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Investigation of Progressive Damage and Fracture in
Laminated Composites Using the Smeared Crack

Approach

Christian Heinrich1, Anthony M. Waas2

Abstract: The smeared crack approach (SCA) is revisited to describe post-peak
softening in laminated composite materials. First, predictions of the SCA are com-
pared against linear elastic fracture mechanics (LEFM) based predictions for the
debonding of an adhesively bonded double cantilever beam. A sensitivity analysis
is performed to establish the influence of element size and cohesive strength on the
load-deflection response. The SCA is further validated by studying the in-plane
fracture of a laminated composite in a single edge bend test configuration. In doing
so, issues related to mesh size and their effects (or non-effects) are discussed and
compared against other predictive computational techniques. Finally, the SCA is
specialized to orthotropic materials. The application of the SCA is demonstrated
for failure mechanics of the open hole tension test, where fiber/matrix fracture is
predominant and predicted well by the present approach.

Nomenclature

a Crack length
b Width of cantilever beam
Dco Continuum stiffness
Dcr Unloading stiffness
Dda Damping matrix
E Elastic modulus
Ecr Crack stiffness normal to the crack surface
Ecr

f Crack stiffness in the fiber direction
Ecr

m Crack stiffness perpendicular to the fiber direction (in the matrix direction)
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GIC Strain energy release rate
Gcr Crack shear stiffness tangential to the crack surface
Gcr

m Crack shear stiffness in the matrix
I Area moment of inertia
N Transformation from global to crack coordinate system
ecr Crack strain in crack coordinate systems
h Characteristic length
scr Crack stress in crack coordinate system
∆t Time increment
ε Total strain
εco Continuum strain
εcr Crack strain
ε̇

cr Crack strain rate
εcr

f Crack strain in the fiber direction
εcr

m Crack strain perpendicular to the fiber direction (in the matrix direction)
εcr

norm Crack strain normal to the crack surface
εel Elastic strain
ε pl Plastic strain
γcr

m Crack shear strain in the matrix
γcr

t1 Crack strain tangential to the crack surface
γcr

t2 Crack strain tangential to the crack surface
η Damping coefficient
σ Stress
σ cr

f Crack stress in the fiber direction
σ cr

m Crack stress perpendicular to the fiber direction (in the matrix direction)
σ cr

norm Crack stress normal to the crack surface
τcr

t1 Crack stress tangential to the crack surface
τcr

t2 Crack stress tangential to the crack surface
τcr

m Shear crack stress in the matrix

1 Introduction

Validated computational methods are required to ensure Structural Integrity and
Damage Tolerance (SIDT) of laminated composites used in primary aerospace
structures. These computational methods serve to duplicate and drastically reduce
the number of tests associated with several layers in the building-block approach to
aerospace material qualification, leading to cost reduction. Furthermore, predictive
models are useful for certifying and inserting composite structures into service, an
activity that can take a long time if one has to only rely on laboratory testing.



Smeared Crack Modeling 157

Virtual testing and integrated computational engineering of composite structures
is now an active field of research, Pineda and Waas (2013),Allix, Gosselet, Ker-
friden and Saavedra (2013). For SIDT to be successful in a virtual platform, the
various mechanisms that govern the onset and progression of fracture and damage
in laminated composites need to be understood across disparate length scales and
modeled efficiently using advanced, validated, computational methods. There are
a variety of theories and numerical implementations with respect to the modeling
of progressive damage and failure in composites. These studies were initially fo-
cussed on modeling the failure of brittle concrete. A comprehensive discussion of
the theories, and to some degree their numerical implementation, is available in
the text-book by Bažant and Cedolin, Bažant and Cedolin (2003). In this paper,
the smeared crack approach (SCA), introduced by Bazant and Oh, Bažant and Oh
(1983) as the crack band model, and later refined by Rots, Rots, Nauta, Kuster and
Blaauwendraad (1985) is adopted to investigate delamination failure in an adhe-
sively bonded structure and splitting failure in composite laminates. When prop-
erly implemented it promises a large degree of objectivity with respect to numerical
discretization while requiring little or no modification to standard, commercial fi-
nite element codes. This latter aspect is of great concern to practising engineers in
industry who are concerned with virtual testing related to SIDT.

