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A Damage-Mode Based Three Dimensional Constitutive
Model for Fibre-Reinforced Composites

M. Chatiri', A. Matzenmiller?

Abstract: This article presents a three dimensional constitutive model for
anisotropic damage to describe the elastic-brittle behavior of unidirectional fibre-
reinforced laminated composites. The primary objective of the article focuses on
the three dimensional relationship between damage of the material and the effective
elastic properties for the purpose of stress analysis of composite structures, in ex-
tension to the two dimensional model in Matzenmiller, Lubliner and Taylor (1995).
A homogenized continuum is adopted for the constitutive theory of anisotropic
damage and elasticity. Damage initiation criteria are based on Puck failure crite-
rion for first ply failure and progressive micro crack propagation is based on the
idea of continuum damage evolution. Internal variables are introduced to describe
the evolution of the damage state under loading and as a subsequence the degrada-
tion of the material stiffness. Emphasis is placed on a suitable coupling among the
equations for the rates of the damage variables with respect to the different damage
modes.

Keywords: Three dimensional (3D) damage model, Fibre-reinforced laminated
composites, Anisotropic damage, Damage rates equations, Internal variables, Dam-
age mechanics, Damage modes, First-ply failure, Dissipation potential, Puck’s cri-
terion

1 Introduction

Damage plays a vital role in many fibre-reinforced composite (FRC) materials with
non-ductile matrices. Their elastic brittle behavior is characterized by the formation
and evolution of microcracks (surface discontinuities) and cavities (volume discon-
tinuities). The pronounced irreversibility of these defects is a consequence. These
defects primarily cause stiffness degradation and only small permanent deforma-
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tions remain in the stress-free body after unloading as long as the material is not
close to complete deterioration. The main objective of this paper is the generation
of a damage model for the numerical stress analysis of FRC structures.

Failure criteria are not sufficient to predict the progressive failure of composite
structures which can accumulate damage before structural collapse. Simplified
models, such as the ply discount method, can be used to indicate the onset of ul-
timate failure. But they cannot represent with satisfactory accuracy the process
of brittle failure of laminates resulting from the accumulation of several failure
mechanisms. The study of the non-linear response of brittle materials due to the
accumulation of damage is important because the rate and direction of damage
propagation define the damage tolerance of a structure and its eventual collapse,
see Maimi, Camanho, Mayugo, and Dévila (2007). To model the phenomena of
damage propagation, non-linear constitutive models, defined in the context of the
mechanics of continuous media, have been developed and implemented into finite
elements codes in recent years, see Pinho, lannuci, and Robinson (2005), Williams,
Vaziri, and Poursartip (2003). The formalism of the thermodynamics of irreversible
processes serves as a guideline from which the constitutive models may be devel-
oped, see Lubliner (1990).

The simplest way to describe damage is by using a single scalar damage variable,
as proposed by Kachanov, see Kachanov (1958). Damage can be interpreted as the
creation of microcavities and microcracks with the damage variable as a measure of
the effective surface density of the microdefects. Such a mechanical interpretation
of damage assumes that the loads are resisted only by the undamaged ligaments in
the material. The stresses @ in the ligaments, referred to as effective stresses, con-
tinue to increase until all ligaments are severed and the ply has failed. The tensorial
representation of damage is a formal and general procedure in continuum damage
mechanics (CDM) to represent the directionality of microcracks, which can take
any direction in a homogenous medium depending on the load history, geometry,
boundary conditions, and material properties. After Kachanov’s pioneering work,
several damage models that describe damage as a second, see Chaboche (1995),
or as a fourth—order tensor, see Simo and Ju (1987a, 1987b) have been developed.
Second order tensors describe an initially isotropic material as an orthotropic one
when damage evolves, whereas fourth-order tensor models can remove all material
symmetries and provide a more general procedure to simulate damage, see Cauvin
and Testa (1999). The reduction of the elastic properties of a cracked ply predicted
using continuum damage mechanics model can also be seen in Talreja’s work, see
Talreja (1985a, 1985b).

The application of continuum damage models to orthotropic or transversely
isotropic materials, such as FRC, results in additional difficulties. The nature and
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morphology of the material induce some preferred directions for crack growth, i.e.,
crack orientations are induced not only by the loads, geometry and boundary condi-
tions, but also by the morphology of the material. The interface between fibre and
matrix is weaker than the surrounding material and interfacial debonding is nor-
mally the first damage mechanism to occur. Furthermore, residual micromechani-
cal thermal stresses are initiated in the composite plies due to different coefficients
of the thermal expansion of the fibre and matrix. Multiscale analysis and mesomod-
eling are two approaches used to evaluate the elastic and inelastic response of a het-
erogeneous material. By using homogenization methods, multiscale models define
relations between a mesoscale, which is normally the scale of the finite elements,
where the material is considered as homogeneous, and the microscale, which is the
level of fibre and matrix constituents. The constitutive models are either defined
at the microscale and solved analytically, where strain or stress fields are related to
the ones of the mesoscale by transformation field tensors, denoted as concentration
tensors or the representative volume element (RVE) is analyzed numerically using
finite elements, see Kurnatowski (2010), Kurnatowski and Matzenmiller (2012).
To reduce the amount of computations that need to be performed, periodicity of the
material is invoked.

Mesomodeling is an alternative way to set up damage models for composite mate-
rials in the case of large scale computations. Mesomodels treat the composite lam-
ina, see Matzenmiller, Lubliner and Taylor (1995), or sub-laminate, see Williams,
Vaziri, and Poursartip (2003) as a homogeneous substitute material. When dif-
fuse damage localizes in a narrow band and becomes a macrocrack, the response
is dominated by the crack tip formation and its ability to dissipate energy. On the
other hand, the material’s morphology, which is the main basis of homogenization
techniques, loses importance for local failure analysis due to the loss of periodicity.
Therefore, in structures exhibiting stable crack propagation, i.e. when the stresses
increase monotonically with strain, mesomodeling is more appropriate than multi-
scale analysis for predicting the structural response up to collapse.

Based on the growing reliability of in-plane failure prediction, the application of
FRC has been extended to complex geometries including primary load transferring
components, in light weight design. An efficient design of such materials and struc-
tures requires a reliable failure prediction system under the general three dimen-
sional (3D) states of stress. Puck’s action-plane related failure criteria which are 3D
formulations, see Puck and Schiirmann (2004), along with post failure degradation
procedures based on continuum damage mechanics as in Matzenmiller, Lubliner
and Taylor, (1995), Ladeveze, Allix, Deii and Leveque (2000) are promising to
predict lamina failure and post failure load redistribution in multidirectional lami-
nates. In the present work, the prediction of laminate failure is treated within the
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framework of “first ply failure” based on the Puck’s failure criterion and progres-
sive damage based on the idea of continuum damage mechanics. The laminate is
a stack of laminae of different fibre orientations. An explicit finite element analy-
sis is applied to laminates and the material model formulation is developed at the
unidirectional (UD-) lamina level. A homogenized continuum provides the theo-
retical basis for the constitutive model of each UD-lamina. The orthotropic nature
of the lamina as a homogenized continuum with invariant axes of symmetry planes
is maintained throughout the entire damaging process in the model. Linear elastic
unloading and no plastic (irreversible) deformations are assumed to occur. Dam-
age activation functions, based on the Puck failure criterion, are used to predict the
different failure mechanisms occurring at the ply level.

