the absolute values of the σ22h
/

P. These results also show that in
the quantitative sense the main effect of the mentioned above influence arise in the
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near vicinity of the point x1
/

h = 0 and the absolute values of σ22h
/

Pobtained for
the interface point on the plane x2

/
h = −h1

/
h are greater significantly than those

obtained on the plane x2
/

h = −1. This result agrees also well with the known
mechanical consideration.

Figure 3a: The influence of F on the values of σ22h/P along Ox1 axis at the inter-
face plane for the case where E1/E2 = 1.5 , Ω = 0 , h/2a = 0.2 , and η1 = η2 = 0

Moreover, the results given in Fig. 3 show that the results obtained for σ22h
/

P con-
verge to a certain asymptotic one with the parameter F and this asymptote relates
to the full slipping case.

Consider graphs given in Fig. 4 which show the distribution of σ22h
/

P with respect
to x1

/
hon the interface plane x2

/
h =−h1

/
h in the cases where F = 1 (Fig. 4a), 2

(Fig. 4b) and 3 (Fig. 4c) for various values of the parameter e. Note that, according
to the well-known mechanical consideration it can be predicted that an increase
in the values of the parameter e must cause a decrease in the absolute values of
the stress σ22h

/
P. This prediction is confirmed with the results given in Fig. 4

and again proves the validity of the algorithm and PC programs used for obtaining
these results.

Thus, we begin the consideration of the frequency response of the bi-layered plate,
i.e. the dependence between σ22h

/
P (calculated at x1

/
h = 0) and dimensionless

frequency Ω given in Eq. (21), and the influence of the parameter F on these
dependencies. The graphs of the mentioned dependencies are given in Figs. 5 and 6
for the cases where the stress σ22h

/
P is calculated on the interfaces x2

/
h =−h1

/
h

and x2
/

h = −1, respectively. Moreover, under construction of these graphs the
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Figure 3b: The influence of F on the values of σ22h/P along Ox1 axis at the bottom
surface for the case where E1/E2 = 1.5 , Ω = 0 , h/2a = 0.2 , and η1 = η2 = 0

Figure 4a: The influence of E1/E2 on the values of σ22h/P along Ox1 axis at the
interface plane for the case where F = 1 , Ω = 0 , h/2a = 0.2 , and η1 = η2 = 0

cases where h
/

2a = 0.5 (Figs. 5a and 6a), 0.3 (Figs. 5b and 6b), 0.2 (Figs. 5c
and 6c), 0.1 (Figs. 5d and 6d), and 0.05 (Figs. 5e and 6e) are considered. It
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Figure 4b: The influence of E1/E2 on the values of σ22h/P along Ox1 axis at the
interface plane for the case where F = 2 , Ω = 0 , h/2a = 0.2 , and η1 = η2 = 0

Figure 4c: The influence of E1/E2 on the values of σ22h/P along Ox1 axis at the
interface plane for the case where F = 3, Ω = 0, h/2a = 0.2, and η1 = η2 = 0
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follows from these figures that the influence of the shear-spring type parameter F
on the frequency response of the normal stress σ22 is significant not only in the
quantitative sense, but also in the qualitative sense. According to the numerical
results, it can be concluded that an increase in the values of the parameter F , in
general, causes to decrease the absolute values of the stress σ22. At the same time,
these results show that there are the cases (for example, the cases shown in Figs.
5a and 6a) where the parametric resonance of the system under consideration can
occur under certain values of the parameter F.

Figure 5a: The dependencies between σ22h/P (at x1/h = 0, x2/h =−h1/h) and Ω

for various F for the case where E1/E2 = 1.5, h/2a = 0.5, and η1 = η2 = 0

The results given in Figs. 5 and 6 allows us also to make conclusions on the in-
fluence of a decrease of the h

/
2a, i.e. of a decrease (an increase) of the length

(thickness) of the plate strip on the frequency response under consideration. Thus,
these conclusions can be formulated as follows:

• an increase in the values of h
/

2a causes to decrease of the numbers of the
local maximums and minimums of the σ22with respect to dimensionless fre-
quency Ω;

• the absolute maximum of the σ22is obtained under certain value of the Ω

(denote it by Ω∗) and the values of Ω∗increase with decreasing h
/

2a.

We recall that the results discussed above are obtained in the case where η1 = η2 =
0, i.e. in the case where there is not any initial stress in the layers of the plate strip.
Now we analyze the results related to the influence of the mentioned initial stresses,
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Figure 5b: The dependencies between σ22h/P (at x1/h = 0, x2/h =−h1/h) and Ω

for various F for the case where E1/E2 = 1.5, h/2a = 0.3, and η1 = η2 = 0

Figure 5c: The dependencies between σ22h/P (at x1/h = 0, x2/h =−h1/h) and Ω

for various F for the case where E1/E2 = 1.5, h/2a = 0.2, and η1 = η2 = 0

i.e. the influence of the parameters η1 = η2 6= 0 on the distribution and frequency
response of the stress σ22.

