
Copyright © 2013 Crown CMC, vol.35, no.3, pp.183-227, 2013

Analytical Models for Sliding Interfaces Associated with
Fibre Fractures or Matrix Cracks

L. N. McCartney1

Abstract: Analytical stress transfer models are described that enable estimates
to be made of the stress and displacement fields that are associated with fibre frac-
tures or matrix cracks in unidirectional fibre reinforced composites. The models
represent a clear improvement on popular shear-lag based methodologies. The
model takes account of thermal residual stresses, and is based on simplifying as-
sumptions that the axial stress in the fibre is independent of the radial coordinate,
and similarly for the matrix. A representation for both the stress and displace-
ment fields is derived that satisfies exactly the equilibrium equations, the required
interface continuity equations for displacement and tractions, and all stress-strain
equations except for the one that relates to axial deformation. In addition, the repre-
sentation is such that the Reissner energy functional has a stationary value provided
that averaged axial stress-strain relations for the fibre and matrix are satisfied. The
improved representation is fully consistent with variational mechanics and provides
both the stress and displacement distributions in the fibre and the matrix. For iso-
lated or interacting fibre fractures or matrix cracks, interface sliding is considered
where two types of condition are investigated. Firstly, it is assumed that the shear
stress is uniform within the sliding region, and a small transition zone is included
in the model in order that essential zero traction conditions can be satisfied on the
crack surfaces. Secondly, it is assumed that stress transfer in the sliding region is
controlled by Coulomb friction. Illustrative predictions are made for an example
polymer composite, although the methodology presented is equally applicable to
other types of composite (e.g. metal and ceramic matrix composites).
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1 Introduction

For unidirectional polymer composites, the fibre fracture is perhaps the most im-
portant damage mode, as it can be the precursor to progressive damage growth that
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leads on to the catastrophic failure of the composite. Fibre fracture for weakly
bonded composites is often accompanied by the formation of fibre/matrix sliding
zones that affect the stress transfer between fibre and matrix, and the performance
of the composite in directions normal to the fibre direction. For high temperature
brittle matrix composites, the most important damage mode is matrix cracking in
a direction normal to the fibre direction. The matrix cracks can be bridged by a
number of intact fibres and the opening of the cracks is affected by the degree of
fibre/matrix sliding.

To understand these damage modes it is essential that a reliable analysis is under-
taken so that stress-transfer between fibres and matrix is adequately modelled. A
concentric cylinder model is often used to analyse fibre fractures and matrix crack-
ing, where stress transfer is estimated between two concentric cylinders and where
the inner cylinder represents the fibre and the outer cylinder represents the matrix.
Historically, shear-lag theories were first used for this purpose, as discussed in de-
tail by Nairn (1997) for the special case where the matrix remains perfectly bonded
to the fibres. He critically assessed shear-lag methods which have frequently been
used in the literature to analyse fibre/matrix stress transfer. He concluded that shear-
lag methods provide poor estimates of shear stresses and energy release rates, and
cannot be used for low fibre volume fractions. An additional point, rarely noticed,
is that shear-lag methods do not take account of interaction effects that arise when
fractures are sufficiently close together. For brittle-matrix composites where in-
terface sliding is a very important mechanism, a shear-lag model was the basis
of ACK theory [Aveston, Cooper and Kelly (1971)], when using an energy bal-
ance method to predict the conditions for matrix cracking when it is accompanied
by fibre/matrix sliding characterised by a uniform interfacial shear stress (see also
[McCartney (1987, 1992b,a)]).

Hutchinson and Jensen (1990) avoided the use of a shear-lag model by using the
well-known Lame solution, together with mode II fracture mechanics principles, to
consider matrix cracking for cases where frictional slip occurs at the fibre/matrix in-
terfaces characterised by either a uniform interfacial shear stress or by the Coulomb
friction law. Their approach estimates a ‘steady state’ energy release rate using a
method that does not consider the variation of the stress field in the direction of the
fibres, but only the stress states far ‘upstream’ and far ‘downstream’ relative to the
fracture location. To obtain more accurate solutions than shear-lag methods, Nairn
(1992) used a variational calculation based on the principle of minimising the com-
plementary energy to develop a solution for the stress field only for the special case
where the fibre/matrix interface remains perfectly bonded. He applied the model to
the analysis of single-fibre fibre-pull-out tests and micro-drop debond tests.

In this paper, an axisymmetric model is considered subject to applied axial load
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distributions that gives rise to axial stress transfer between the concentric cylinders
through the action of distributed shear stresses on the interface between the two
cylinders. The model is constructed so that the cylinders can be made of different
transversely isotropic materials. The model takes full account of the effects of the
thermal residual stresses induced in the system during manufacture as a result of
the difference in thermal expansion behaviour of the fibre and matrix. The solution
technique, which is an improvement of an earlier stress transfer model [McCart-
ney (1989)], is briefly described in reference [McCartney (1999)]. The solution
of the stress transfer problem involves the development of an ordinary differential
equation that can be solved by analytical methods, and enables subsequent cal-
culation of the stress and displacement distributions throughout the system. The
axisymmetric model of stress transfer leads to stationary values of the Reissner en-
ergy functional [Reissner (1950)] so that the stress and displacement distribution
derived from the model would also result from carrying out a corresponding varia-
tional calculation. Thus, the stress transfer model is the best that can be developed
based upon the single fundamental assumption that axial stresses in each cylinder
are independent of the radial coordinate. This assumption is not expected to lead to
reasonable predictions when the fibre volume fraction is small, as in a single fibre
pull-out or fragmentation test, but it is expected to lead to very useful predictions
for use in fibre failure or matrix cracking models applied to unidirectional compos-
ites of practical interest. It is worth noting that shear-lag predictions of stress-strain
behaviour in presence of matrix cracking have been compared [McCartney (1991)]
with predictions based on the more accurate stress transfer model described in [Mc-
Cartney (1989)], where it was shown that shear-lag predictions significantly over
estimate (by about 25%) the initial matrix cracking stress.

Stress transfer between fibre and matrix will be considered for the idealised case
when either a fibre of a composite is uniformly fragmented, or when the matrix has
cracked uniformly so that the matrix cracks are normal to the fibre axis. The anal-
ysis to be presented here focuses on a simplifying situation where the fibre/matrix
interface is assumed to be frictionally bonded. This means that there is no bonding
between fibre and matrix. It is assumed that thermal residual stresses are such that
the matrix clamps the fibre so that the composite will behave as a perfectly bonded
composite provide that there is no slippage between the fibre and matrix. This
would certainly be the situation for an undamaged composite. If a fibre fracture or
matrix crack is present then some fibre/matrix slippage is expected near the fracture
plane. An indication will be given of how bonded interfaces may be analysed.

Sections 2-8 of the paper develop analytical expressions for the stress and displace-
ment distributions in the fibre and matrix, and formulate appropriate boundary con-
ditions for the presence of fibre fractures or matrix cracks. Section 9 solves the
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stress transfer problem for the special case when there is no slip between fibre and
matrix, while Section 10 extends the analysis so that sliding interfaces can be con-
sidered for which the interfacial shear stress has a uniform prescribed value that is
a material characteristic. Section 11 considers an alternative stress transfer model
for sliding interfaces where stress transfer in the sliding region is governed by the
Coulomb friction law. Results of predictions, their discussion and conclusions are
presented in Sections 12–14. Appendices A and B provide respectively solutions
for the special case of an undamaged composite, and for the critical case of inter-
face separation in a frictionally bonded composite.

2 Field equations

A set of cylindrical polar coordinates (r,θ ,z) is introduced such that the origin lies
on the common axis of the two concentric cylinders (with the z-axis directed along
the axis of the cylinders) at the mid-point between two neighbouring fibre fractures
or two neighbouring matrix cracks. Superscripts f and m will be used to denote
parameters associated with the fibre and matrix respectively. For axisymmetric
problems, the following equilibrium equations must be satisfied for both the fibre
and matrix,

∂σrr

∂ r
+

∂σrz

∂ z
+

σrr−σθθ

r
= 0, (1)

∂σzz

∂ z
+

∂σrz

∂ r
+

σrz

r
= 0. (2)

The fibre and matrix are regarded as transverse isotropic solids so that the relevant
stress-strain-temperature relations, in terms of the axial and transverse moduli E,
Poisson’s ratios υ , shear modulus µ and thermal expansion coefficients α are of
the form

εrr =
∂ur

∂ r
=

1
ET

σrr−
υT

ET
σθθ −

υA

EA
σzz +αT ∆T, (3)

εθθ =
ur

r
=−υT

ET
σrr +

1
ET

σθθ −
υA

EA
σzz +αT ∆T, (4)

εzz =
∂uz

∂ z
=−υA

EA
σrr−

υA

EA
σθθ +

1
EA

σzz +αA∆T, (5)

εrz =
1
2

(
∂ur

∂ z
+

∂uz

∂ r

)
=

σrz

2µA
, (6)

where ET = 2µT (1+υT ) but EA 6= 2µA(1+υA). (7)
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The subscripts A and T refer the properties to the axial and transverse directions
relative to the direction of the fibre axis. Following Nairn (1992), when both σzz

and ∆T are independent of r, the displacement ur is compatible with the stress-
strain relations (3) and (4) if the following compatibility equation for stresses is
satisfied

(1+υT )
σrr−σθθ

r
=

∂

∂ r
(σθθ −υT σrr), (8)

which is obtained by subtracting (4) from (3), differentiating (4) with respect to r,
and then eliminating the displacement component ur.