2 Summary of failure models

The modeling of two-piece failure in the context of the finite element method
(FEM) can be roughly divided into two categories: discrete and continuum ap-
proaches. In the discrete approach, cracks are modeled as strong discontinuities.
Examples are the virtual crack closure technique (VCCT), Xie, Biggers and Jr.
(2006), cohesive zone model (CZM), de Borst (2003) and discrete cohesive zone
models, (DCZM), González, Maimí, Turon, Camanho and Renart (2009),Xie, Salvi,
Waas and Calicskan (2005). A drawback of these methods is the need to specify
the crack path a-priori. This is not the case for the variational multiscale cohesive
method-VMCM, Rudraraju, Garikipati and Waas (2010), and the extended finite el-
ement method (X-FEM), Sukumar, Moës, Moran and Belytschko (2000). In these
methods, the crack path may be arbitrary. However, calculations of the X-FEM
method are time consuming, which is in part due to the change in sparsity pattern
associated with the FEM matrices, as additional nodes and degrees of freedom get
activated as the crack progresses. This point of concern was resolved by VMCM
where the degrees of freedom associated with the cohesive law are condensed out
and solved for at the element level, leading to a drastic reduction in computational
cost, particularly as the problem complexity grows (for instance, as the number of
cracks to be modeled increases, the VMCM computational cost does not increase,
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whereas the XFEM cost does increase, see Oliver, Huespe and Sanchez (2006)).
Furthermore, in the context of metal structures, powerful and efficient numerical
methods for crack growth were pioneered by Atluri and co-workers, Wang and
Atluri (1996); Han and Atluri (2002). More recently, a novel approach that is com-
putationally much more efficient that XFEM for problems with discontinuities has
been presented by Dong and Atlrui, Dong and Atluri (2013a,b).

For discrete methods, the prediction of crack direction and crack tracking is a dif-
ficult task in 3D implementations, Jaeger, Steinmann and Kuhl (2008). As all of
these approaches are concerned with the crack as a strong discontinuity with a well
defined boundary, no further attention need to be given to the continuum represen-
tation of material next to the crack or in other parts of the structure. Here standard
procedures of continuum mechanics can be used to model the material. Compu-
tational approaches based on the strong discontinuity formulation, in general, are
mesh objective, differing in cost between the different implementations (for exam-
ple, VMCM vs. X-FEM, see, Oliver, Huespe and Sanchez (2006)). Outside of
FE approaches, we also note meshless methods which have shown to have many
computational advantages, as discussed in the textbook by Atluri, Atluri (2004).

Compared to explicit modeling of cracks (as in the strong discontinuity approach),
continuum damage mechanics (CDM) approaches Schapery (1991); Lemaitre and
Desmorat (2005); Voyiadjis and Kattan (2005); Basu, Waas and Ambur (2007)
model the effect of cracks on progressive failure much more efficiently, and thus
these methods may be better suited for integrated computational frameworks for
the building-block approach. However care needs to be taken to avoid spurious
mesh dependence. In CDM approaches, cracks are not modeled explicitly, instead
their effects on mechanical response are modeled. This is usually due to the fact
that large amounts of small cracks and voids are distributed over a finite volume,
and it would be too exhaustive to model them individually. This type of behavior
can be found in concrete as well as in the matrix material of composites, Talreja
(1985), but also in some metals. A major advantage of CDM (compared to plastic-
ity theory based approaches) is its ability to capture post-peak softening, Lemaitre
and Desmorat (2005); Voyiadjis and Kattan (2005). With CDM, two stages can be
distinguished - pre-peak and post-peak response. Both are sometimes referred to as
"softening", but with different connotations. Before the peak load is reached, the
secant stiffness (in the case of pure damage) or the unloading stiffness (in the case
of damage combined with a permanent set/ plasticity) decreases. Here the softening
refers to a reduction of stiffness. However the tangent stiffness remains positive.
After the peak load is reached, the secant stiffness decreases, and the tangent stiff-
ness becomes negative. In this regime, the load decreases with increasing strain.
This is also termed softening (especially in the civil engineering community that
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deals with concrete). Only the second type of softening is of concern in the context
of mesh objectivity. Once the tangent stiffness turns negative, a material descrip-
tion in terms of stress and strain is no longer objective. Failure will localize into
a zone, distinguished by a characteristic length scale. If classical continuum me-
chanics is used in the context of FEM, the only characteristic length scale present
in the model is the element size. Therefore localization will take place within one
element, regardless of its size. Consequently the energy dissipated during the fail-
ure process will be a function of element size and zero dissipation will occur in the
limit of vanishing element size. This behavior is not associated with errors due to
numerical discretization, but of the underlying mathematical description associated
with capturing post-peak response, Bažant and Cedolin (2003). To restore mesh
objectivity, a characteristic length scale needs to be incorporated into the underly-
ing continuum equations. Techniques that adopt this, include non-local, Pijaudier-
Cabot and Bažant (1987) and gradient based theories, Askes, Pamin and de Borst
(2000); Askes and Sluys (2002); Pamin, Askes and de Borst (2003), and Cosserat-
Continua, de Borst (1991). While these approaches are academically quite appeal-
ing, the correct (experimental) determination of the characteristic length scale is
challenging and still remains as an area of ongoing debate and discussion.