Fig. 7 shows the influence of the η1(= η2)on the distribution σ22h
/

P on the in-
terfaces x2

/
h = −h1

/
h (Fig. 7a) and x2

/
h = −1(Fig. 7b) with respect to x1

/
h
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Figure 5d: The dependencies between σ22h/P (at x1/h = 0, x2/h =−h1/h) and Ω

for various F for the case where E1/E2 = 1.5, h/2a = 0.1, and η1 = η2 = 0

Figure 5e: The dependencies between σ22h/P (at x1/h = 0, x2/h =−h1/h) and Ω

for various F for the case where E1/E2 = 1.5, h/2a = 0.05, and η1 = η2 = 0
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Figure 6a: The dependencies between σ22h/P (at x1/h = 0, x2/h =−1) and Ω for
various F for the case where E1/E2 = 1.5, h/2a = 0.5, and η1 = η2 = 0

Figure 6b: The dependencies between σ22h/P (at x1/h = 0, x2/h =−1) and Ω for
various F for the case where E1/E2 = 1.5, h/2a = 0.3, and η1 = η2 = 0
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Figure 6c: The dependencies between σ22h/P (at x1/h = 0, x2/h =−1) and Ω for
various F for the case where E1/E2 = 1.5, h/2a = 0.2, and η1 = η2 = 0

Figure 6d: The dependencies between σ22h/P (at x1/h = 0, x2/h =−1) and Ω for
various F for the case where E1/E2 = 1.5, h/2a = 0.1, and η1 = η2 = 0.

under e = 1.5, h
/

2a = 0.2, F = 1.0, and Ω = 0.9. It follows from the Fig. 7 that
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Figure 6e: The dependencies between σ22h/P (at x1/h = 0, x2/h =−1) and Ω for
various F for the case where E1/E2 = 1.5, h/2a = 0.05, and η1 = η2 = 0

Figure 7a: The dependencies between σ22h/P and x1/h at the interface plane for
various σ

(1),0
11 and σ

(2),0
11 for the case where E1/E2 = 1.5, h/2a = 0.2, and Ω = 0.9

under 0≤ x1
/

h≤ x1∗
/

h the initial stretching (compressing) causes to decrease (to
increase) of the absolute values of the σ22. But under x1∗

/
h < x1

/
h ≤ x1 ∗∗

/
h,
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Figure 7b: The dependencies between σ22h/P and x1/h at the bottom surface for
various σ

(1),0
11 and σ

(2),0
11 for the case where E1/E2 = 1.5, h/2a = 0.2, and Ω = 0.9

vice versa, the initial stretching (compressing) causes an increase (a decrease) of
the absolute values of the σ22. The values of x1∗

/
h and x1 ∗∗

/
h can be easily de-

termined from the Fig. 7 and are different for x2
/

h =−h1
/

h and x2
/

h =−1. Note
that, it also follows from the Fig. 7 that the character of the influence of the initial
stresses on the σ22 agrees with the corresponding one obtained in Akbarov (2006a,
2006b, 2007a, 2007b), Akbarov, Emiroglu and Tasci (2005), Akbarov and Guler
(2007), Akbarov and Ilhan (2008).

Now we consider graphs given in Fig. 8 which show the influence of the η1(=
η2)on the frequency response of the σ22. These graphs are constructed for vari-
ous η1 under x2

/
h = −h1

/
h(Fig. 8a) and x2

/
h = −1(Fig. 8b) in the case where

F = 1.0, e = 1.5, h
/

2a = 0.3, and x1
/

h = 0. Analyses of the graphs and their
compression of the corresponding ones given in Akbarov, Yildiz and Eröz (2011a)
show that in the case where there exist the shear spring type imperfectness between
the layers (as an example, in the case where F = 1.0) the influence of the initial
stresses on the frequency response under consideration becomes more considerable
than that in the case where there exists the full contact between the layers. Accord-
ing to Fig. 8, it can be concluded that excepting some particular cases for Ω < Ω′

(Ω > Ω′ ) the initial stretching of the layers causes a decrease (an increase), but
the initial compressing an increase (a decrease) of the absolute values of the σ22.
Note that the values of the Ω′ depend on the values of the initial stresses and can
be easily determined from Fig. 8. Moreover, Fig. 8 shows that under η1 = η2 = 0,
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Figure 8a: The dependencies between σ22h/P (at x1/h = 0, x2/h =−h1/h) and Ω

for various σ
(1),0
11 and σ

(2),0
11 for the case where F = 1, E1/E2 = 1.5, and h/2a = 0.3

Figure 8b: The dependencies between σ22h/P (at x1/h = 0, x2/h =−1) and Ω for
various σ