3 Interfacial and radial boundary conditions

The inner cylinder represents the fibre, which has radius R. The outer cylinder
representing the matrix has radius a such that a = R/

√
Vf where Vf is the volume

fraction of the composite represented by the concentric cylinder model ensuring
that the fibre volume fraction for the concentric cylinder model is the same as that
of the composite being modelled. The volume fraction of the matrix is given by
Vm = 1−Vf . At the interface r = R between the cylinders, the following continuity
conditions must be satisfied for all values of z:

No slip region:

σ
f

rr(R,z) = σ
m
rr(R,z), σ

f
rz(R,z) = σ

m
rz(R,z),

u f
r (R,z) = um

r (R,z), u f
z (R,z) = um

z (R,z). (9)

Sliding region:

σ
f

rr(R,z) = σ
m
rr(R,z), σ

f
rz(R,z) = σ

m
rz(R,z),

u f
r (R,z) = um

r (R,z), σ
f

rz(R,z) = ξ [θτ +ϕησ
f

rr(R,z)]. (10)

In (10), τ and η are regarded as material constants where θ , ϕ = 0 or 1, and where
ξ = −1 or ξ = 1. By selecting θ = 1 and ϕ = 0 the boundary conditions (10)
correspond to the those for an interface subject to a uniform interfacial shear stress
±τ . By selecting θ = 0 and ϕ = 1 the boundary conditions correspond to those for
an interface subject to the Coulomb law of friction where the parameter η is the
friction coefficient. By selecting ξ = 1 the boundary conditions (10) correspond
to those for a matrix crack, and by selecting ξ = −1 the conditions correspond to
those for a fibre fracture. The boundary conditions (10) assume that on slipping
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at the interface, the fibre and matrix remain in contact with one another and give
rise to stress transfer between the cylinders where the fibre may slip relative to the
matrix. If mechanical contact is lost then clearly the stress components σrr and σrz

are both zero and the displacement component ur is discontinuous across such an
interface. As no stress transfer occurs at such an interface, this case will not be
considered in this paper. On the external surface r = a of the outer cylinder the
following boundary conditions are often imposed

σrr(a,z) = σT , σrz(a,z) = 0, (11)

where σT is a uniform transverse stress applied to the external surface of the outer
cylinder. In regions away from the loading mechanism, and any matrix crack or
fibre fracture, it is assumed that

u f
z ≡ um

z ≡ εAz, (12)

where εA is the axial strain in such regions. The relation (12) is valid for all values of
z when there is no fibre/matrix slippage and the system is undamaged, as described
in Appendix A.

The boundary condition (11) for the radial stress could be replaced by a correspond-
ing radial displacement condition, which would be appropriate when modelling fi-
bre fractures embedded with a unidirectional composite, as considered in reference
[Hutchinson and Jensen (1990)]. The radial component could be selected to be the
radial displacement that would arise in an undamaged composite (see [McCartney
(1996)] for an example of this approach). The analysis of this paper will consider
only boundary conditions of the type given in (11).

4 Representation for the stress and displacement fields

The approach to developing a solution for a damaged system is to express the so-
lution as a sum of the undamaged solution (see Appendix A) and a perturbation
solution arising from the damage. For the fibre region 0 ≤ r ≤ R, the stress field
when damage is present is assumed to be of the following form equivalent to that
assumed by Nairn (1992)

σ
f

zz(r,z) = σ f −C(z), (13)

σ
f

rz(r,z) =
1
2

C
′
(z)r, (14)

σ
f

rr(r,z) =−
1
16

(3+υ
f

T )C
′′
(z)r2 +R f (z)+σT −Vm

φ

R2 , (15)
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σ
f

θθ
=− 1

16
(1+3υ

f
T )C

′′
(z)r2 +R f (z)+σT −Vm

φ

R2 , (16)

where σ f and φ relate to the undamaged solution (see Appendix A), σ f being the
uniform axial fibre stress in an undamaged composite subject to the same loading
conditions and temperature. For the matrix region R ≤ r ≤ a, the stress field is
assumed to be of the following form, again equivalent to that used by Nairn (1992)

σ
m
zz(r,z) = σm +

Vf

Vm
C(z), (17)

σ
m
rz(r,z) =

C
′
(z)

2Vm

(
R2

r
−Vf r

)
, (18)

σ
m
rr(r,z) =

[
(3+υ

m
T )

r2

a2 −4(1+υ
m
T ) ln

r
a
−2(1−υ

m
T )

]
R2

16Vm
C
′′
(z)

+Rm(z)−
Sm(z)

r2 +σT +φ

(
1
a2 −

1
r2

)
, (19)

σ
m
θθ (r,z) =

[
(1+3υ

m
T )

r2

a2 −4(1+υ
m
T ) ln

r
a
+2(1−υ

m
T )

]
R2

16Vm
C
′′
(z)

+Rm(z)+
Sm(z)

r2 +σT +φ

(
1
a2 +

1
r2

)
, (20)

where σm is the uniform axial matrix stress in an undamaged composite subject to
the same loading conditions and temperature (see Appendix A). It should be noted
that the interface continuity relations (9)2 and (10)2 are satisfied by the relations
(14) and (18). The functions C(z) and R f (z), Rm(z) and Sm(z) are regarded as being
identically zero when no form of damage is present and the fibre/matrix interface
has not slipped.

On using (3) or (4), together with (13), (15) and (16), the corresponding represen-
tation for the displacement component u f

r , for the fibre region 0 ≤ r ≤ R, is given
by

u f
r (r,z)

r
=−1−υ

f
T

32µ
f

T

C
′′
(z)r2 +

υ
f

A

E f
A

C(z)+
1−υ

f
T

E f
T

R f (z)+A f , (21)

where A f is defined in Appendix A. On using (6), (14) and (21) it can be shown on
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integrating with respect to r that for 0≤ r ≤ R,

u f
z (r,z) =−

1
2

[(
υ

f
A

E f
A

− 1

2µ
f

A

)
C
′
(z)+

1−υ
f

T

E f
T

R
′
f (z)

]
(r2−R2)

+
1−υ

f
T

128µ
f

T

C
′′′
(z)(r4−R4)+H f (z)+ εAz, (22)

where H f (z)+ εz ≡ u f
z (R,z) arises from the integration representing the axial dis-

placement distribution in the fibre along the interface. The function H f (z) ≡ 0
when the system is in an undamaged state. Similarly, the corresponding displace-
ment components for the matrix region R≤ r ≤ a are given by

um
r (r,z)

r
=

(
1
2

r2

a2 −2ln
r
a
+1
)

1−υm
T

16µm
T

R2

Vm
C
′′
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A
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A

Vf

Vm
C(z)

+
1−υm

T
Em

T
Rm(z)+

Sm(z)
2µm

T r2 +Am +
φ

2µm
T r2 , (23)

um
z (r,z) =
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T

16µm
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R2

Vm
C
′′′
(z)r2 ln

r
R
+

(
R2

2µm
A Vm

C
′
(z)− S

′
m(z)

2µm
T

)
ln

r
R

+
1
2

[(
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A
Em

A
− 1
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A
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Vf

Vm
C
′
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T
16µm
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2− lnVf
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R2C

′′′
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T
Em
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R
′
m(z)

]
(r2−R2)

(24)

− 1−υm
T

128µm
T

Vf

Vm
C
′′′
(z)(r4−R4)+Hm(z)+ εAz,

where Am is defined in Appendix A and where Hm(z)+ εz ≡ um
z (R,z) arises from

the integration representing the axial displacement distribution in the matrix along
the interface. The function Hm(z) ≡ 0 when the system is in an undamaged state.
It should be noted that the displacement component uθ is everywhere zero in both
the fibre and matrix.

The stress and displacement fields specified by (13)-(24) satisfy exactly the equi-
librium equations, and the compatibility equations together with the stress-strain
relations (3), (4) and (6) for any function C(z), and for any functions R f (z), Rm(z),
Sm(z), H f (z) and Hm(z). In addition, the function C

′
(z) is double the value of the in-

terfacial shear stress σrz at the point z, and since from (11)2 σrz(a,z)≡ 0 it follows
from (13), (17) and A22 that

Vf σ
f

zz(r,z)+Vmσ
m
zz(r,z) = σA, (25)
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for all values of r and z. It should be noted that the axial stress-strain equation (5)
will be considered in Section 6.

5 Determination of the integration functions

The next objective is to determine the functions R f (z), Rm(z) and Sm(z) that were
introduced when carrying out integrations of the equilibrium equations in terms of
the stress-transfer function C(z). The application of the external boundary condi-
tion (11)1 for the radial stress to the relation (19) leads to the following expression
for the function Sm(z)

Sm(z)
a2 = (1+3υ

m
T )

R2

16Vm
C
′′
(z)+Rm(z). (26)

The application of the interfacial continuity condition (9)1 or (10)1 for the radial
stress using (15), (19) and (26) leads to the relation

Vf R f (z)+VmRm(z) = αR2C
′′
(z), (27)

where

α =
1
16

(
Vf υ

f
T +Vmυ

m
T − (1+4υ

m
T )−2(1+υ

m
T )

Vf

Vm
lnVf

)
. (28)

The application of the interfacial continuity condition (9)3 or (10)3 for the radial
displacement using (7), (21), (23), (26), and the relations (A8) and (A9) for an
undamaged composite, leads to the relation(

υ
f

A

E f
A

+
υm

A
Em

A

Vf

Vm

)
C(z)−

[
(1−υ

f
T )

µm
T

µ
f

T

+(1−υ
m
T )

Vf +2(1− lnVf )

Vm

+
1+3υm

T
VfVm

]
R2C

′′
(z)

32µm
T

+
1−υ

f
T

1+υ
f

T

R f (z)

2µ
f

T

−
(

1−υm
T

1+υm
T
+

1
Vf

)
Rm(z)
2µm

T
= 0. (29)

The equations (27) and (29) are then solved simultaneously for the functions R f (z)
and Rm(z) so that

Rm(z) = βC(z)+ γR2C
′′
(z),

R f (z) =−β
Vm

Vf
C(z)+

1
Vf

(α− γVm)R2C
′′
(z), (30)
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where

β = 2µ
m
T Vf

(
υ

f
A

Vf E
f
A

+
υm

A
VmEm

A

)
ω,

γ =

[
1−υ

f
T

1+υ
f

T

µm
T

µ
f

T

(
α

Vf
− 1+υ

f
T

16

)
− (1−υ

m
T )

Vf +2(1− lnVf )

16Vm
− 1+3υm

T
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]
ω,

(31)

1
ω

=
1−υ

f
T

1+υ
f

T

µm
T

µ
f

T

Vm

Vf
+

1−υm
T

1+υm
T
+

1
Vf

.