This article is organized as follows. First, the mechanical behavior of laminated
FRC materials is outlined in section 2. Glass- or carbon-fibre reinforced vinylester
or epoxy resin falls into this class of materials. Special emphasis is given to the
interaction between fibre damage due to fibre stress and matrix damage due to
transverse and shear stresses on the basis of the elastic response and the ability to
transmit various states of stresses. As an outgrowth of various failure mechanisms,
also denoted as failure modes for fibre-composites in section two, the loading sur-
faces in strain space for UD-laminae are obtained by identifying them with the
corresponding failure surfaces in stress space, see sections three and four. A set
of "internal variables", denoted as damage variables, are introduced to indicate the
state of anisotropic damage within the limits of the theory for "homogenized con-
tinua". These unknowns are treated as phenomenological internal variables, since
they have no direct relation to the micromechanics of crack and void growth.

A simple algebraic structure of the constitutive tensor for the damaged lamina is
proposed in section three. Its dependence on the damage variables gives rise to the
application of the theory of internal variables for irreversible mechanical processes.
It provides the necessary kinetic equations for the “internal (hidden) variables”
of the damaged material. For this purpose, a potential function - denoted as the
damage potential or dissipation potential - is introduced mainly for convenience.

The Kelvin inequality of thermodynamics, poses well-known restrictions on pos-
sible candidates for the dissipation potential. The second law of thermodynamics
is assumed to hold for the proposed set of internal variables, despite the fact that
the list might be incomplete. Nonnegative dissipation, however, must be a neces-
sary ingredient for any constitutive model if the internal energy production shall
be non-negative. A family of growth relations is suggested next (see section 5) to
complete the "rate-independent” kinetic equations. Numerical examples for param-
eter identification, verification and validation finally conclude this paper describing
a constitutive model with failure mechanisms (intralaminar failure: matrix cracks
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and fibre fractures) to predict the onset and propagation of intralaminar damage in
laminated composites.

2 Failure mechanisms of fibre reinforced composites

The model, proposed for laminated composites in this work, predicts the intralam-
inar failure mechanisms of matrix cracking in tension, compression, and shear as
well as fibre fracture in tension or compression, see Hashin (1980). The concept of
intralaminar damage modes is an extension of Hashin’s fibre failure (FF) and Puck’s
interfibre failure (IFF) criterion. The interfacial damage (interlaminar failure) or
delamination of individual layers is typically a failure form of the laminate and
their mathematical modeling is a task beyond the scope of this topic. Intralaminar
failure mechanisms trigger structural collapse of unidirectional laminates almost
immediately. In matrix-dominated failure modes, collapse of the UD-laminate as a
stack of laminae with same direction angle occurs as soon as a matrix crack is cre-
ated. Failure of unidirectional laminates loaded in the longitudinal (fibre) direction,
results from the accumulation of fibre fractures, see Rosen and Dow (1972).

However, multidirectional laminates can sustain increasing amounts of intralam-
inar failure mechanisms before structural collapse occurs. Considering the mul-
tidirectional laminate under uniform loading as a representative volume element,
the intralaminar failure mechanisms can be regarded as damage mechanisms, i.e.
distributed microcracks in a laminate whose tangent stiffness tensor still remains
positive definite. When the tangent stiffness tensor of the laminate ceases to be
positive definite, a macrocrack is formed and structural collapse ensues, see Maimi,
Camanho, Mayugo, and Déavila (2007).

The main characteristics of the failure mechanisms occurring in laminated com-
posites are briefly described in the following sections. These characteristics are
the basis for the definition of the failure criteria and damage variables used in this
work.

2.1 Fibre failure (FF) or longitudinal failure

Stresses in fibre direction are predominantly transmitted through the fibres because
of their high stiffness and strength in comparison with the properties of the matrix
material. The transmission of tensile stresses in the fibres is hardly impaired by
the state of damage in the matrix, since fibres straighten under high tension. The
straightening of the fibres may contribute to matrix damage in the absence of fibre
rupture. The load carrying capacity of fibres in compression, however, is severely
affected by the effective stiffness and strength of the surrounding matrix phase. The
matrix acts like an "elastic foundation" for the fibres, treated in mechanical models
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as beams under compression. Both, fibre rupture due to tension, and buckling or
kinking of fibres due to compression cause damage evolution in resin matrices. As
a consequence, all stiffness components of the constitutive tensor for the damaged
unidirectional lamina are typically degraded.

As explained above, fibre fracture is primarily caused by the stress 017 which acts
parallel to the fibres. It expresses the physical idea that fibre fracture under a mul-
tiaxial state of stress in a UD-lamina occurs when its stress parallel to the fibres
o711 is equal to or exceeds the stress necessary for fracture. The simple Puck FF-
condition follows from this hypothesis, see Hashin (1980), Knops (2008), Puck and
Schiirmann (2004), Deuschle and Kroplin (2012). It describes by case distinction
the tensile fibre mode

2
o1 > 0 failed
f >0: = o | 1 oo !
or 01120 figp ( Rﬂ_ ) { < 0 elastic W
and the compressive fibre mode
2

- o1 > 0 failed
f 0: =\ %= 1\ o 2
or o711 < h E,FF ( R[ ) { < 0 elastic @

(c)

Figure 1: Definition of scales and coordinate system of UD-fibre reinforced com-
posite: (a) micro-mechanical level, (b) lamina or meso level and (c) laminate level

wherein RW, Rﬁ denote the corresponding material strength parameters. The coor-
dinate system used above is according to the Fig. 1. It can be seen that a simple
maximum stress criteria is used for fibre compressive failure which is generally
approved by extensive experimental work, see Fischer (2003). More sophisticated
fibre fracture criteria, see Fischer (2003), Puck and Schiirmann (2004), Pinho, Ian-
nuci, and Robinson (2005) which describe the influence of transverse and shear
stresses, are not used in the present work due to lack of experimental data.