Alternatively, instead of using a material description based on stress and strain,
one based on stress and displacement can be employed to restore objectivity. The
idea here is to demarcate material in the pre-peak (positive definite tangent stiff-
ness) as being governed by classical continuum theories and those in the post-peak
(negative definite tangent stiffness) as being governed by traction-separation laws,
and including a characteristic length scale. This is the same approach that is used
in cohesive zone models such as the DCZM, where the crack on-set and progres-
sion is governed through a traction-separation law. The SCA, Rots, Nauta, Kuster
and Blaauwendraad (1985), crack band approach, Bažant and Oh (1983) and weak
discontinuity approach, Oliver, Huespe, Samaniego and Chaves (2004) all refer to
such a transition from a strain based to a displacement based description. These
approaches can be interpreted in two ways. The first refers to the original motiva-
tion of damage mechanics: during the localization of the material many distributed
micro cracks are present in a crack band of finite size. Their combined effect causes
a globally observed softening. A second interpretation is the hiding of a discrete
crack inside a finite element, representing a finite volume of material. This last
viewpoint emphasizes the need to transition from a continuum to a non-continuum
description when the material enters a non-positive definite tangent stiffness regime
in behavior.
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3 Governing equations of smeared crack approach

Two slightly different approaches will be presented in the following. A three di-
mensional model for isotropic materials will be introduced first. Such a model
is useful to describe the crack progression in the matrix material in a composite.
Then, a 2D orthotropic SCA model is presented. This can be used to model crack
and damage progression within the layers (lamina) of a laminate.

3.1 3D isotropic model

In the following, the SCA approach similar to the one by Rots et al., Rots, Nauta,
Kuster and Blaauwendraad (1985), is extended to damage and failure in orthotropic
materials, so that progressive damage development and failure of composite lam-
inates can be tackled in a mesh objective manner. In the pre-peak regime, stan-
dard continuum descriptions of the material are assumed to hold. In the post peak
regime, it is assumed that the total strain ε may be split up into a continuum part
εco and a crack part εcr

ε = ε
co + ε

cr (1)

If a plastic model, such as Hills anisotropic plasticity theory, is used, the continuum
strain is additionally decomposed into elastic and plastic contributions.

ε = ε
el + ε

pl + ε
cr (2)

All the quantities are given in the global coordinate system. The crack strains can be
transformed from the global to the local coordinate system via the transformation
law N, as

ε
cr = Necr = N

 εcr
norm
γcr

t1
γcr

t2

 (3)

Here εcr
norm is the crack component normal to the crack and γcr

t1 and γcr
t2 are the

components tangential to the crack surface. In a similar fashion, the global stress
state σ can be transformed to yield the tractions at the crack interface scr

scr =

 σ cr
norm
τcr

t1
τcr

t2

= NT
σ (4)

Various criteria to calculate the transformation matrix N are possible. If the Rank-
ine criterion of maximum principle stress is used to determine crack onset, it is
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convenient to use the principle stress directions as the crack directions. The trac-
tions at the crack interface are related to the crack strains trough the secant stiffness
matrix Dcr Rots, Nauta, Kuster and Blaauwendraad (1985) and a damping matrix
by

scr = Dcrecr +Ddaėcr (5)

The damping matrix makes the crack progression a time-dependent property. It
can also be used to smoothen the numerical solution scheme. Any numerical so-
lution scheme involves a discrete time step. The crack strain rate is accordingly
approximated with finite differences.