6 Derivation of differential equation for stress transfer before interface slip-
page

For the stress and displacement representations derived above it is not possible to
satisfy exactly the stress-strain relations for the fibre and matrix having the form
given by (5). However, it is possible to satisfy corresponding averaged stress-strain
relations. For the fibre the averaged stress-strain relation is

dū f
z

dz
=−

υ
f

A

E f
A

(σ̄ f
rr + σ̄

f
θθ
)+

σ̄
f

zz

E f
A

+α
f

A∆T, (32)

where an average value is denoted by an overbar and defined for any function f (r,z)
associated with the fibre by

πR2 f̄ (z)≡
R∫

0

2πr f (r,z)dr. (33)

On averaging (22) using (33), it can be shown that

ū f
z (z)=−

1−υ
f

T

192µ
f

T

R4C
′′′
(z)+

R2

4

[
1−υ

f
T

E f
T

R
′
f (z)+

(
υ

f
A

E f
A

− 1

2µ
f

A

)
C
′
(z)

]
+H f (z)+εz.

(34)

For the matrix the averaged stress-strain relation is

dūm
z

dz
=−

υm
A

Em
A
(σ̄m

rr + σ̄
m
θθ )+

σ̄m
zz

Em
A
+α

m
A ∆T, (35)
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where an average value is denoted by an overbar and defined for any function m(r,z)
associated with the matrix by

π(a2−R2)m̄(z)≡
a∫

R

2πrm(r,z)dr. (36)

On averaging (24) using (36), it can be shown that

ūm
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T

16µm
T
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Vm
C
′′′
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(
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2µm
A Vm

C
′
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′
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2µm
T
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− cm
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T
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T

Vf

Vm
C
′′′
(z)

+
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2

[(
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A
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A
− 1

2µm
A

)
Vf

Vm
C
′
(z)− 1−υm

T
16µm

T

2− lnVf

Vm
R2C

′′′
(z)− 1−υm

T
Em

T
R
′
m(z)

]
(37)

+Hm(z)+ εAz,

where

am =
1

a2−R2

a∫
R

2r3 ln
r
R

dr =
1

8(a2−R2)

(
4a4 ln

a
R
+R4−a4

)
=

R2

8VfVm
(V 2

f −1−2lnVf ),

bm =
1

a2−R2
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R

2r ln
r
R

dr =
1

2(a2−R2)

(
2a2 ln

a
R
+R2−a2

)
=−1

2

(
1+

1
Vm

lnVf

)
,

(38)

cm =
1

a2−R2

a∫
R

2r(r4−R4)dr =
1
3
(a2−R2)(a2 +2R2) =

R4

3
Vm(1+2Vf

V 2
f

,

dm =
1
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a∫
R

2r(r2−R2)dr =
1
2
(a2−R2) =

R2

2
Vm

Vf
.

On averaging (15) and (16) using (33), and on averaging (19) and (20) using (36),
it can be shown that

σ̄
f

rr(z)+σ̄
f

θθ
(z)= 2

(
α

Vf
− Vm

Vf
γ− 1+υ

f
T

16

)
R2C

′′
(z)−2β

Vm

Vf
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(
σT −Vm

φ

R2

)
,

(39)
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σ̄
m
rr(z)+ σ̄

m
θθ (z) =

[
2γ +

1+υm
T

8V 2
m
{(3+Vf )Vm +2Vf lnVf }

]
R2C

′′
(z)

+2βC(z)+2
(

σT +Vf
φ

R2

)
. (40)

For an unslipped interface, the identification H f (z)≡ Hm(z)≡ H(z) is made in or-
der to satisfy the boundary condition (9)4. The substitution of (13), (34) and (39)
in (32), and of (17), (37) and (40) in (35), followed by a subtraction to eliminate
the function H(z), leads to the following homogeneous fourth order ordinary dif-
ferential equation that must be satisfied by the stress transfer function C(z) in the
unslipped region

FR4C
′′′′
(z)+GR2C

′′
(z)+HC(z) = 0, (41)

where the constant coefficients F , G and H are given by

F = F0 +αFα +βFβ + γFγ ,

G = G0 +αGα +βGβ + γGγ , (42)

H = H0 +αHα +βHβ + γHγ ,

where the parameters F0, Fα , Fβ , Fγ etc. are given by

F0 =
(υm

T )
2

192VfV 2
mEm
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, (44)

Gα =
υ

f
A

Vf E
f
A

,Gβ = Fγ ,Gγ =−Vm

(
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Vf E
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+
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A
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(
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Vf E
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1
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)
,Hα = 0,Hβ = Gγ ,Hγ = 0. (45)
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It has been shown using the algebraic programming language REDUCE, that F , G
and H correspond to formulae given by Nairn (1992) derived using a variational
technique (N.B. the expression for C35 given by Nairn should include a minus sign
before the ratio (V2A1)/(V1A2) that appears in his result). It is concluded that the
approach being taken provides the displacement field corresponding to the stress-
based variational calculation [Nairn (1992)] that minimises the complementary en-
ergy.

7 The average axial displacement functions

The substitution of (13), (17), (39) and (40) in (32) and (35), followed by an inte-
gration with respect to z leads to the following expressions for the averages of the
axial displacement components in the fibre and matrix respectively

ū f
z (z) =−

2υ
f

A

E f
A

(
α

Vf
− Vm

Vf
γ− 1+υ

f
T

16

)
R2C
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E f
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f
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(46)

ūm
z (z) =−
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Em
A

[
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16V 2
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{(3+Vf )Vm +2Vf lnVf }
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(
1−2βυ

m
A

Vm

Vf

)
C̄(z)+ εAz, (47)

where

C̄(z) =
z∫

0

C(z
′
)dz

′
. (48)

The only remaining functions that have not been determined are the integration
functions H f (z) and Hm(z) appearing in the relations (22) and (24) for the axial
displacement in fibre and matrix respectively. The function H f (z) is obtained using
the equivalent results (34) and (46) so that
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C̄(z). (49)
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The function Hm(z) is obtained using the equivalent results (37) and (47) so that

Hm(z) =
R4C

′′′
(z)
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C̄(z). (50)

In the absence of sliding, when

H f (z)≡ Hm(z)≡ H(z) and u f
z (R,z)≡ um

z (R,z),

the solution for the stress and displacement fields in the fibre and matrix derived
in Section 5 satisfy exactly the equilibrium equations (1) and (2), the stress-strain
relations (3), (4) and (6), the compatibility equation (8), the interface conditions
(9) and the external boundary conditions (11) for any stress transfer function C(z).
The stress and displacement fields do not satisfy the axial stress-strain relation (5),
but they do satisfy exactly the corresponding averaged stress-strain relations (32)
and (35) provided that the stress transfer function C(z) satisfies the homogeneous
fourth order ordinary differential equation (41). If the interface is sliding, then
H f (z) 6= Hm(z) and consequently neither the differential equation (41) nor the inter-
face condition (9)4 are satisfied, although the relations (49) and (50) remain valid.

8 Axial boundary conditions

A length 2L of fibre and matrix are now considered where the origin of the (r,z)
coordinates is at the centre of the system on the axis of the fibre. On z =±L, there
are either fibre fractures or matrix cracks, and the shear stress σrz is assumed to
be everywhere zero, so that the solution to the problem can be applied to the fibre
fragmentation and matrix cracking problems for the special case where the crack
distribution is uniform in either the fibre or the matrix. It then follows from (14)
and (18) that this shear stress boundary condition is satisfied if C

′
(±L) = 0.

The boundary condition for the axial stress is written in the following generalised
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form that can be used for fibre fractures or matrix cracks

σ
f

zz(r,±L) =
(1+ξ )σA

2Vf
,0≤ r ≤ R,

σ
m
zz(r,±L) =

(1−ξ )σA

2Vm
,R≤ r ≤ a, (51)

where σA is the effective axial applied stress. It is clear that these values are con-
sistent with the relation (25). On setting ξ =−1, the boundary conditions (51) are
valid for fibre fractures, and on setting ξ = 1 these boundary conditions are valid
for matrix cracks. On using (13) and (17), the boundary conditions (51) lead to the
condition

C(±L) = σ f −
(1+ξ )σA

2Vf
=

(1−ξ )σA

2Vf
− Vm

Vf
σm = F(σA,σT ,∆T ), (52)

where σ f and σm are the uniform axial fibre and matrix stresses for an undamaged
composite. The function F depends linearly on σA, σT and ∆T , as seen from (A12),
(A18), (A21) and (A23). To determine values of F , the effective properties EA, υA

and αA are first calculated using (A24)-(A29). Given values of σA, σT and ∆T , the
axial strain εA is first calculated using (A23) and then the parameters φ , σ f and σm

using (A12), (A18) and (A21). The value of σ f or σm is then substituted into (52)
to calculate C(±L) = F(σA,σT ,∆T ).

9 Isolated fractures in the absence of interface sliding

Consider now an isolated fibre fracture or matrix crack located at z = L, where the
interface has not slipped, as illustrated in Fig. 1.

It is convenient to express the solution of the ordinary differential equation (41) in
the following form (valid for 0≤ z≤ L)

C(z) = Acosh
(p+q)z

R
+Bcosh

(p−q)z
R

, (53)

where

p =

√
1
2
(r+ s), q =

√
1
2
(r− s)< p, r =− G

2F
> 0, s =

√
H
F
. (54)

The form of solution given by (53) is valid only if r > s, a situation which is often
encountered when applying the model to common composites having volume frac-
tions which are not too large. The situation r < s leads to complex values of q. The
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Figures: 

 
Figure 1:  Schematic diagram showing the geometry for an unslipped interface associated 

with a fibre fracture or matrix crack.  
 

 
Figure 2:  Schematic diagram showing the geometry for a sliding interface associated with a 

fibre fracture or matrix crack when the shear stress is uniform in the slipping zone.  

Figure 1: Schematic diagram showing the geometry for an unslipped interface as-
sociated with a fibre fracture or matrix crack.

easiest way of dealing with this case is to develop computer code using complex
arithmetic for variables that will be complex numbers. It should be noted that p
is always real and that the situation r = s needs to be considered as a special case
when writing software.