A Damage-Mode Based Three Dimensional Constitutive Model 261

2.2 Inter-fibre failure (IFF) or transverse failure

Normal stresses, acting transverse to the fibres and shear stresses are transmitted
through both matrix and fibres. However, their damaging effect mainly takes place
in the matrix or in the fibre-matrix interface, leading to debonding. Usually, the
bond strength of the interface zone between fibres and matrix is the lowest in com-
parison to the data for the strength of the single constituents. Advancing cracks in
the matrix soon pass into the fibre-matrix interface and propagate along the fibres
without crossing into the fibre material. Progressive opening of existing cracks is
characteristic for tensile loading in transverse direction, whereas "crushing" in the
sense of "fragmentation” of brittle matrix materials is very typical for compression
in transverse direction. Under impact loading, brittle materials completely crumble
or pulverize in extreme cases. Following the FF, see Fig. 2a. and IFF, see Fig.
2c, 2d, 2e, observations outlined above, the failure modes considered in the model
proposed here are schematically represented in Fig. 2.

e ' /
= =
fiber fracture fiber kinking

(a) ()

g P

inter fiber fracture inter fiber fracture inter fiber fracture

(c) (d) (c)

Figure 2: Major failure modes considered in the model as in Knops (2008)

Experimental results have shown that moderate values of transverse compression
have a beneficial effect on the strength of a ply, see Soden, Hinton and Kaddour
(2004): when the in-plane shear stress is large, compared to the transverse compres-
sive stress, the fracture plane is perpendicular to the mid-plane of the ply. However,
increasing the compressive transverse stress causes a change in the angle of the
fracture plane. Normally, for carbon—epoxy and glass—epoxy composites, loaded
in pure transverse compression, the fracture plane is at an angle (fracture angle) of
53° +3°, see Puck and Schiirmann, (1998). Therefore, matrix cracking does not
occur in the plane of the maximum transverse shear stress under the angle of 45°.

For the above described transverse failure, the Puck IFF criteria are most promising
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for brittle, plastic unidirectional (UD) laminates - see Fig. 3. The UD-ply behaves
transversely isotropic in both cases, elasticity and failure. Puck assumes a Mohr—
Coulomb type of failure criterion for loading transverse to the fibre direction. Fail-
ure is assumed to be caused by the normal and shear components operating on the
action plane of stresses G, T,1, T - see Fig. 3 and Hashin (1980). Positive normal
stress on this plane promotes fracture while a negative one increases the material’s
shear strength, thus, impeding fracture. Puck’s stress based failure criteria enable
the computation of the material exposure fg pr(60) as a failure indicator, wherein 6
is the orientation angle.

>
/MO(lUB Mode A
p P =
REVH AN

Mode C Mode B

Mode A

Figure 3: Schematic representation of failure modes and failure plane based on
Puck, as in Knops (2008)

The 3D Puck failure criterion can be categorized as below in Tab. 1 in extension to
Fig. 3.

The values of fgrp(0) range between 0, where the material is unstressed, and up
to 1, denoting the onset of IFF. The material exposure fgpr(0) is a function of
the stress state ¢ and the orientation angle 8 of the stress action plane with respect
to the transverse direction X, as in Fig. 5 right. The fracture plane stresses are
obtained by rotating the three dimensional stress tensor from material coordinates
to the preferred axes of the fracture plane, designated also as the action plane of
stresses. The master failure surface on the fracture plane is defined in terms of
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Table 1: Categorization of fracture modes in failure criteria of Puck under three
dimensional stress states

Fracture angle | Sign of 0, | Fracture mode
90° positive Delamination
0° to 89° positive A
—53°t0 0° negative B
—90° to —53° negative C

the Mohr-Coulomb stresses, thus, yielding the following failure criteria by case
distinction in tension and compression:

for: 6, >0:
+ 17 2 2t
1 pj_v/ 2 Tm(e) Tn1(9> pj_]//
fomp(@) =1l | = — = | [o.(6 +[ + + 0,(0)—1
dier(®) =\ |7~ | (0@ | T |+ ||+ prtee)
(3)
and
for: 0, <0
_ 2 _
feet0) = [2O] 4 [BO) g 0) v o)1
elrrlY) = n A OnlU)—
Rﬁl Rl” Rlily Rﬁw

The only unknown parameters in these equations are piy, R‘L,, and Rﬁ | Which

depend on the shear stresses 7,, and 7, according to the following equations:

+ + +
Ply _ Pl o PO T (5)
R, Ri, T+t Ry m+7}
and
.
Rl =5 ©
2(1+p7 )

wherein RI, R, R denote the corresponding material strength parameters, and
pf 1> pTH are constants introduced by Puck, see Puck and Schiirmann (2004). The
action plane with the greatest failure effort fg(6) (wherein 6 = —90° to +90°) is
the fracture plane to be expected, [f&(0)]yax = fE |9:9fp . Once the failure plane
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with max fg(0) is found, the fracture angle as 6, is kept constant in the model
and progressive failure, based on the idea of continuum damage, is applied to the
material model for the corresponding lamina at hand, see below.

The failure criteria may be interpreted as loading criteria, a terminology encoun-
tered in strain space plasticity. The role played by the yield stress in plasticity
will be taken by the threshold variables r; in damage mechanics. As proposed by
Kachanov in classical continuum damage mechanics, only the undamaged (whole)
part of the cross-section A (net-area) for the uniaxial case is supposed to carry
loading, i.e. transmit stresses. Consequently, the stresses o;; in the failure criteria
should be interpreted as effective stresses 6;;, referred to the net area. This means
that the failure criteria are assumed to hold in terms of the effective stresses rather
than the nominal ones.

2.3 Interlaminar failure (Delamination)

As described earlier, a laminate as a stacked composition of several laminae may
fail by the separation of two or more of its layers. Such a delamination process is
caused by inter-laminar stresses acting on the interface namely through-thickness
tension, and inplane or through-thickness shear. However, delamination modeling
is a task beyond the scope of this paper.

2.4 Qualitative example showing progressive failure of cross ply laminates

The failure of a composite material is a sequence of the described individual
but interacting failure mechanisms. The progressive damage of a symmetric
[0°/90°/90° /0°] laminate loaded in the y-direction (see Fig. 4) is representative
for the complex and interacting failure process of UD-fibre reinforced composites.
Loaded in-plane by a tensile force, the first damage occurs in the 0°-laminae where
the fibre-transverse tensile stress o3, produces first ply failure in form of vertical
micro-cracks, IFFs (6g, = 0°). Increasingly loaded, the 0°-laminae develop more
and more IFFs (see Fig. 4a) going along with the decrease of the stiffness — de-
noted as the degradation of these laminae. The result is a load redistribution from
the damaging laminae to the neighbouring ones. Accordingly, the tensile stress
G{IH in the 90°-laminae increases together with the laminae’s lateral contraction
known as PoissoN’s effect. Impeded by the fibres of the 0°-laminae (they carry
compressive Gl"lﬂ), the result is a fibre-transverse tension 03, | in the 90°-laminae
producing the second ply failure: vertical IFFs in the 90°-laminae, see Fig. 4b.
Still capable of bearing load, the laminate may be increasingly stressed until the
following fibre fractures in the 90°-laminae mark the third ply failure and the final
breakdown of the laminate, see Fig. 4c. This example proves the importance of
the distinction between fibre failure (FF) and inter-fibre failure (IFF) regarding the
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progressive failure analysis in a damage-tolerant design process.