(1),0
11 and σ

(2),0
11 for the case where F = 1, E1/E2 = 1.5, and h/2a = 0.3

i.e. under absence of the initial stresses in the layers, in the case where Ω≈ 1.2 the
resonance of the system under consideration takes place. It follows from the results
given in Fig. 8 that the initial stretching of the layers prevents this resonance, but
the compressing of the layers passes after corresponding resonance mode.
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5 Conclusions

In the present paper, within the scope of the piecewise homogeneous body model
with utilizing of the TDLTEWISB, the influence of the shear-spring type imper-
fection of the contact conditions between the layers of the pre-stressed bi-layered
plate strip resting on the rigid foundation has been investigated. The corresponding
mathematical problem is solved numerically by employing FEM and the numer-
ical results illustrating the influence of the parameter characterized the degree of
the mentioned imperfectness, on the frequency response of the normal stress acting
on the interface planes between the layers and between the plate and rigid founda-
tion are presented and discussed. According to these results, it can be drawn the
following main conclusions:

• by increasing the value of the shear-spring parameter the absolute values of
the compressed normal stress decrease, but the values of the stretched normal
stress increase;

• an increase in the length of the plate under fixed thickness of that, or a de-
crease in the values of the thickness of the plate under fixed length of that
causes to decrease the number of the local maximums and minimums of the
mentioned normal stress with respect to the frequency of the external force;

• the absolute maximum of the noted above normal stress is obtained under
“certain value” of the frequency and this “certain value” increases with the
thickness of the plate under fixed length, or with decreasing of the length
under fixed thickness of that;

• the imperfectness of the contact between the layers of the plate influences
also on the character of the action of the initial stresses on the frequency re-
sponse under consideration. So, if the resonance of the system under consid-
eration occurs in the certain frequency under absence of the initial stresses,
then the initial stretching of the layers prevents this resonance, but the initial
compressing of those passes after corresponding resonance mode.

References

Akbarov, S. D. (2006a): The influence of the third order elastic constants on the
dynamical interface stress field in a half-space covered with a pre-strained layer.
Int. J. Non-Linear Mech., vol. 41, pp. 417-425.

Akbarov, S. D. (2006b): Dynamical (time-harmonic) axisymmetric interface stress
field in the finite pre-strained half-space covered with the finite pre-stretched layer.
Int. J. Eng. Sci., vol. 44, pp. 93-112.



46 Copyright © 2013 Tech Science Press CMC, vol.36, no.1, pp.23-48, 2013

Akbarov, S. D. (2006c): On the dynamical axisymmetric stress field in a finite
pre-stretched bilayered slab resting on a rigid foundation. Journal of Sound and
Vibration, vol. 294, pp. 221-237.

Akbarov, S. D. (2007a): The axisymmetric Lamb’s problem for the finite pre-
strained half-space covered with the finite pre-stretched layer. Int. Appl. Mech.,
vol. 43, no. 3, pp. 351-360.

Akbarov, S. D. (2007b): Recent investigations on the dynamical problems of the
elastic body with initial (residual) stresses (review). Int. Appl. Mech., vol. 43, no.
12, pp. 3-27.

Akbarov, S. D. (2012): The influence of third order elastic constants on axisym-
metric wave propagation velocity in the two-layered pre-stressed hollow cylinder.
CMC: Computer, Materials & Continua, vol. 32, no. 1, pp. 29-60.

Akbarov, S. D.; Emiroglu, I.; Tasci, F. (2005): The Lamb’s problem for a half-
space covered with the pre-stretched layer. Int. J. Mech. Sci., vol. 46, pp. 1326-
1349.

Akbarov, S. D.; Guler, C. (2007): On the stress field in a half-plane covered by
the pre-stretched layer under the action of arbitrary linearly located time-harmonic
forces. Applied Mathematical Modelling, vol. 31, pp. 2375-2390.

Akbarov, S. D.; Ilhan, N. (2008): Dynamics of a system comprising an orthotropic
layer and pre-stressed orthotropic half-plane under the action of a moving load.
International Journal of Solids and Structures, vol. 45, no. 14-15, pp. 4222-4235.

Akbarov, S. D.; Ilhan, N. (2009): Dynamics of a system comprising an orthotropic
layer and pre-stressed orthotropic half-plane under the action of an oscillating mov-
ing load. International Journal of Solids and Structures, vol. 46, no. 21, pp. 3873-
3881.