In (53), the parameters A and B are to be determined using the boundary conditions
C
′
(±L) = 0 and (52). It can be shown that

A=−
(p−q) tanh (p−q)L

R

cosh (p+q)L
R

ΛF(σA,σT ,∆T ),B=
(p+q) tanh (p+q)L

R

cosh (p−q)L
R

ΛF(σA,σT ,∆T ),

(55)

where

1
Λ

= (p+q) tanh
(p+q)L

R
− (p−q) tanh

(p−q)L
R

, (56)

and where the function F is defined by (52). The stress transfer function, for an
array of equally spaced interacting cracks in the fibre or matrix before interface
sliding occurs, is thus determined uniquely.
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The distribution of the interfacial shear stress is obtained by substituting (53) in (14)
or (18). The interfacial shear stress will be zero at the location of the crack z = L,
and the maximum absolute value of the interfacial shear stress occurs when C

′′
(z) =

0 defining the point z = c for a local maximum or minimum of the interfacial shear
stress. It follows from (53) that the value of c must be such that

(p+q)2Acosh
(p+q)c

R
+(p−q)2Bcosh

(p−q)c
R

= 0. (57)

When r > s so that q is a real quantity, it can be shown that the parameter c satisfies
the following transcendental equation that is solved numerically

tanh
pc
R

tanh
qc
R

=
p tanh qL

R −q tanh pL
R

p tanh pL
R −q tanh qL

R

. (58)

While the relation (58) is compact, it might cause numerical problems when q is
a pure imaginary number as the tanh functions would be replaced by tan functions
which periodically diverge. To avoid this potential problem, the relation (58) is
expressed in the following more expansive form that avoids the need to evaluate
tanh functions

sinh
pc
R

sinh
qc
R

(
psinh

pL
R

cosh
qL
R
−qcosh

pL
R

sinh
qL
R

)
= cosh

pc
R

cosh
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(
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pL
R

sinh
qL
R
−qsinh

pL
R

cosh
qL
R

)
. (59)

The value τ̄ of the local maximum or minimum interfacial shear stress is obtained
using (14) and (53) so that

τ̄ =
1
2

A(p+q)sinh
(p+q)c

R
+

1
2

B(p−q)sinh
(p−q)c

R
. (60)

On using (55)

τ̄ = Λ
′
F(σA,σT ,∆T ), (61)

where

Λ
′
=

p+q
2

tanh
(p−q)L

R
cosh (p+q)c

R

cosh (p+q)L
R

Ψ(c)Λ, (62)

and

Ψ(x)≡ (p+q) tanh
(p−q)x

R
− (p−q) tanh

(p+q)x
R

. (63)
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It is worth noting that when r < s, so that q is a pure imaginary quantity, the tran-
scendental equation determining the location z = c is

tanh
pc
R

tan
|q|c
R

=
p tanh |q|LR −|q| tanh pL

R

p tanh pL
R + |q| tan |q|LR

. (64)

For the special case of non-interacting cracks, the interfacial shear stress will be
zero at the location of the crack z = L, and it will tend to zero far away from the
crack location. It can be shown for this special case that the maximum absolute
value of the interfacial shear stress occurs at the point z = c where

c
L
= 1− R

2Lq
ln

p+q
p−q

. (65)

The corresponding local maximum or minimum value of the interfacial shear stress
is given by

τ̄ =
1
2

√
p2−q2

(
p+q
p−q

)− p
2q

F(σA,σT ,∆T ). (66)

10 Frictionally slipping interfaces with uniform interfacial shear stress

Consider now the situation where the fibre and matrix have slipped relative to each
other along the interface such that they remain in contact and are subject to fric-
tional slip. During progressive axial loading the transverse applied stress σT is
assumed to be held fixed. The first case to be considered assumes that frictional
slip is characterised by a uniform interfacial shear stress τ , which is regarded as
a material constant. From (14) or (18) the stress transfer function in the slip zone
satisfies the first order differential equation

C
′
(z) =

2τ

R
. (67)

The derivative C
′
(z) governing the interfacial shear stress σrz(R,z) is a negative

quantity when stress transfer for a matrix crack (ξ = 1) is being analysed, but it is
a positive quantity when considering stress transfer associated with a fibre fracture
(ξ = −1). The sign of τ is set in software, selecting a negative value for matrix
cracks and a positive value for fibre fractures.

Consider the geometry of the fibre, matrix and sliding interface shown in Fig. 2.
The fibre has radius R and there is a fibre fracture or matrix crack at the location
z = L. As soon as sliding is initiated at the point z = c on the interface at r = R,
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the solution of the stress transfer problem is no longer governed by the differential
equation (41) alone. The differential equation applies only in the region 0≤ z≤ b
where elastic stress transfer is possible as the interface has not slipped in this region.
For the sliding region b ≤ z ≤ c, the interfacial shear stress is assumed to have a
uniform value denoted by τ . If the parameter c = L then the symmetry of the stress
tensor asserts that the shear stress would have the non-zero value τ on the surface
of the fibre fracture or matrix crack. This situation violates the essential condition
that crack surfaces should be stress-free. To overcome this problem a transition
zone is introduced in the sliding zone occupying the region c≤ z≤ L in which the
interfacial shear stress reduces from the specified value τ at z = c to zero value on
z = L. Fibre/matrix stress transfer will be occurring in this region, as well as in the
uniform shear stress zone b≤ z≤ c.
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Figures: 

 
Figure 1:  Schematic diagram showing the geometry for an unslipped interface associated 

with a fibre fracture or matrix crack.  
 

 
Figure 2:  Schematic diagram showing the geometry for a sliding interface associated with a 

fibre fracture or matrix crack when the shear stress is uniform in the slipping zone.  

Figure 2: Schematic diagram showing the geometry for a sliding interface associ-
ated with a fibre fracture or matrix crack when the shear stress is uniform in the
slipping zone.

For a fibre fracture on z = L it is assumed that in the transition region the stress
distribution in the fibre is identical to that which would arise for an interface that is
at the point of first slipping. The stress distribution in the matrix would, however,
be different. If the matrix were cracked on z = L instead of the fibre, then the
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stress distribution in the matrix would then be assumed to be identical to that for an
interface at the point of first slipping while that in the fibre would be different. It is
likely that other transition functions could be developed but this task is beyond the
scope of this paper.

The representation for the stress and displacement fields defined in Section 4 apply
to all three stress transfer regions shown in Fig. 2. For frictionally bonded compos-
ites the stress transfer function C(z), which is used for a slipping interface having
a uniform shear stress, is required to be continuous and have continuous first and
second derivatives so that the axial and shear stress, and the radial displacement are
continuous. For a perfectly bonded interface, a debond length would be assumed
to be specified in advance, and the continuity condition for the second derivative of
the function C(z) would need to be relaxed (a situation not considered here).

Consider now the stress transfer function C(z) for frictionally bonded interfaces
having the following form

For 0≤ z≤ b

C(z) = A∗ cosh
(p+q)z

R
+B∗ cosh

(p−q)z
R

, (68)

For b≤ z≤ c

C(z) =
2τ

R
(z− c)+C0 +F(σA,σT ,∆T )−F(σ s

A,σT ,∆T ), (69)

For c≤ z≤ L

C(z) = Acosh
(p+q)z

R
+Bcosh

(p−q)z
R

+F(σA,σT ,∆T )−F(σ s
A,σT ,∆T ).

(70)

In (69) and (70) the value of c is determined by the transcendental equation (58)
and the function F is defined by (52). It is clear, from the analysis given in Section
9, that (68) satisfies the differential equation (41) for a perfectly bonded/unslipped
interface. Also, it can be shown that (69) is such that the expressions (14) and (18)
for the shear stress lead to the required uniform value τ on the interface r = R. The
expression on the R.H.S. of (70) is just one possible transition function enabling
the shear stress to reduce to zero at z = L, thus leading to matrix cracks or fibre
fractures that have a zero shear traction distribution. Given a value of the interfacial
shear stress τ , it follows from (61) that the initial sliding stress σ s

A must satisfy the
relation
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τ = Λ
′
F(σ s

A,σT ,∆T ), (71)

where the value of Λ
′
is given by (62).

Consider first of all the boundary conditions at the end location z= L. The constants
A and B are selected so that

Acosh
(p+q)L

R
+Bcosh

(p−q)L
R

= F(σ s
A,σT ,∆T ), (72)

(p+q)Asinh
(p+q)L

R
+(p−q)Bsinh

(p−q)L
R

= 0. (73)

The stress transfer function then satisfies the conditions C(L) = F(σA,σT ,∆T ) and
C
′
(L) = 0. Consistent with (55), the values of A and B are given by

A=−
(p−q) tanh (p−q)L

R

cosh (p+q)L
R

ΛF(σ s
A,σT ,∆T ),B=

(p+q) tanh (p+q)L
R

cosh (p−q)L
R

ΛF(σ s
A,σT ,∆T ).

(74)

On using (57), (62) and (71) it can be shown that

A =− p−q
p+q

2τ

Ψ(c)cosh (p+q)c
R

,B =
p+q
p−q

2τ

Ψ(c)cosh (p−q)c
R

. (75)

Consider now the continuity of the behaviour of the function C(z) at the known
location z = c. The continuity of C(z) is assured only if the constant C0 appearing
in (69) is selected so that

C0 = Acosh
(p+q)c

R
+Bcosh

(p−q)c
R

. (76)

On using (75) it can be shown that

C0 =
8pq

p2−q2
τ

Ψ(c)
. (77)
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The derivative C
′
(z) must also be continuous at z = c, a condition that is satisfied if

A(p+q)sinh
(p+q)c

R
+B(p−q)sinh

(p−q)c
R

= 2τ. (78)

This condition is automatically satisfied because of the relation (60). Also the
relation (57) implies that C

′′
(z) is continuous at z = c having the value zero. It has

thus been shown that C(z), C
′
(z) and C

′′
(z) are all continuous at z = c.