Figure 4: Section of a laminate [0°/90°/90° /0°] under increasing load: (a) first ply
failure IFFs in the 0°-laminae, (b) second ply failure IFFs in the 90°-laminae and
(c) third ply failure FFs in the 90°-laminae

3 Damage variables, effective stresses and compliance tensor
3.1 Damage variables and the concept of effective stresses

As already indicated at the outset, the orthotropic nature of the mechanical response
is maintained at all states of damage for treating the lamina as a homogenized
continuum. This assumption permits the modeling of damage by macro cracks
coinciding with the failure planes as in Fig. 2. The orientation of each set of cracks
for fibre and interfibre damage is given by the unit normal vector n, also denoted
as damage normal. A nonnegative scalar valued damage variable  is introduced,
which measures the degradation of the elastic material properties as stiffness loss
or flexibility increase. It may be identified as the void area density. The damage
vector ® may be defined as:

O=wn @)

By considering two different arrays of oriented cracks for FF and IFF, their normal
ngr and nirr need to be defined. The normal vector nipr which is perpendicular to
the fracture plane, see Fig. 5 right, is then defined in the fracture plane coordinate
system (X1, Xj, X¢) as:

0
NiFr = 1 (8)
0
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Figure 5: left: Action plane with max IFF in laminae coordinate system (X, X,
X3) and right: Coordinate system (X, X,, X) on Inter-fibre fracture plane as in
Knops (2008)

This vector, if transformed to the lamina coordinate system, with the orthogonal
transformation matrix T from fracture plane coordinates (X, X;, X;) to lamina
coordinates (Xj, X», X3) can be written as:

0
n; =Tnpr = | cos6, )
sin 9fp

Similarly, the transverse damage vector is defined as:

0

O, = o | cosby (10)
sin B,

For IFFs with vertical microcracks, it is 6g, = 0. Hence substituting the same in Eq.
10 yields:

0
O, = | 1 1D
0

If the degradation is described in the sense of CAUCHY’s stress concept, six different
non-negative damage parameters ®;;, Wy, 33, W2, @3 and @3 are defined to
quantify the relative size of macro cracks projected onto the coordinate planes,
and assembled in the rank-four damage operator M given in VOIGT notation of Eq.
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13d. In CDM, the effective normal stresses & are related to the damage parameters
®;;j, since only the undamaged part of the cross section A for the uniaxial case
is supposed to carry loading. Consequently, the stresses o;; in the failure criteria
should be interpreted as effective stresses &;;, referred to the net area. A simple
relationship between effective stress 6 and the nominal one ¢ holds:

6 =Mo (12)

Wherein M represents the rank-four (uncoupled) damage operator given in VOIGT
notation as:

— - - A - - -

O11 O11 w11
02 62 (053
o_ | o e {533 o= 33 7
712 112 @12
3 T3 3
L T13 R | @13 ]
S 0 0 0 0 0 ] (132-d)
0 1og ? 0 0 0
M= 0 0 “om 0 0 0
0 0 0 l_lwlz 0 0
0 0 0 0 1_1(023 0
0 0 0 0 0 1o .

3.2 Constitutive tensor of damaged UD-laminae
The nonlinear elasticity behavior for in-plane shear is modelled according to the

E Op
E, stress like material parameter oy, POISSON’s ratio 0 and exponent 7 for the degree
of non-linearity, see Ramberg and Osgood (1943).

n
Ramberg-Osgood type of material equation e=% + % ( g) with elastic modulus

In the undamaged state, a lamina behaves equally in the transverse 2-direction and
the through-thickness 3-direction which allows to reduce the general anisotropy
to a transversely isotropic behavior with only a fibre-parallel || (1) and fibre-
perpendicular L (2) direction, see Fig. 1b. The constitutive behavior, i.e. the ma-
terial equation relating, states of stress to states of strain, is then defined by the
transversely isotropic compliance matrix S in VOIGT notation for the UD-laminae
prior to the damage initiation, see Eq. 13. As discussed above, only the in-plane
shear modulus G, (€)2) is modelled according to Ramberg-Osgood type of non-
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linear material equation.

<
|

I S AV |
e 7 Ao-2 o 0 0.
S TS W AW 0 0 0
to%) 5“3 11} fL 022
13

&3 | _ E Elj E. 0 0 0 033 (14)
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2823 0 0 0 0 G 0 023
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For the pure failure analysis of a UD-fibre reinforced composite, the transversely
isotropic material description is generally adequate but within the post-failure
degradation process the lamina starts to behave truly orthotropic if not completely
anisotropic. After the onset of cracking, the lamina’s elastic behavior is assumed
to be orthotropic with obvious planes of symmetry and preferred axes (X, X, X3)
as given in Fig. 5.

Instead of taking the elasticity constants themselves as unknowns, see Ortiz (1985)
and Ju (1989), the components of the constitutive tensor are represented as func-
tions of the vector @, comprising all internal damage variables, and the material
parameters of the undamaged lamina. The constitutive tensor C(®) is derived by
physical arguments and information of the dependencies between effective elas-
tic properties and individual damage variables. Generally, for a given arbitrary
damage operator, the postulate of strain equivalence yields an unsymmetrical con-
stitutive tensor, which should be rejected as a model for the elastic behavior. This
hypothesis serves here as a first guidance together with physical arguments to set up
the constitutive tensor C(@) for the damaged lamina. For the purpose of building
the dependence on damage into the constitutive assumption, the compliance rela-
tionship is more easily accessible in order to relate the material parameters to the
mechanical response in the coordinate system with preferred axes. The compliance
relationship for orthotropic elasticity in terms of effective stresses & reads as:

r 1 V, V3 A _
A TE, E»n En €33
€ =Hy6, Hy = Ey Ey Es3 | ,E=
0 0 0 Gia(en) 0 0 2812
0 0 0 0 G#B 0 2€x3
0 0 0 0 0 & | L 2813 |

(15a-c)
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It is to be noted that Eq. (15b) is symmetric. Equations (12) and (15a) result in:
€ =H,6 = HMo (16)

The final relationship of the compliance tensor for the damaged laminae H(®)takes
the following form after PoIsSON’s ratios vi,(@)and v, (@) are adjusted accord-
ing to the qualitative arguments presented in Matzenmiller, Lubliner and Taylor
(1995).

r 1 V; \% -
(1*0’{/1 )E11 _5%12 —ﬁ 0 0 0
Yi2 __ Y32
1‘5/;31 (1*@22)31?22 E33 0 0 0
H(w) = T En TEn (1-w33)E33 0 0 0
0 0 0 — L 0 0
(1-w12)G12(£12) .
0 0 0 0 (1—3)G3 (1)
L 0 0 0 0 0 (1-013)G13 |
(17