ėcr ≈ ecr(t +∆t)− ecr(t)
∆t

=
ecr − ecr

old
∆t

(6)

The crack stress can finally be expressed as

scr = Dcrecr +
1
∆t

Ddaecr − 1
∆t

Ddaecr
old (7)

The expanded equation (7) yields σ cr
norm
τcr

t1
τcr

t2

 =

 Ecr(εcr
norm) 0 0

0 Gcr(εcr
norm) 0

0 0 Gcr(εcr
norm)

 h · εcr
norm

h · γcr
t1

h · γcr
t2


+

1
∆t

 η 0 0
0 η 0
0 0 η

 h · εcr
norm

h · γcr
t1

h · γcr
t2


− 1

∆t

 η 0 0
0 η 0
0 0 η

 h · εcr
norm

h · γcr
t1

h · γcr
t2


old

(8)

where σnorm is the normal traction across the crack surface, h is the characteristic
length scale, and Ecr(ε

cr
norm) is tensile secant stiffness of the traction separation law

across the crack surface. The crack shear stiffness Gcr is given here as a function of
the normal crack opening εcrack

norm only. This implies that locally, the crack opening
is purely mode I dominated. It is also possible make the shear stiffness a function
of the crack shear opening γcr

t . However this might be difficult to justify on a
micromechanical basis.

The constitutive relation for the continuum is given by,

σ = Dco
ε

el, (9)
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where Dco is the secant stiffness of the continuum. Combining all equations yields
an implicit relation between the crack strain and the total elastic strain.

ecr =

[
Dcr(ecr)+NT DcoN +

1
∆t

Dda
]−1[

NT Dco
ε

elcr +
1
∆t

Ddaecr
old

]
(10)

Finally, the relation between total stress and total strain in the post peak regime is
found as,

σ =

[
Dco −DcoN

(
Dcr +NT DcoN +

1
∆t

Dda
)−1

NT Dco

]
ε

elcr

− 1
∆t

[
Dcr(ecr)+NT DcoN +

1
∆t

Dda
]−1

Ddaecr
old (11)

The total stress-strain description, such as equation (11), which is more suited for
large time increments during reversed loading, is pursued here. It has been noted
that the incremental approach can lead to a deviation from the prescribed traction-
separation law, if the strain increments are too largeRots (1988). An analogy to this
behavior might be found in the incremental theory of plasticity. When an explicit
integration scheme of the governing equations is used, the equivalent stress can
deviate from the yield surface. This behavior led to the emergence of various return
mapping schemes, which enforces that the stress at the end of an increment does
not exceed the yield stress. In the same manner, eq (11) ensures that the stress at
the end of an increment is in accordance with the traction-separation law.

Due to the requirement for the crack stresses to trace the traction-separation law,
eq. (10) is a (highly) non-linear equation for the crack strain. It is solved via New-
ton’s Method by defining a function that is to be minimized,

f (ecr) =

[
Dcr(ecr)+NT DcoN +

1
∆t

Dda
]

ecr −NT Dco
ε − 1

∆t
Ddaecr

old = 0. (12)

The crack strain is then found iteratively, where successive iterations are given by,

[ecr](k+1) = [ecr](k)−
[

d f
decr

]−1

f (ecr) (13)

Once the consistent crack strains are found, eq. 11 can be used to find the stress at
the end of an increment.

The strain values in equation (8) are multiplied with a characteristic length scale, to
transform it into a true traction-separation law. The characteristic length is obtained
by requiring that the energy dissipation during fracture of a continuum element
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of a given size has to be the same as a smeared crack containing element of the
same size, described in terms of a traction-separation law. Typically the size of
the element projected onto the crack normal is used, as shown in figure 1. Here
it should be noted that the critical strain energy release rate is the integral of the
traction over the separation (see figure 2), and is defined as,

GIC =
∫

δult

0
σdδ (14)

=
∫

εcr
ult

0
σhdε

cr (15)

In practical applications, the secant stiffness matrix is chosen such that the trac-
tions will follow the traction separation law as shown in figure 3 exactly. To de-
termine the secant stiffness, the current crack strain is found from equation (10)
for a given current total strain. Then, the secant modulus can be found from the
traction-separation law. As equation (10) is given in terms of total stress and total
strain, some additional provisions to prevent crack "healing" are required. Specif-
ically it has to be ensured that Ėcr < 0 and Ġcr < 0. In practice this is done by
storing the previous and the current secant stiffness in memory. During a possible
unloading the crack opening decreases. This leads to a decrease in crack strain and
an increase in secant crack stiffness. In this case, the old crack secant stiffness is
used. As a result the crack strain follows on a straight line to the origin during an
unloading phase. In a subsequent loading phase, the traction will increase linearly
with the crack strain until the envelope given by the original traction-separation law
is reached and further softening occurs. Repeated loading and unloading behavior
is also shown in figure 3.