Consider finally the properties of the stress transfer function C(z) in the unslipped
region at the point z = b which is as yet an unknown quantity that determines the
location of the interface between the unslipped and sliding regions. There are three
unknowns, namely A∗, B∗ and the value of b. For consistency with the situation
imposed at the point z = c it is useful to apply the following conditions that ensure
the continuity of C(z), C

′
(z) and C

′′
(z) at the point z = b. It is clear from (68) and

(69) that the conditions to be satisfied are

A∗ cosh
(p+q)b

R
+B∗ cosh

(p−q)b
R

=
2τ

R
(b− c)+C0 +F(σA,σT ,∆T )−F(σ s

A,σT ,∆T ), (79)

(p+q)A∗ sinh
(p+q)b

R
+(p−q)B∗ sinh

(p−q)b
R

=
2τ

R
, (80)

(p+q)2A∗ cosh
(p+q)b

R
+(p−q)2B∗ cosh

(p−q)b
R

= 0. (81)

The easiest approach is to use the conditions (80) and (81), ensuring that RC
′
(b) =

2τ , and C
′′
(b) = 0, to determine the parameters A∗ and B∗, with the result that

A∗ =− p−q
p+q

2τ

Ψ(b)cosh (p+q)b
R

,B∗ =
p+q
p−q

2τ

Ψ(b)cosh (p−q)b
R

, (82)

where the function Ψ is defined by (63). The values given by (82) ensure the
continuity of C

′
(z) and C

′′
(z) at z = b. It should be noted from (75) and (82) that

when b = c it follows that A = A∗ and B = B∗ recovering the distribution derived in
Section 9.



Analytical Models for Sliding Interfaces 205

The parameter b defining the location of the boundary between the unslipped and
sliding zones has not yet been specified. Its value is determined by imposing the
continuity of C(z) at z = b. It can be shown from (77), (79) and (82) and that the
value of b must be chosen so that

[
4pq

p2−q2

(
1

Ψ(b)
− 1

Ψ(c)

)
− b− c

R

]
2τ = F(σA,σT ,∆T )−F(σ s

A,σT ,∆T ). (83)

This result, when used in conjunction with (52), shows that the length of the zone
having a uniform interfacial shear stress τ is determined by the value of the stress
increase from the point of sliding initiation. From (83) it is clearly seen that b = c
when σA = σ s

A. The result (83) is a transcendental equation that must be solved
numerically.

It is also worth noting that when (p−q)b/R >> 1 there is negligible interaction of
neighbouring cracks so that

tanh
(p−q)b

R
∼= tanh

(p+q)b
R

∼= 1, and Ψ(x)∼= 2q. (84)

The relation (83) determining the value of b then reduces to the simple form

b = c− R
2τ

[F(σA,σT ,∆T )−F(σ s
A,σT ,∆T )]. (85)

It should be noted that the stress transfer function C(z), defined by (68)-(70), to-
gether with its first two derivatives are continuous everywhere in the region 0≤ z≤
L, automatically ensuring the continuity of the shear stress σrz, the radial stress σrr,
the axial stress σzz, the radial displacement ur and the average axial displacement
ūz, in both the fibre and matrix. The axial displacement component uz is discontin-
uous on z = b and z = c in both the fibre and matrix except at the interface. This
is only continuity requirement that cannot be satisfied by the constant interfacial
shear stress model. The achievement of the required continuity for all other stress
and displacement components, including the average axial displacement ūz, indi-
cates that the constant interfacial shear stress model developed in this paper is a
significant improvement over other models that have often been based on shear-lag
theory (see Section 13 for further discussion).

11 Solution for a sliding interface with Coulomb friction

In the presence of a fibre fracture or matrix crack, the assumption of a constant
interfacial shear stress is frequently made in the literature, although the Coulomb
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friction law is more acceptable from a physical point of view as the interfacial
shear stress is expected to depend on the compressive normal stress at the interface.
At relatively low applied loads, a frictionally bonded interface between fibre and
matrix is expected to behave as a perfectly bonded interface, as described in Section
9. As the maximum interfacial shear stress was predicted in Section 9 to occur away
from the crack plane, initial frictional slipping is likely to be a local event where the
slip zone is wholly embedded in the interface and it gradually increases in length
as load is applied. Such growth would be expected to occur at both ends of the slip
zone until one of the slip zone boundaries reaches the crack plane. At first sight,
the analysis of the early stages of frictional slip would appear to be very complex.
However, it has to be remembered that the stress analysis is approximate and that
a more accurate solution would exhibit a shear stress singularity at the location of
the interface with the crack plane, implying that frictional slip would initiate at
this singularity. It is, therefore, reasonable to assume that the frictional slip zone
initiates at the crack plane and progressively grows along the fibre/matrix interface.
The analysis will assume that the fibre and matrix are always in mechanical contact
at all points along the sliding interface, and it may not, therefore, be applicable
for all states of loading. Solutions obtained will be valid only if they have been
checked to ensure that the interface exhibits compression or zero loading along the
entire sliding zone.

Consider now the geometry of the fibre, matrix and sliding interface shown in
Fig. 3. The fibre has radius R and there is a fibre fracture or matrix crack at the
location z = L. The representation for the stress and displacement fields defined in
Section 4 apply to both stress transfer regions shown in Fig. 3.

The Coulomb friction law is specified, for all z lying in the interfacial slip zone, by

λσrz(R,z) = ησrr(R,z), (86)

where η > 0 is the coefficient of friction and where solutions are valid only if
σrr ≤ 0 in the sliding zone so that there is mechanical contact between the fibre and
matrix in this zone. The sign of the interfacial shear stress σrz(R,z) will depend on
the type of problem being solved; negative for matrix cracks and positive for fibre
fractures. In (86) the value of the parameter λ = −1 for fibre fractures and λ = 1
for matrix cracks. From (14), (15) and (30)

σ
f

rz(R,z) =
1
2

RC
′
(z),

σ
f

rr(R,z) = f R2C
′′
(z)−hC(z)−ρ, (87)

where

f =
α− γVm

Vf
− 3+υ

f
T

16
,h = β

Vm

Vf
,ρ =Vm

φ

R2 −σT , (88)
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Figure 3:  Schematic diagram showing the geometry for a sliding interface associated with a 

fibre fracture or matrix crack when Coulomb friction is assumed. 
 

 

Figure 3: Schematic diagram showing the geometry for a sliding interface associ-
ated with a fibre fracture or matrix crack when Coulomb friction is assumed.

and where α , β , γ and φ are defined by (28), (31) and (A12). On substituting (87)
into (86) it can be shown that in the slip zone the stress transfer function C(z) must
satisfy the following second order ordinary differential equation

f R2C
′′
(z)−2λgRC

′
(z)−hC(z) = ρ, where g =

1
4η

. (89)

It should be noted that the effective axial stress σA and the axial strain εA for an
undamaged composite are related according to the effective stress-strain relation
(A23). The differential equation (89) applies only in the sliding region b ≤ z ≤ L
where frictional slip occurs governed by the Coulomb law (86).

The stress transfer function that is used for the sliding region where frictional slip is
governed by the Coulomb law must satisfy the ordinary differential equation (89),
and the boundary conditions C

′
(±L) = 0 and (52) on z = L. The required solution

of the differential equations (41) and (89) is given by
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For 0≤ z≤ b

C(z) = A∗ cosh
(p+q)z

R
+B∗ cosh

(p−q)z
R

, (90)

For b≤ z≤ L

C(z) = Ω

[
vexp

(
−u

L− z
R

)
−uexp

(
−v

L− z
R

)]
− ρ

h
, (91)

where ρ is defined by (88) and

Ω =
ρ

h +F(σA,σT ,∆T )
v−u

,u =
λg
f
+

√
g2

f 2 +
h
f
,v =

λg
f
−

√
g2

f 2 +
h
f
. (92)

For applications to be considered here, it is found that h/ f > 0 so that u > 0 and
v < 0 for all values of g = 1/(2η)≥ 0. From (91)

C
′
(z) = Ωuv

[
exp
(
−u

L− z
R

)
− exp

(
−v

L− z
R

)]
, (93)

and since u−v< 0, it is clear that C
′
(z) does not change sign in the region b≤ z≤ L.

The boundary conditions C
′
(L) = 0 and (52) are sufficient to determine the function

C(z) uniquely for the sliding region b≤ z≤ L as seen from the result (91). In (90)
the parameters A∗ and B∗ are selected so that the function C(z) and its first derivative
are both continuous at the point z = b. On letting ζ = (L− b)/R, it can be shown
that

A∗ = Λ
∗C1(ζ )− (p−q) tanh (p−q)b

R C0(ζ )

cosh (p+q)b
R

,

B∗ = Λ
∗ (p+q) tanh (p+q)b

R C0(ζ )−C1(ζ )

cosh (p−q)b
R

, (94)

where

1
Λ∗

= (p+q) tanh
(p+q)b

R
− (p−q) tanh

(p−q)b
R

, (95)
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and where

C0(ζ ) =C(b) = Ω[vexp(−uζ )−uexp(−vζ )]− ρ

h
,

C1(ζ ) = RC
′
(b) = Ωuv[exp(−uζ )− exp(−vζ )]. (96)

A criterion for the location of the boundary z = b between the unslipping and slid-
ing zones has not yet been given. The appropriate criterion is to expect that the
Coulomb friction law (89) is satisfied by the stress field in the unslipped zone at the
point z = b. It is clear from the continuity of C(z) and C

′
(z) at z = b, and (14), (15)

and (30), that such a condition is automatically satisfied if the function C
′′
(z) is also

continuous at z = b, a situation that arises if the following transcendental equation
determining the value of ζ = (L−b)/R is satisfied

(p2−q2)

(
(p−q) tanh

(p+q)(L−Rζ )

R
− (p+q) tanh

(p−q)(L−Rζ )

R

)
C0(ζ )

+4pqC1(ζ )−
(
(p+q) tanh

(p+q)(L−Rζ )

R
− (p−q) tanh

(p−q)(L−Rζ )

R

)
C2(ζ ) = 0,

(97)

where

C2(ζ ) = R2C
′′
(b) = Ωuv[uexp(−uζ )− vexp(−vζ )]. (98)

It should be noted that for the case of frictional slip in the sliding zone governed by
the Coulomb law, the stress transfer function C(z) defined by (90) and (91), together
with the first two derivatives, are continuous everywhere in the region 0 ≤ z ≤ L,
automatically ensuring the continuity of the shear stress σrz, the radial stress σrr,
the axial stress σzz, and the radial displacement ur.