As explained earlier, the orthotropic nature of the lamina as a homogenized con-
tinuum is maintained throughout the damaging process. The shear coupling terms
are neglected. Therefore, the symmetry class of the UD-lamina remains the same
for all states of damage. Its inverse always exits as long as the damage variables
are less than one (w;; < 1). Hence, the material stiffness tensor is given by:

C(0) =[H(w)]™ (18)

4 Loading surfaces and loading conditions

4.1 Loading criteria

The state of damage is unchanged along a path of strain in the interior of a well-
defined region, called the elastic range €. Further, it is supposed that any state of
stress or strain lies either inside € or on the boundary d€ of the elastic range, de-
fined by the loading criterion in stress space f(0, @, r)or strain space g(€, @, r)in
terms of either ¢ or € and the damage variables @ as well as the threshold r . If the
elastic range is bounded by several surfaces f; or g;, each surface can have its own
threshold r;. The vector of damage thresholds r measures the size of the elastic
region. As it is assumed here, their evolution is governed by the consistency condi-
tion ¢ = 0, which relates the evolution of the thresholds r to the one for the damage
variables assembled in @. Therefore, the thresholds r are no longer independent
internal variables.

After the stress components o;; in the failure criteria are formally replaced by the
effective ones 6;;, the loading surfaces fljE for the fibre mode (FF) and f2jE for the
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matrix IFF mode are derived by making use of case distinctions:

2
(o2
fOrGIZO:fr:W—rTZO (19)
1)
and
2
foro; <0: fr=—9_____,—_ (20)
: P (—op)2R 2 P
1)

Wherein r{ and r are the threshold variables varying from 1 to oo for tension and
compression.

The fibre loading criterion in stress space may also be written by case distinction
as:

fif=6"Ffo—r =0, 1)
wherein
[ [(l—wﬁ)Rﬂi 0000 0]
0 0O 0 0 0O
Fi = 0 00000 (22)
0 0O 0 0 0O
0 0O 0 0 0O
I 0 0000 O]

It is well known that the stress-strain relationship in softening branches of its graph
is stable under strain control only. Hence for the transformation of f (stress space)
into g (strain space), the constitutive tensor is employed to change the defining
spaces.

For fibre failure (parallel) mode

2
Evien
for o1 > 0, = ————— | —=r=0 23
or 6] = 81 <(1_a)1+1)R|+> r ( )
and
£ 2

_ 11€11 _
G]<0, g = — Y —r :O (24)

! ((1 —a)“)RH > !

The above equations (Eq. 23 and Eq.24) may be written conveniently as:

g = STG,'S —r=0 25)
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With G; = CF;C, wherein i = 1, 2 being the two different modes.

Similarly for the IFF matrix mode:

1 P(f) 2 t ] Tt P(j)
1
foron>0: fif =\ ||~ g | Ot &3] {R" ] o3 =0
Ry RJ_q/ R L RJ—‘I’
(26)
and
z 2 SN
T T p p
foro, <0: fy = | |2 %Rnl} + ||+ o= =0. @)
R} 1 Rmp Rivf
Also, g5 =€'Gie—ry =0 28)

4.2 Loading conditions

The present model is derived within the framework of irreversible thermodynamics,
see Lubliner (1990), Matzenmiller, Lubliner and Taylor (1995), with internal vari-
ables which provide a qualitative measure of the effects that randomly distributed
microdefects exert on the macro parameters of a structure. The boundary d€ in
strain space moves (at least locally) "outwards" with increasing strains, if the strain
rate forms an acute angle with the gradient Vg, at the given state of strain on the
loading surface. The damage state changes under these conditions, called

loading:

dgi
€

neutral loading:

gi=0and €>0, (29a)

dgi .
gi=0and a—‘i_e =0, (29b)

and unloading:

agi .
gi=0and a—i’s <0. (29¢)
ot
Besides the damage variables @ and the damage thresholds r = { ri ] no other
2

internal variables have been introduced to describe the location of the loading sur-
face in strain space. The origin is contained in the elastic range € at all states of
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damage. Therefore, € has to expand at least locally when its boundary moves d€
"outwards" during loading, and the time derivative of the damage threshold I must
be non-negative r > 0. The consistency condition in strain space has to provide
a monotonically increasing threshold r for a meaningful loading surface g =0 in
strain space.

. dgi,  dg
gz—ﬁe—f—&w

®—F7=0 (30)

5 Kinetic assumption

Damage growth @ > 0 will occur when the strain path crosses the updated damage
surface g; — r; and the strain increment has a non-zero component in the direction
of the normal to the damage surface, i.e.

8gl~ .
Y. 56> 0. 31)

For simplicity, no case distinctions are made in the following for the damage vari-
ables @, for which it is possible to distinguish between active and passive states.

5.1 General form of damage rule

In the presence of strain softening, the rate of evolution for the damage @ (0, ®, €)
is supposed to be locally controllable under the strain rate £&. Under these condi-
tions, the rate-equations are:

0= Zi 0iq;i = ¢1q1 + P2q2. (32)

The scalar functions ¢;(0, @, €) are multiple damage functions which control the
amount of growth and the vector-valued functions q;(0, @) represent multiple
damage coupling vectors which accommodate the coupling of growth for the in-
dividual damage variables in the various damage modes. Also, ¢; must be linear in
€ for a rate-independent process, see Matzenmiller, Lubliner and Taylor (1995).

Growth functions

The strain increment £dt indicates the direction of the loading path £€(¢) as it wants
to cross the loading surface g = 0 in strain space. The scalars ¢; > 0 have to be
associated with each loading direction € in relation to the orientation of the normal
V:g; and must be in accordance with the loading conditions.

¢ =0if g, = f; <0. (33)
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The strain path is either in the interior of the elastic range € or comes into contact
with the boundary d € to yield in case of loading:

¢ >0ifgi=f; =04 (34)

The strain path crosses the loading surface f; = g; = 0 is indicated by the ” + " sign
at the end of the criterion in Eq. 34. The strain increment has a non-zero component
pointing into the direction of the gradient Vg;.

Without loss of generality, the interacting damage parameters /irr;,, and /pr;, for
the IFF damage mode are assembled in the coupling vector qipr in the fracture
plane coordinate system (X, X, X{):

QFF = | (35)
IFF1,,

0
L lFFg, |

The coupling of the rate-equations for the fluxes @ is controlled by the vectors I
for FF and 1, for IFF, which may be different for tension and compression. The
following proposal satisfies the physical aspects of interacting coupling variables
for the FF coupling vector q; in the lamina coordinate system (X1, X, X3)

1
ZHGzz

l
a=l=| (36)

lHle

[I723

L Ly

The components /| ,,, {5535 /|15 [|z235 [ 75 Indicate coupling of the damage vari-
ables wyo, 33, W12, o3, W13 for matrix cracking due to progressive fibre breakage
damage variable @;;. They may be estimated from experimental observations and
according to the various failure modes of Puck, see Fig. 2. and Fig. 6. The vector
qrrr transformed to the lamina coordinate system becomes vector q in Eq. 32.