Akbarov, S. D.; Ilhan, N. (2010): Time-harmonic dynamical stress field in a sys-
tem comprising a pre-stressed orthotropic layer and pre-stressed orthotropic half-
plane. Archive of Applied Mechanics, vol. 80, no. 11, pp. 1271-1286.

Akbarov, S. D.; Ipek, C. (2010): The influence of the imperfectness of the in-
terface conditions on the dispersion of the axisymmetric longitudinal waves in the
pre-strained compound cylinder. CMES: Computer Modeling in Engineering and
Science, vol. 70, no. 2, pp. 93–121.

Akbarov, S. D.; Ipek, C. (2012): Dispersion of axisymmetric longitudinal waves
in a pre-strained imperfectly bonded bi-layered hollow cylinder. CMC: Computers,
Materials, & Continua, vol. 32, no. 2, pp. 99-144.

Akbarov, S. D.; Salmanova, K. A. (2009): On the dynamics of a finite pre-strained
bi-layered slab resting on a rigid foundation under the action of an oscillating mov-



Forced Vibration of the Pre-Stressed and Imperfectly Bonded Bi-Layered Plate Strip 47

ing load. Journal of Sound and Vibration, vol. 327, pp. 454-472.

Akbarov, S. D.; Yildiz, A.; Eröz, M. (2011a): Forced vibration of the pre-stressed
bi-layered plate-strip with finite length resting on a rigid foundation. Applied Math-
ematical Modelling, vol. 35, pp. 250-256.

Akbarov, S. D.; Yildiz, A.; Eröz, M. (2011b): FEM modelling of the time-
harmonic dynamical stress field resting on a rigid foundation. Applied Mathemati-
cal Modelling, vol. 35, pp. 952-964.

Akbarov, S. D.; Zamanov, A. D.; Suleimanov, T. R. (2005): Forced vibration of
a pre-stretched two layer slab on a rigid foundation. Mech. Compos. Mater., vol.
41, no. 3, pp. 229-240.

Berger, J. R.; Martin, P. A.; McCaffery, S. J. (2000): Time-harmonic torsional
waves in a composite cylinder with an imperfect interface. Journal of the Acousti-
cal Society of America, vol. 107, no. 3, pp. 1161-1167.

Emiroglu, I.; Tasci, F., Akbarov, S.D. (2009): Dynamical response of two axially
pre-strained system comprising of a covering layer and half space to rectangular
time-harmonic forces. CMES: Computer Modeling in Engineering and Science,
vol. 49, no. 1, pp. 47–68.

Guz, A. N. (1986a): Elastic Waves in a Body with Initial Stresses I. General The-
ory. Kiev, Naukova Dumka (in Russian).

Guz, A. N. (1986b): Elastic Waves in a Body with Initial Stresses II. Propagation
Laws. Kiev, Naukova Dumka (in Russian).

Guz, A. N. (2002): Elastic waves in bodies with initial (residual) stresses. Int.
Appl. Mech., vol. 38, no. 1, pp. 23-59.

Guz, A. N. (2004): Elastic Waves in Bodies with Initial (Residual) Stresses. “A. S.
K.”, Kiev (in Russian).

Jones, J. P.; Whitter, J. S. (1967): Waves at a flexibly bonded interface. J. Appl.
Mech., vol. 34, pp. 905-909.

Kepceler, T. (2010): Torsional wave dispersion relations in a pre-stressed bi-material
compounded cylinder with an imperfect interface. Applied Mathematical Model-
ing, vol. 34, pp. 4058-4073.

Martin, P.A. (1992): Boundary integral equations for the scattering of elastic
waves by elastic inclusions with thin interface layers. J. Nondestructive. Eval.,
vol. 11, pp. 167-174.

Rokhlin, S. I.; Wang, Y. J. (1991): Analysis of boundary conditions for elastic
wave interaction with an interface between two solids. J. Acoust. Soc. Am.. vol.
89, pp. 503-515.



48 Copyright © 2013 Tech Science Press CMC, vol.36, no.1, pp.23-48, 2013

Selvaduria, A. P. S.; Nikopour, H. (2012): Uniform loading of a cracked layered
composite plate: Experiments and computational modelling. CMES: Computer
Modeling in Engineering and Science, vol. 85, no. 3, pp. 279–298.

Uflyand, Ya. S. (1963): Integral Transformations in the Theory of Elasticity.
Nauka, Moscow- Leningrad.

Zienkiewicz, O. C.; Taylor, R. L. (1989): The Finite Element Method, 4th Ed.,
Vol. 1, Basic Formulation and Linear Problems. McGraw-Hill, London.