The axial displacement component uz is discontinuous on z = b in both the fibre
and the matrix except at the interface. This is the only continuity requirement that
cannot be satisfied by the Coulomb friction model. The achievement of the required
continuity for all other stress and displacement components, including the average
axial displacement ūz, indicates that the Coulomb friction model developed in this
paper is one of high quality with regard to the satisfaction of boundary and interface
conditions.

While the condition (97) is used to determine a value for ζ = (L− b)/R and thus
the location z = b of the boundary between the slip zone and the unslipped region,
it can be used also to determine the condition that is placed on the parameters σA,
σT and ∆T such that b = L, i.e. such that the length of the slip zone is zero. It is
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easily shown using (96)-(98) that b = L so that ζ = 0 whenever

G(σA,σT ,∆T )≡ (p+q)
[
{(p−q)2 +uv}F(σA,σT ,∆T )+uv

ρ

h

]
tanh

(p+q)L
R

− (p−q)
[
{(p+q)2 +uv}F(σA,σT ,∆T )+uv

ρ

h

]
tanh

(p−q)L
R

= 0. (99)

It follows from (88), (52), (A16), (A17), (A28) and (A29) that the function G de-
fined by (99) is linear in the quantities σA, σT and ∆T so that

G(σA,σT ,∆T )≡ G1σA +G2σT +G3∆T = 0, (100)

where the coefficients are most easily found numerically using the relations

G1 = G(1,0,0),G2 = G(0,1,0),G3 = G(0,0,1). (101)

Clearly the axial stress for which b = L is given by

σA =−G2σT +G3∆T
G1

. (102)

It should be noted that the axial stress determined by (102) does not depend on the
value of λ as it follows from (92) that uv =−h/ f .

In Appendix B is given an analysis that determines the condition (B17) for which
contact at the interface is lost between fibre and matrix; a situation for which the
radial and shear stresses at the interface in the sliding zone are zero everywhere.
The relations (99) or (100) and (B17) may be used to determine the applied axial
stress range for which solutions with sliding governed by the Coulomb friction law
may be found.

12 An illustrative example

Three types of model associated with fibre fractures or matrix cracks have been
developed in this paper. In Section 9 the interface was assumed not to slide for
all states of loading. In Section 10 an interface sliding model was developed that
assumed that the sliding interface is characterised by a uniform interfacial shear
stress τ , although a transition zone had to be introduced in order to satisfy all
traction boundary conditions on the crack surfaces. In Section 11 a model was
developed where interfacial sliding was characterised by the Coulomb friction law.
In all cases it was assumed that the undamaged composite was frictionally bonded
meaning that bonding between fibre and matrix is so small that it can be neglected.
It is beyond the scope of this paper to consider the application of the models to the
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range of materials to which they are relevant. The approach taken here is to select
just one material and to investigate thoroughly the important characteristics of each
type of stress transfer model.

As the case of carbon fibre composites highlights a problem, to be discussed below,
it is chosen as the material to be considered is an example. The radius of the
fibres is 3.5 µm, the volume fraction of fibres will be taken as 0.5 or 0.6, and the
temperature and stress-free temperature are such that ∆T =−85◦C or ∆T = 85◦C.
The properties assumed for the carbon fibre and the epoxy matrix are given by:

Fibre Matrix
EA (GPa) 208.0 3.89
ET (GPa) 16.7 3.89
µA (GPa) 18.0 1.41971
υA 0.25 0.37
υT 0.35 0.37
αA(/

◦C×106) 1.1 55.0
αT (/

◦C×106) 22.1 55.0

For these properties the volume fraction of 0.5 leads to a real value of the parameter
q defined by (54) and a volume fraction of 0.6 leads to a pure imaginary value.
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Fig.4:  Interfacial stress distributions for an unslipped interface in a CFRP composite having 
fibre fractures that lead to a shear stress having a maximum magnitude of 30 MPa.  

( 0.6fV = , 0.0388 GPaAσ = , o85 CTΔ = − , fibre crack density = 20 /mm) 
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Fig.5:  Interfacial stress distributions for a sliding interface in a CFRP composite having  
fibre fractures that lead to a uniform shear stress having a maximum magnitude of 30 MPa. 

( 0.6fV = , 0.1 GPaAσ = , o85 CTΔ = − , fibre crack density = 20 /mm) 

Figure 4: Interfacial stress distributions for an unslipped interface in a CFRP
composite having fibre fractures that lead to a shear stress having a maximum
magnitude of 30 MPa. (Vf = 0.6, σA = 0.0388GPa, ∆T = −85◦C, fibre crack
density= 20/mm)

Consider a representative volume element (concentric cylinders comprising a single
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fibre plus surrounding matrix) of a composite before interfacial slippage, having
fibre volume fraction 0.6 (so that q is an imaginary quantity), in which the fibre has
fragmented into equal lengths 2L of 50µm, i.e. a fibre crack density of 20/mm. A
uniaxial axial stress of 0.03876909 GPa is applied so that the maximum interfacial
stress is 30 MPa exactly. Fig. 4 shows the axial stress distributions in both the
fibre and matrix as a function of z/L, together with the interfacial shear and normal
stresses.

It should be noted that the stresses are all continuous, that the interfacial shear
stress has an imposed maximum value of 30 MPa at the location z = c where c/L =
0.9553, and that the normal stress is everywhere compressive. The axial fibre stress
is seen to diminish to a zero value at the location z = L of the fibre fracture. The
axial matrix stress increases to its maximum value on the plane of fibre fracture.
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Fig.5:  Interfacial stress distributions for a sliding interface in a CFRP composite having  
fibre fractures that lead to a uniform shear stress having a maximum magnitude of 30 MPa. 

( 0.6fV = , 0.1 GPaAσ = , o85 CTΔ = − , fibre crack density = 20 /mm) 

Figure 5: Interfacial stress distributions for a sliding interface in a CFRP compos-
ite having fibre fractures that lead to a uniform shear stress having a maximum
magnitude of 30 MPa. (Vf = 0.6, σA = 0.1GPa, ∆T = −85◦C, fibre crack density
= 20/mm)

It is now assumed that the stress distributions shown in Fig. 4 characterise the stress
state for the initiation of fibre/matrix sliding where the magnitude of the interfacial
shear stress in the sliding zone is assumed to have a uniform value of 30 MPa. The
same fibre crack density of 20/mm is used. When the applied stress is increased
to a value of 0.1 GPa the resulting stress distributions are shown in Fig. 5. The
corresponding displacement distributions are shown in Fig. 6 where the displace-
ments shown are normalised with respect to the fibre radius R. It should be noted
that for this case the approximate formulae (65) and (85) determining the values of
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Fig.6:  Interfacial displacement distributions for a sliding interface in a CFRP composite having 
fibre fractures that lead to a shear stress having a maximum magnitude of 30 MPa. ( 0.6fV = , 

0.1 GPaAσ = , o85 CTΔ = − , fibre crack density = 20 /mm) 
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Fig.7:  Interfacial stress distributions for a sliding interface in a CFRP composite having matrix 
cracks that lead to a shear stress having a maximum magnitude of 10 MPa. 

( 0.5fV = , 0.1 GPaAσ = , o85 CTΔ = − , fibre crack density = 20 /mm) 

Figure 6: Interfacial displacement distributions for a sliding interface in a CFRP
composite having fibre fractures that lead to a shear stress having a maximum mag-
nitude of 30 MPa. (Vf = 0.6, σA = 0.1GPa, ∆T = −85◦C, fibre crack density
= 20/mm)

the parameters b and c, which define the boundaries of the constant shear stress re-
gion, are extremely accurate implying negligible interaction of neighbouring fibre
fractures.

The major characteristics of the solution are as follows:

Stress distributions

• The interfacial shear stress has the uniform value 30 MPa in the region
0.7202≤ z≤ 0.9533.

• The interfacial shear stress and fibre stress tend to zero as the fibre fracture
at z = L is approached. In the transition zone 0.9533 ≤ z/L ≤ 1, the stress
distribution enables the attainment of a zero shear stress in the matrix at z= L.

• The interfacial radial stress is everywhere compressive.

• The interfacial shear and axial stresses are smooth, but the radial stress has
sharp corners at the points z = b and z = c.

Displacement distributions

• The distributions of interfacial axial displacement for fibre and matrix are
identical in the unslipped region 0≤ z/L≤ 0.7202 of the interface.



214 Copyright © 2013 Crown CMC, vol.35, no.3, pp.183-227, 2013

• The interfacial and average values of the axial displacements of the fibre and
matrix are very similar and continuous.

When the fibre is intact, but the matrix has cracked instead, it is much more difficult
to obtain solutions as the magnitude of the maximum interfacial shear stress for
an unslipped interface is much lower than for the fibre fracture case. If the fibre
fracture case just described is applied instead to a matrix crack no solutions can
be found as the imposed critical interfacial shear stress τ of 30 MPa is very much
larger than the magnitude of the maximum shear stress (10.853 MPa) that will occur
for an unslipped interface. To provide an example prediction for a matrix crack, the
volume fraction is now reduced to 0.5 (so that q is a real quantity) and the value of
τ is taken as 10 MPa. The resulting stress distributions are shown in Fig. 7 for the
CFRP composite having the fibre and matrix properties assumed above. The axial
fibre stress distribution is not shown as the vertical axis would need to be extended
to 200 MPa. For this case, the approximate formulae (65) and (85), defining values
for b and c, are again very accurate implying negligible interaction of neighbouring
matrix cracks.
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Fig.6:  Interfacial displacement distributions for a sliding interface in a CFRP composite having 
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Fig.7:  Interfacial stress distributions for a sliding interface in a CFRP composite having matrix 
cracks that lead to a shear stress having a maximum magnitude of 10 MPa. 