The local coupling vector qipr is transformed to the lamina coordinate system as a
function of the fracture angle 6y,. Hence the evolution of damage variables @ in the
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6, = 45 to 53 05, = 90°

\ L

lntelj fiber failure Inter fiber failure Inter fiber failure Inter fiber failure

Figure 6: Schematic representation of fracture angle 6, for various IFF as in Knops
(2008).

lamina coordinate system will be according to Eq. 32 without loss of generality:

(OB 1 0
(0753 Loy L1y,
= 05)33 =@ Loy, + ¢ l16s (37)
012 Lz Lz,
@23 ZHTB l1 4,
[ @13 L oy L ligy

In the softening range of post critical stress states, the damage growth functions ®;
are obtained by time integration of ¢; in the form of

" odi i (=[]
b, ::/ g df=1—emi S>> (38)
0

where m; is the strain softening parameter and r; is the damage threshold for the
criterion g; at hand. At the onset of failure, triggered by the failure criteria, the
value of ®; is zero. As the damage progresses, the growth functions ®; increase
as the damage variables ;; do, therefore, eventually the stiffness of the material is
diminished until a final value of zero is reached.

6 Numerical examples
6.1 Verification example: One element test

In this verification example, a tension test under loading transverse to fibre direc-
tion on a UD reinforced laminated composite is presented. The lamina material
properties for elasticity are: Ej;=126 GPa, Ex=11 GPa, E3z3=11 GPa, v|»,=0.28,
Va3 =0.40, v13=0.28, G1»=9 GPa; and for strength: R|") =45 MPa,R,| =

79 MPa, RI(\+) = 1950 MPa. The load is applied in transverse (to fibre) direction

until complete failure. Fig. 7 left and Fig. 7 right represents the evolution of dam-
age variables in both original two dimensional (2D) model and the current three



A Damage-Mode Based Three Dimensional Constitutive Model 275

Z/ Fy Fy 249F, Fy
| . ' "
| 0 I 0 i
T X R
0K .
« 0 A ‘8 L x
\ [ ! X
— — 50 T T T T T ——T —
original 2D model original 2D model
current 3D model 45 | current 3D model
08 40 +
o
8
E 35
] _
‘2 06 | & 30
g H
S w 25
2 8
S 04 =
g a 2
& 15 ]
a
0.2 - 10
5|
) 0 . " " h h . " .
0 02 04 06 08 1 12 14 16 18 2 0 02 04 06 08 1 12 14 16 1.8 2
Strain [%] Strain [%]

Figure 7: left: Evolution of damage variable @»; in the original 2D model and
current 3D model and right: transverse stress-strain curve in both the models
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Figure 8: left: Evolution of damage variable @, with different exponents m and
right: Effect of exponent m on the transverse stress-strain curve

dimensional (3D) extension of the model for strain softening exponent m = 1.0.
Unlike in the original two dimensional model from Matzenmiller, Lubliner and
Taylor (1995), where the damage variables effect the stress-strain curves over the
entire strain range, in the current model, the damage variables are only applicable
to the post-failure part. To avoid strain localization, a smeared formulation similar
to Kurnatowski (2010) is utilized. The basic principle of the smeared formulation
is the introduction of a length parameter in the damage constitutive law in order
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to achieve a constant energy release per unit area of crack generated independent
from the element dimensions.

Fig. 8 left and Fig. 8 right represent the evolution of the damage variable and stress
vs. strain relationship from the numerical simulation at different exponent m from
the current model. It can be seen that the deformation behavior in the loading path
remains unchanged with various damage exponent m. After reaching the maximum
stress, damage progression is at a faster speed with increasing m, thus representing
a more brittle behavior.

6.2 Verification example: Thin-walled tube

The thin-walled, single-layered composite tube in Fig. 9a serves as a second veri-
fication example for the meso-level approach with the multi-layered solid element,
see Chatiri, Schuetz and Matzenmiller (2010), Fiolka and Matzenmiller (2007).
The inner and outer radii of the tube are r; =16.5 mm and r, = 18.5 mm with
a tube length of [, = 100 mm. The angle of the filament winding relative to the
cylinder axis x3 is denoted by ®. The composite consists of the E-glass-fibre rein-
forced epoxy resin MY750 with a fibre volume content of vy = 60%. The strength
parameters, Puck constants in the failure criteria of Eq. 3 or Eq. 4 and the elas-
ticity moduli of the E-glass-fibre reinforced epoxy resin MY750 are taken from
the World-Wide Failure Exercise (WWFE), pp 36, see Soden, Hinton and Kaddour
(2004), as well as from Puck and Schiirmann (2004), pp 846 and added also to Ta-
ble 2. The material parameters for nonlinear elastic behavior in-plane shear which
is modelled according to the Ramberg-Osgood are identified as cp=107 MPa and
n =29. The exponent parameter m = 1.0 is used for all the simulations below. These
parameters are obtained by fitting the numerical stress-strain response to the corre-
sponding experimental data of UD- composite material by performing similar one
element UD simulations as in section 6.1. The FE mesh consists of 36 elements in
circumferential direction and one element through the thickness of the layer. The
tube is discretized by 10 elements in axial direction. Along the boundary at x3 =0
, degrees of freedom for u3 and uy are suppressed where uj is the axial and uy the
tangential displacement component. The load is applied in terms of prescribed dis-
placements versus time up to a final value of u3(/) = 0.3 mm at the far end of the
tube along the edge at x3 =/ in axial direction. The fibres run in circumferential
direction (® = 90°). Hence, the normal stress caused is perpendicular to the fibres.

Fig. 9b depicts the tensile stress 033 versus the strain €3 = u3(100)/l due to the
prescribed displacement relative to the tube length u3()/l. Up to failure at the
stress level of 035" = 40 MPa, the normalized load-displacement is linear. After
reaching the strength limit, the stress-strain diagram gradually falls after failure.

The results match with the experimental data from WWEFE.
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Table 2: Parameters for E-glass, epoxy resin MY 750 composite
UD-fibre  composite [ R} [MPa] [ Ry [MPa] [ R [MPa] | R/ [MPa] | R [MPa]
strength parameters
40 73 145 1280 800

Puck constants pr) pm) pfﬁ

0.25 0.3 0.13
elasticity moduli EH [GPa] E | [GPa] GH | [GPa] VL Vi

45.6 16.2 5.83* 0.278 04
*Note: Nonlinear behavior and stress strain curves and data points are provided.