( 0.5fV = , 0.1 GPaAσ = , o85 CTΔ = − , fibre crack density = 20 /mm) 

Figure 7: Interfacial stress distributions for a sliding interface in a CFRP composite
having matrix cracks that lead to a shear stress having a maximum magnitude of 10
MPa. (Vf = 0.5, σA = 0.1GPa, ∆T =−85◦C, fibre crack density = 20/mm)

It is clear that the radial stress is not compressive in the whole of the transition
zone thus violating an important modelling requirement. An example has thus
been identified indicating that the constant interfacial shear stress model for sliding
is inadequate. If, however, the interfacial shear stress τ is now set to the much lower
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value of 2 MPa the interfacial radial stress is then always negative, thus providing
a more acceptable solution. The sliding region is extensive for this case and some
crack interaction occurs. To remove this interaction the matrix crack density is
reduced to the value 10/mm and the resulting stress distributions are shown in
Fig. 8.
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Fig.8:  Interfacial stress distributions for a sliding interface in a CFRP composite having matrix 
cracks that lead to a shear stress having a maximum magnitude of 2 MPa. 
( 0.5fV = , 0.1 GPaAσ = , o85 CTΔ = − , fibre crack density = 10 /mm) 
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Fig.9:  Interfacial stress distributions for a sliding interface in a CFRP composite having matrix 
cracks subject to Coulomb friction. 

( 0.5fV = , 0.1 GPaAσ = , o85 CTΔ = − , fibre crack density = 10 /mm, 0.5η = ) 

Figure 8: Interfacial stress distributions for a sliding interface in a CFRP composite
having matrix cracks that lead to a shear stress having a maximum magnitude of 2
MPa. (Vf = 0.5, σ = 0.1GPa, ∆T =−85◦C, fibre crack density = 10/mm)
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Fig.8:  Interfacial stress distributions for a sliding interface in a CFRP composite having matrix 
cracks that lead to a shear stress having a maximum magnitude of 2 MPa. 
( 0.5fV = , 0.1 GPaAσ = , o85 CTΔ = − , fibre crack density = 10 /mm) 
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Fig.9:  Interfacial stress distributions for a sliding interface in a CFRP composite having matrix 
cracks subject to Coulomb friction. 

( 0.5fV = , 0.1 GPaAσ = , o85 CTΔ = − , fibre crack density = 10 /mm, 0.5η = ) 

Figure 9: Interfacial stress distributions for a sliding interface in a CFRP composite
having matrix cracks subject to Coulomb friction. (Vf = 0.5, σA = 0.1GPa, ∆T =
−85◦C, fibre crack density = 10/mm, η = 0.5)
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It is seen that the interfacial radial stress is always negative as required.

This completes the discussion of the model of interface sliding based on the popular
concept of imposing a uniform interfacial shear stress, but combined in this paper
with a transition zone to prevent the violation of the zero shear stress boundary con-
dition on the crack surfaces. The second type of sliding model described in Section
11 makes use of the Coulomb friction law. The previous problem that generated
the results in Fig. 8 is now solved using the Coulomb friction model. The coeffi-
cient of friction η is selected to be 0.5 and the resulting stress and displacement
distributions are shown in Figs. 9 and 10.
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Fig.10:  Interfacial displacement distributions for a sliding interface in a CFRP composite 
having matrix cracks subject to Coulomb friction.  

( 0.5fV = , 0.1 GPaAσ = , o85 CTΔ = − , fibre crack density = 10 /mm, 0.5η = ) 
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Fig.11: Interfacial stress distributions for a sliding interface in a CFRP composite having fibre 
cracks subject to Coulomb friction.  

( 0.5fV = , 12 MPaAσ = , o85 CTΔ = , fibre crack density = 10 /mm, 0.5η = ) 

Figure 10: Interfacial displacement distributions for a sliding interface in a CFRP
composite having matrix cracks subject to Coulomb friction. (Vf = 0.5, σA =
0.1GPa, ∆T =−85◦C, fibre crack density = 10/mm, η = 0.5)

Again, the axial fibre stress distribution is not shown as the vertical axis would need
to be extended to 200 MPa. The major characteristics of the solution are as follows:

Stress distributions

• The interfacial shear stress is non-uniform in the sliding region 0.5909 ≤
z/L≤ 1.

• The interfacial shear stress and fibre stress tend to zero as the fibre fracture at
z = L is approached. No transition zone is included in the model although the
stress distribution does indicate an apparent transition zone near z = L that is
similar to that used in the constant shear model (see Fig. 8). This apparent
transition is predicted automatically when solving the differential equation
(89).
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• The interfacial radial stress is everywhere compressive.

• The interfacial shear and axial stresses are smooth but the radial stress has a
sharp corner at the point z = b.

• Acceptable solutions, where there is interfacial contact along the whole length
of the sliding zone, are possible only if the applied axial stress lies in the
range 0.424≤ σA ≤ 1.163 (GPa).

Displacement distributions

• The distributions of interfacial axial displacement for fibre and matrix are
identical in the unslipped region 0≤ z/L≤ 0.5909 of the interface.

• The interfacial and average values of the axial displacements of the fibre and
matrix are almost coincident, and they are continuous.

It should be noted that the results for the interfacial shear and normal stresses shown
in Figs. 8 and 9 are very similar when using a relatively large value 0.5 for the
coefficient of friction. This similarity indicates that for friction problems, the values
of τ used in the constant shear stress model need to be relatively small. However,
it is worth mentioning that fibre fracture problems can be solved using much larger
values of τ , and such values can be justified if the model is being used to predict
(approximately) shear yielding phenomena associated with matrix plasticity that
can occur in the matrix near fibre fractures.

When solving problems, it is useful to determine the applied stress for which the
fibre and matrix are expected to separate along the sliding interface. The analysis
given in Appendix B considers this aspect of interface sliding problems. For the
example being considered where σT = 0 and ∆T = −85◦C, the value of the ax-
ial stress at which separation occurs is σA = 1.163 GPa (not a value of practical
relevance), and if this value is used in the Coulomb friction model the interfacial
shear and normal stresses are zero everywhere along the interface. At this criti-
cal applied stress, the interface has slipped entirely because of the assumption of
frictional bonding.

If the example is now applied to a fibre fracture rather than a matrix crack, keeping
all the other parameters fixed, then it is not easy to obtain solutions. It is not in
fact possible to find appropriate solutions of the equation (83) unless the applied
stress σA lies in the range−14.7(MPa)≤ σA ≤ 7.762(MPa), values which are very
small from a practical viewpoint. This identifies the problem alluded to above with
regard to the use of carbon fibres in an epoxy matrix as an example material. At the
critical value 7.762(MPa), the length of the slipping zone is zero and the solution



218 Copyright © 2013 Crown CMC, vol.35, no.3, pp.183-227, 2013

for an unslipped interface is obtained. Solutions obtained at other applied stresses
in this range lead to tensile interfacial normal stresses in the sliding zone which are
not acceptable. One way of achieving negative normal stresses is to use a positive
value of the temperature difference ∆T . When the fibre fracture example is solved
with the value ∆T = 85◦C at an applied stress of 12 MPa, the results shown in
Figs. 11 and 12 are obtained.
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Fig.10:  Interfacial displacement distributions for a sliding interface in a CFRP composite 
having matrix cracks subject to Coulomb friction.  

( 0.5fV = , 0.1 GPaAσ = , o85 CTΔ = − , fibre crack density = 10 /mm, 0.5η = ) 
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Fig.11: Interfacial stress distributions for a sliding interface in a CFRP composite having fibre 
cracks subject to Coulomb friction.  

( 0.5fV = , 12 MPaAσ = , o85 CTΔ = , fibre crack density = 10 /mm, 0.5η = ) 

Figure 11: Interfacial stress distributions for a sliding interface in a CFRP com-
posite having fibre cracks subject to Coulomb friction. (Vf = 0.5, σA = 12MPa,
∆T = 85◦C, fibre crack density = 10/mm, η = 0.5)

 

 38 

0

0.002

0.004

0.006

0.008

0.01

0.012

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

In
te
rf
ac
ia
l+d
isp

la
ce
m
en

ts
+/
+R

z/L

Axial1fibre1displacement

Axial1matrix1displacement

Average1axial1fibre1displacement

Average1axial1matrix1displacement

 
 

Fig.12:  Interfacial displacement distributions for a sliding interface in a CFRP composite 
having fibre fractures subject to Coulomb friction. 

( 0.5fV = , 12 MPaAσ = , o85 CTΔ = , fibre crack density = 10 /mm, 0.5η = ) 
 
 

Figure 12: Interfacial displacement distributions for a sliding interface in a CFRP
composite having fibre fractures subject to Coulomb friction. (Vf = 0.5, σA =
12MPa, ∆T = 85◦C, fibre crack density = 10/mm, η = 0.5)
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The sliding zone occupies the region 0.9543 ≤ z/L ≤ 1, and it is seen that the
interfacial radial stress is negative in the sliding zone as required for valid solutions.
Contact is lost in the sliding zone when the applied stress σA exceeds the value
14.7 MPa. Clearly interfacial sliding for a frictionally bonded composite is a very
limited occurrence when considering fibre fractures. In fact, acceptable solutions
for this case, where there is interfacial contact along the whole length of the sliding
zone, are possible only if the applied axial stress lies in the very limited range
−7.762(MPa)≤ σA ≤ 14.7(MPa). It should be noted that changing the sign of ∆T
does not alter the magnitudes of the bounds found for σA. They are merely reversed
because the example has assumed that the transverse applied stress σT = 0.

The results obtained using the Coulomb friction law for fibre fractures suggest that
a more complex type of frictional contact must occur when the applied axial stress
lies outside this range involving both a frictional slip region and an open region
where contact has been lost. An investigation of this type of stress transfer is be-
yond the scope of this paper.

13 Discussion

The analysis and results presented in this paper apply only to frictionally bonded
composites, i.e. to composites where interfacial bonding is very weak so that the
interfacial fracture energy for fibre/matrix debonding can be neglected. In practice,
composite manufacturers attempt to achieve high levels of interface bonding, espe-
cially for polymer composites. It is remarked that for ceramic matrix composites
weak interfaces are desirable so that damage will form as multiple cracking rather
than as the propagation of a single dominant crack.