Tension o33 in load case 1
ug(l = 100) 20
=35
=
NN N O O O N 36
\ \ \ A \ \ \\ 23 Looan -~meso-level model
o £ = Experiment
: 215
2
210
5
1 =100 mm 0 . - . . . .
(] 0,05 0,1 0,15 0,2 0,25 0,3
(a) (b) strain €43 [%]

Figure 9: (a) Geometry of thin-walled tube (b) Tension stress 033Vvs. strain €33

Shear stress 14 in load case 2

50 4 ~+-meso-level model
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Fracture curve compared to experimental result
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Figure 10: (a) Shear stress Ty3 vs. Torsion (b) Comparison of Fracture curve

In load case 2, a path-controlled torsional deflection is applied at the far end of the
tube. The prescribed deformation causes a homogeneous shear stress in the tube.
Hence, the composite is exposed to an axial shear loading due to the fibre orienta-
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tion. The load bearing capacity of the tube under torsional loading is reached for
the shear stress at 73 ~ 70 MPa in the implemented meso-level material model
compared to an experimental axial shear strength value R of 73 MPa. In load
case 3, combined tension/shear stress loadings are applied and the computed frac-
ture curves are compared to experimental results, see Fig. 10. The experimentally
measured strength data for E-glass-fibre reinforced epoxy resin MY750 with a fibre
volume content of vy = 60% is only available for pure tension and pure shear. For
mixed states of biaxial stress, the experimental data points marked by red squares,
show the strength data of composite material E-glass/LY556 (v; = 62%). Both
these experimental data sets are diagrammed together in Soden, Hinton and Kad-
dour (2004) to describe the experimental fracture curve of the composite material
E-glass-fibre reinforced epoxy resin MY 750 under mixed loading. The numerical
results for the strength values, obtained with the current model are close to experi-
mental results.

6.3 Cross-ply laminate under uniaxial tensile loading

The cross-ply laminate with four UD-fibre layers [0°/90°/90°/0°] in Fig. 11
is made of E-glass/MY750 epoxy resin with vy = 0.62 and used to validate the
present model. The material parameters are the same as in example 6.2. The test
specimen’s length is /, = 200 mm, the width /, = 25 mm and the total thickness
[, =4 x0.475 = 1.9mm. The fibre orientation in the outer layers coincides with
the loading direction. The FE model for the meso-level approach uses one multi-
layered 8-node (linear) solid (MLS) element with four integration points to take
into account the various fibre orientations given above.

N

J

Figure 11: FE-model of cross-ply laminate: longitudinal view, cross section and
fibre angles, see Kurnatowski (2010)

The option of representing several plies in one solid element and more such el-
ements across the thickness is implemented into the explicit code, see Hallquist
(2010). Like any linear brick element, the MLS resolves the 3D stress state, but
may contain n-layers from the composite laminate. It is assumed to be small in



A Damage-Mode Based Three Dimensional Constitutive Model 279

comparison to the overall size of the composite thickness. Its in-plane behavior
is treated by through-the-thickness integration, whereas the transverse properties
in the shear and normal mode for the hexahedron element must be based on the
concept of a homogeneous substitute material, since the underintegrated linear el-
ement relies on a uniform membrane stress state. Hence, homogenization of the
layer dependent properties is required through the thickness of the element. The
homogenization result is bounded by VoiGT’s and REuss’s hypotheses, see Voigt
(1889), Reuss (1929). The Reuss bound for laminae, connected in series, is close to
the effective elasticity modulus in transverse normal direction, whereas the VOIGT
bound for laminae, assembled in parallel, serves as an upper limit and approximates
the transverse shear modulus of the laminate tightly. Both bounds are implemented
into the code to compute the transverse stresses from the strains.

Stress-Strain diagram of cross-ply laminate [0/90/90/0] made of E-glass/MY750
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longitudinal cracks in 0° layers

WWEFE test data

200 4 * meso-level model

tensile stress o,, [MPa]
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100 Transverse cracks in 90° layers
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Figure 12: Average stress (Oy,)vs. longitudinal (&, )and transverse strain (&, )in
meso-level model compared to experimental results from Gotsis, Chamis and Min-
netyan (2004)

The boundary conditions, imposed on the nodal displacements do not constrain
lateral extensions of the specimen. The simulation is controlled by the displacement
u, given at the right end with /, = 200 mm. In Fig. 12, the average laminate stress
Oy is plotted versus the average strain &, = u,/l, as well as the lateral average
strain €, = u,/l, as founded by tests published in Gotsis, Chamis and Minnetyan
(2004). At the average longitudinal stress o,x = 116 MPa, first cracks perpendicular
to the loading direction are observed experimentally in the embedded layer with
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fibres in 90°-direction, causing a slight reduction of the laminate’s tensile stiffness,
represented by the small kink in the stress-strain diagram. At G, = 325 MPa,
cracks occur parallel to the loading direction at the outer layers in the test. The
damage is due to the tensile stress oy, resulting from the lateral strain €, which is
obstructed by the large stiffness of the inner layers in loading direction. At oy, =
600 MPa, final failure of the laminate occurs by tensile fibre fracture in the upper
and lower layer.

In the meso-level model, the first transverse cracks in the 90°-layers appear at an
average stress level of oy, ~ 120 MPa and the longitudinal cracks in the 0°-layers
appear at Oy, =~ 340 MPa. At o, ~ 640 MPa, final failure of the laminate is com-
puted by tensile fibre fracture in the upper and lower layers. It is a matter of com-
mon knowledge that the constitutive behavior of a single UD-layer differs from
that of the same layer being part of a laminate structure, see Cuntze (2006). Exper-
iments reveal that the embedded lamina withstands higher loading than the isolated
one. Hence, underestimating the stiffness and strength of the laminate is not unex-
pected, if UD-parameters from a single laminae are used for the prediction of the
overall behavior of a multilayer composite.

7 Summary and concluding remarks

The meso-level model with the 3D Puck failure criteria and anisotropic continuum
damage mechanics is very effective in analyzing multi-layered structures having
a large number of plies. The developed material model describes both onset and
progression of damage. It can reproduce the key physical aspects observed in the
failure of Fibre-reinforced laminated composites. The failure-model implementa-
tion is 3D, and allows non-linearity in-plane shear. To avoid strain localization,
a smeared formulation is utilized. The numerical implementation has been veri-
fied by analysing a single-layered thin-walled tube under homogeneous tensile and
shear stress loading. The cross-ply laminate under uniaxial tension is used as the
first example for the validation. In general, the simulation results are shown to ac-
curately predict failure envelopes and trend. Further validation has to be done with
test data, taken from non-homogenous states of stress in multi-layered composites.

Acknowledgement

The first author gratefully acknowledges financial support and helpful discussions
with Drs. Stephan Fell from GM Alternative Propulsion Center Europe, Rues-
selsheim, Germany and Matthias Hoermann from CADFEM GmbH, Grafing, Ger-
many.



A Damage-Mode Based Three Dimensional Constitutive Model 281

References

Cauvin, A.; Testa, R. B. (1999): Damage mechanics: basic variables in continuum
theories. Int. J. Solids Struct., vol. 36, pp. 747-761.