A key characteristic of the stress transfer model that has been described in de-
tail in this paper concerns the achievement of the satisfaction of the required field
equations, boundary and interface conditions. Many of the required equations and
conditions are satisfied exactly, while the axial stress-strain relations for fibre and
matrix are satisfied on averaging over fibre or matrix. Such averages are a reason-
able approximation for composites for which the volume fraction is not too small
(as in fragmentation tests) or too large. Shear-lag approaches that provide some
comparable analytical results, are based on various approximations that are causes
for concern from a mechanics point of view. It is useful now to identify clearly
these approximations. The first approximation that is made concerns the neglect,
for both the fibre and matrix, of the terms ∂ur/∂ z in the expressions for the shear
strain εrz. This assumption is expected to lead to significant errors. The second
approximation that is usually made is the assumption that the axial Poisson’s ratios
in fibre and matrix is zero. This assumption is also expected to lead to significant
errors. It is observed that shear-lag models do not consider some of the equilib-
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rium equations and some of the stress-strain relations, indicating further sources
of significant error. It is concluded, that while shear-lag approaches are relatively
easy to develop and understand, they do suffer from having to make a number of
assumptions that are expected to lead to unacceptable errors.

While the models developed in this paper do not suffer from the deficiencies just
described in connection with the use of shear-lag approaches, it must be emphasised
that this does not necessarily mean that the models will generate accurate results.
For example, the models derived assume that the axial stresses in both the fibre and
matrix have values that differ but are independent of the radial coordinate. This
will not be a characteristic of the exact solution, especially in the plane of the fibre
or matrix cracks where singularities are known to exist at the fibre/matrix interface.
For perfectly bonded composites, exact solutions to the stress transfer problems
would predict that the shear stress and axial stress would be singular at the interface
in the uncracked fibre if the matrix is cracked or in the uncracked matrix if the fibre
is broken. Such predictions are beyond the capabilities of the concentric cylinder
model described in this paper. However, unpublished work has been undertaken
by the author that applies the stress and displacement representation derived in
Sections 4-7 to an assembly of multiple concentric cylinders enabling the stress
singularities at debond tips to be well represented. This is achieved by sub-dividing
the fibre and matrix into systems of concentric cylindrical layers in which the axial
stress is uniform but which differ from layer to layer. To date solutions have been
derived only for perfectly bonded interfaces. Much further work is needed to extend
the multiple cylinder model to include sliding and debonded zones.

Beyond the scope of this paper is the consideration of composites having strong
fibre/matrix bonding. It is, however, useful to note that much of the analysis pre-
sented applies also to this important type of composite. One approach is to regard
the debond length L− b as a given parameter in which case it is required to de-
termine the stress and displacement distributions in the fibre and matrix that corre-
spond to this debond length. This is achieved simply by removing from the analysis
the requirement that either the condition (83) or (97) is satisfied. This means that
the second derivative of the stress transfer function C(z) is not continuous at the
location z = b of the debond tip. As a consequence, the interfacial normal stress
will be discontinuous at this point where exact solutions are expected to predict a
singularity, as mentioned above.

14 Conclusion

An analytical model of stress transfer has been described that can be used to predict
the localised stress and displacement distributions associated with fibre fractures
and matrix cracks in unidirectional composites whose fibres and matrix deform
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linear elastically and are subject to differing thermal expansion properties. The
approach to modelling interfacial sliding has been to ensure that, wherever pos-
sible, the expressions for all relevant physical parameters are given by analytical
formulae. The stress transfer associated with sliding can be modelled using two
different approaches. The first assumes that the interfacial shear stress is uniform
in the sliding zone. Satisfactory solutions, enabling zero shear tractions on crack
surfaces, are possible only if a transition zone is included in the neighbourhood of
the fibre fracture or matrix crack. The second approach assumes that stress trans-
fer in the sliding region is governed by the Coulomb friction law; a situation that
does not require the use of a transition zone. Predictions to date (not all included
in this paper) indicate that the stress transfer models work very well for a range of
composite types and loading conditions that lead to compressive interfacial normal
stresses along the entire length of the sliding zone.
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ties and Skills, UK.

References

Aveston, J.; Cooper, G. A.; Kelly, A. (1971): Single and multiple fracture’, in
Conference on the Properties of Fibre Composites. IPC Science and technology
Press, Guildford, Surrey, UK.

Hutchinson, J. W.; Jensen, H. M. (1990): Models of fiber debonding and pull-
out in brittle composites with friction. Mech. Mater., vol. 9, pp. 139–163.

McCartney, L. N. (1987): Mechanics of matrix cracking in brittle matrix fibre
reinforced composites. Proc. Roy. Soc. Lond., vol. A409, pp. 329.

McCartney, L. N. (1989): New theoretical model of stress transfer between fibre
and matrix in a uniaxially fibre reinforced composite. Proc. Roy. Soc. London.,
vol. A425, pp. 215–244.

McCartney, L. N. (1991): Analytical models of stress transfer in unidirectional
composites and cross-ply laminates, and their application to the prediction of ma-
trix/transverse cracking. In Proc. IUTAM Symposium on ‘Local mechanics con-
cepts for composite materials systems’, pp. 251–282, Blacksburg, Va.

McCartney, L. N. (1992): Mechanics for the growth of bridged cracks in com-
posite materials: Part I, basic principles. J. Comp. Tech. & Res., vol. 14, pp.
133–146.



222 Copyright © 2013 Crown CMC, vol.35, no.3, pp.183-227, 2013

McCartney, L. N. (1992): Mechanics for the growth of bridged cracks in com-
posite materials: Part II, applications. J. Comp. Tech. & Res., vol. 14, pp. 147–154.

McCartney, L. N. (1996): Stress transfer mechanics: Models that should be the
basis of life prediction methodology. In W.S. Johnson, J. L.; Cox, B.(Eds): Life
prediction methodology for titanium matrix composites, ASTM STP 1253, pp. 85–
113.

McCartney, L. N. (1999): Analytical model for debonded interfaces associated
with fibre fractures and matrix cracks. In Proc. ICCM 12, Paris.

Nairn, J. A. (1992): A variational mechanics analysis of the stresses around
breaks in embedded fibres. Mech. Mater., vol. 13, pp. 131–154.

Nairn, J. A. (1997): On the use of shear-lag methods for analysis of stress transfer
in unidirectional composites. Mech. Mater., vol. 26, pp. 63–80.

Reissner, E. (1950): On a variational theorem in elasticity. J. of Math. Phys., vol.
29, pp. 90–95.

Appendix A: Elasticity analysis of two concentric cylinders

The following analysis applies to two concentric perfectly bonded cylinders having
external radii R and a > R, subject to a uniform temperature change ∆T , that is
subject to a uniform axial strain εA and uniform transverse stress σT on the external
surface of the outer cylinder. A set of cylindrical polar coordinates (r,θ ,z) will be
used where the origin lies on the axis of the inner cylinder.

The fibre and matrix are regarded as a transverse isotropic solids so that their stress-
strain-temperature relations are of the form (3)-(6), and the stress field must satisfy
the equilibrium equations (1) and (2). The boundary and interface conditions that
must be satisfied are

σ
m
rr(a,z) = σT , (A1)

σ
m
rz(a,z) = 0, (A2)

σ
m
rr(R,z) = σ

f
rr(R,z), (A3)

σ
m
rz(R,z) = σ

f
rz(R,z), (A4)

um
r (R,z) = u f

r (R,z), (A5)

um
z (R,z) = u f

z (R,z), (A6)

Solutions are considered such that

u f
z ≡ um

z ≡ εAz. (A7)
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The solution for an undamaged composite is of the following classical Lamé form

u f
r = A f r,u

f
θ
≡ 0, (A8)

um
r = Amr+

φ

2µm
T r

,um
θ ≡ 0, (A9)

where A f , Am and φ are constants defined by
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On differentiating the displacement field it follows that the non-zero strain compo-
nents are

ε
f

rr =
∂u f

r

∂ r
= A f ,ε

f
θθ

=
u f

r

r
= A f ,ε

f
zz = εA, (A14)
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m
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r

r
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φ

2µm
T r2 ,ε

m
zz = εA. (A15)

The corresponding non-zero stress components are



224 Copyright © 2013 Crown CMC, vol.35, no.3, pp.183-227, 2013
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The effective axial stress σA is defined by the relation

σA =Vf σ f +Vmσm, (A22)

and it can be shown using (A12), (A18) and (A21) that

σA = EAεA +2υAσT −EAαA∆T, (A23)

where EA, υA and αA are the effective axial modulus, Poisson’s ratio and axial
thermal expansion coefficient respectively, for the concentric cylinder system rep-
resenting the unidirectional composite, defined by
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A −υ

f
A)

2VfVm, (A24)
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where
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Appendix B: Separation condition for a sliding interface

Consider the concentric cylinder model of a composite where the fibre is broken
or matrix is cracked. Following fracture, interface sliding is assumed to have oc-
curred such that extensive sliding has resulted either when fracture first occurred, or
following subsequent loading of the composite. For such large scale sliding condi-
tions, it is of interest to determine the critical loading conditions that correspond to
the separation of the fibre and matrix at the interface in the regions close to the fibre
fracture or matrix crack when stress transfer is governed by the Coulomb friction
law. Interface separation takes place when σ

f
rr = σm

rr = 0 on r = R.

The displacement field is assumed to have the following form
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where A
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f , A

′
m and φ

′
are constants to be determined and ε

f
A and εm

A are the uniform
axial strain in the fibre and matrix respectively. On differentiating the displacement
field it follows that the non-zero strain components are
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Since from the stress-strain relations
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it can be shown that
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In the axial direction it is assumed that
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When ξ = 1 a matrix crack is being considered as σm
A = 0, and when ξ = −1 a

fibre fracture is being considered as σ
f

A = 0. The axial stress-strain relations then
lead to
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The substitution of (B3), (B4) and (B6)-(B10) in the radial stress-strain equations
leads to
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It now only remains to determine the constant φ
′
which can be specified on applying

the continuity condition for the radial displacement. It follows from (B1) and (B2)
that
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On using (B11) and (B12)
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It should be noted from (B6) that the interfacial radial stress is zero when

φ
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Since Em
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T ), it then follows from (B14) that this occurs when(
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