Chaboche, J. -L. (1995): A continuum damage theory with anisotropic and unilat-
eral damage. Recher. Aerospat., vol. 2, pp. 139-147.

Chatiri, M.; Schuetz, T,; Matzenmiller, A. (2010): An assessment of the new
LS-DYNA® multi-layered solid element: basics, patch simulation and its potential
for thick composite structural analysis. Proc. 11" Intl. LS-DYNA® Users Conf.
Detroit, USA.

Cuntze, R. G. (2006): Efficient 3D and 2D failure conditions for UD laminae and
their application within the verification of the laminate design. Composites Science
and Technology, vol. 66, pp. 1081-1096.

Deuschle, H. M.; Kroplin, B. H. (2012): Finite element implementation of Puck’s
failure theory for fibre-reinforced composites under three-dimensional stress. J.
Composite Materials, vol. 46, pp. 2485-2513.

Fiolka, M.; Matzenmiller, A. (2007): On the resolution of transverse stresses in
solid-shells with a multi-layer formulation. Commun. Numer. Meth. Engg., vol.
23, pp- 313-326.

Fischer, O. (2003): Fibre Fracture Behavior in Fibre Reinforced Plastics. PhD
Thesis, RWTH Aachen, Institut fiir Kunststoffverarbeitung (IKV).

Gotsis, P. K.; Chamis, C. C.; Minnetyan, L. (2004): Application of progres-
sive fracture analysis for predicting failure envelopes and stress-strain behaviors of
composite laminates: a comparison with experimental results, in Failure Criteria in
Fibre Reinforced Polymer Composites: The World-Wide Failure Exercise, Soden,
P. D.; Hinton, M. J.; Kaddour, A. S., Eds. Elsevier: Oxford, pp. 703-723.
Hallquist, J. O. (2010): LS-DYNA Theoretical Manual, Livermore Software Tech-
nology Corporation, Livermore, California.

Hashin, Z. (1980): Failure criteria for unidirectional fibre composites. J. Appl.
Mech., vol. 47, pp. 329-334.

Ju, J. W. (1989): On energy-based coupled elastoplastic damage theories: consti-
tutive modeling and computational aspects. Int. J. Solids Struct., vol. 25, no. 7,
pp- 803-833.

Kachanov, L. M. (1958): Time of the rupture process under creep conditions. Isv.
Akad. Nauk S.S.S.R., Otd. Tekh. Nauk, vol. 8, pp. 26-31.

Knops, M. (2008): Analysis of Failure in Fibre Polymer Laminates: The Theory of
Alfred Puck. Springer-Verlag: Berlin, Heidelberg.



282 Copyright © 2013 Tech Science Press CMC, vol.35, no.3, pp.255-283, 2013

Kurnatowski, B. (2010): Zweiskalensimulation von mikroheterogenen Strukturen
aus sproden Faserverbund-werkstoffen, Institut fiir Mechanik, Fachbereich Maschi-
nenbau, Universitit Kassel, Ph. D. Thesis.

Kurnatowski, B.; Matzenmiller, A. (2012): Coupled twoscale analysis of fiber
reinforced composite structures with microscopic damage evolution. Int. J. Solids
Struct., vol. 49, pp. 2404-2417.

Ladeveze, P.; Allix, O.; Deii, J. -F.; Leveque, D. (2000): A mesomodel for locali-
sation and damage computation in laminates. Comput. Methods Appl. Mech. Eng.
183, pp.105-122.

Lubliner, J. (1990): Plasticity Theory, Macmillan, Newyork.

Matzenmiller, A.; Lubliner, J.; Taylor, R. L. (1995): A constitutive model for
anisotropic damage in fibre composites. Mechanics of Materials, vol. 20, pp. 125-
152.

Maimi, P.; Camanho, P.P.; Mayugo, J.A.; Davila, C.G. (2007): A continuum
damage model for composite laminates. Part I: Constitutive model. Mechanics of
Materials, vol. 39, pp. 897-908.

Ortiz, M. (1985): A constitutive theory for the inelastic behavior of concrete.
Mech. Mater., vol. 4, pp. 67-93.

Pinho, S. T.; Iannuci, L.; Robinson, P. (2005): Physically based failure mod-
els and criteria for laminated fibre-reinforced composites with emphasis on fibre
kinking. Part II: FE implementation, Composites Part A. vol. 37, pp. 766-777.

Puck, A.; Schiirmann, H. (2004): Failure analysis of FRP laminates by means
of physically based phenomenological models, in Failure Criteria in Fibre Rein-
forced Polymer Composites: The World-Wide Failure Exercise, P. D. Hinton, A. S.
Kaddour, and M. L. Soden, Eds. Elsevier: Oxford, pp. 832-876.

Ramberg, W.; Osgood, W. E. (1943): Description of stress—strain curves by three
parameters. National Advisory Commiittee for Aeronautics, Technical Note No.,
902.

Reuss, A. (1929): Berechnung der Fliegrenze von Mischkristallen auf Grund der
Plastizitdtsbedingung fiir Einkristalle. Z. Angew. Math. Mech., vol. 9, pp. 49-58.

Rosen, B.W.; Dow, N. E. (1972): Mechanics of failure of fibrous composites, in:
H. Liebowitz, ed., Fracture - An Advanced Treatise, Academic Press, pp. 661.

Simo, J. C.; Ju, J. W. (1987a): Strain and stress-based continuum damage models-
I. Formulat. Int. J. Solids Struct., vol. 23, pp. 821-840.

Simo, J. C.; Ju, J. W. (1987b): Strain and stress-based continuum damage models-
II. Comput. Aspects. Int. J. Solids Struct., vol. 23, pp. 841-869.



A Damage-Mode Based Three Dimensional Constitutive Model 283

Soden, P. D.; Hinton, M.J.; Kaddour, A.S. (2004): Lamina properties, lay-up
configurations and loading conditions for a range of fibre reinforced composite
laminates, in Failure Criteria in Fibre Reinforced Polymer Composites: The World-
Wide Failure Exercise, Soden, P. D.; Hinton, M. J.; Kaddour, A. S., Eds. Elsevier:
Oxford, pp. 30-51.

Talreja, R. (1985a): A continuum mechanics characterization of damage in com-
posite materials. Proc. R. Soc. Lond. A 399, 195.

Talreja, R. (1985b): Transverse cracking and stiffness reduction in composite lam-
inates. J. Composite Materials, vol. 19, pp. 355.

Voigt, W. (1889): Uber die Beziehung zwischen den beiden Elastizititskonstanten
isotroper Korper, Wied. Ann., vol. 38, pp. 573-587.

Williams, K.V.; Vaziri, R.; Poursartip, A. (2003): A physically based continuum
damage mechanics model for thin laminated composite structures. Int. J. Solids
Struct., vol. 40, pp. 2267-2300.