h

Crack 

orientation

Crack 

normal

Figure 1: Characteristic element length from projection of crack normal
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norm

h· norm

cr

h·Ecr

GIC

Figure 2: Crack interface stiffness
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cr,1
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norm norm norm
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Figure 3: Evolution of crack interface stiffness during repeated loading and unload-
ing

The softening of individual elements will cause convergence issues in a static, im-
plicit analysis, unless provisions are made for local snap-back (i.e. to accommodate
local, unstable equilibrium paths; a remedy is to use an arc-length solver, such as
the Riks method in ABAQUS. Further details are given inCrisfield (1996)), the
solution will diverge. In these instances, an explicit scheme has an advantage,
however these schemes are time intensive due to lack of unconditional stability.
An implicit dynamics solution procedure, on the other hand, is a compromise, and
has been used in conjunction with the commercial finite element code ABAQUS
Simulia (2010) for the results presented in this paper.
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3.2 2D orthotropic model

The derivation of a novel, 2 dimensional SCA model for an orthotropic material
that is specifically tailored for fiber reinforced composite laminae are described
next. This follows from earlier work presented in Heinrich and Waas (2012). For
fiber reinforced laminae, the crack direction is not calculated as a function of the
stress field. Instead it lines up with the fibers of a laminate, since fiber/matrix
splitting is energetically more favorable than fiber breaking, for cracks that traverse
across a lamina. This choice of crack direction is physically motivated and is not
a restriction of the SCA method pursued here, as will be evident. Therefore the
direction of crack progression is not calculated from the current stress field, but
the possible failure directions are instead fixed. Figure 4 shows the possible failure
modes. They are: (a) Mode I crack opening perpendicular to the fiber direction
(“fiber brakeage”), (b) Mode I crack opening parallel to the fiber direction and (c)
Mode II crack opening/ sliding parallel to the fiber direction. Failure mode (a) is
dominated by fiber strength and fiber breaking toughness, while mode (b) and (c)
are dominated by the matrix strength and matrix toughness. Due to the significantly
higher strength of the fiber failure modes, modes (b) and (c) can be expected to be
observed in most cases. This will be further illustrated in the results section.

With the fiber direction denoted by “1", and the crack planes fixed parallel and per-
pendicular to the fiber direction, no coordinate transformation between the global
frame and the crack frame is necessary and the transformation matrix N is unity.
Therefore eq (3) can be modified to be

ε
cr = ecr =

 εcr
f

εcr
m

γcr
m

 (16)

Accordingly the stresses across the crack surfaces can be described by

σ
cr = scr =

 σ cr
f

σ cr
m

τcr
m

 (17)

It should be noted, that eqs. (16) and (17) represent two orthogonal cracks in two
dimensions. Therefore two direct strain and stress components can be found. How-
ever, it is assumed that all shear is due to pure sliding parallel to the fibers.

Next, the constitutive law across the crack surfaces will be stated. For clarity,
damping terms will be neglected.

σ
cr = Dcr

ε
cr (18)
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(a) Mode I fracture perpendicular to
the fiber direction

(b) Mode I fracture parallel to the fiber
direction

(c) Mode II fracture parallel to the fiber
direction

Figure 4: Fracture modes in a fibrous composite

or expanded σ cr
f

σ cr
m

τcr
m

=

 Ecr
f (ε

cr
f ) 0 0

0 Ecr
m (εcr

m ) 0
0 0 Gcr

m (γcr
m )

 εcr
f

εcr
m

γcr
m

 (19)

Here the stiffness is coupled to the crack opening in the corresponding direction.
Compared to eq (8), the stiffness terms in eq (19) evolve differently. This is due to
the fact that multiple crack opening modes are considered simultaneously, which
have different values for the fracture toughness. Next, the expression to find the
fracture strain at the current time can be deduced from eq (10), by noting that N = I
and by neglecting damping and any nonlinear behavior in the pre-crack stage to be

ecr = [Dcr(ecr)+Dco]−1 Dco
ε (20)

Finally the stress can be found from

σ =
[
Dco −Dco (Dcr +Dco)−1 Dco

]
ε. (21)
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4 Results

4.1 Double cantilever beam

4.1.1 Model

As a first boundary value problem, a double cantilever beam (DCB) model will be
investigated. The geometry is summarized in figure 5 and table 2. The material
properties of the adherend and the adhesive layer are given in table 1.

L

h

t

F, d

a

Figure 5: Geometry of DCB specimen

Table 1: Material properties

Adherent
Elastic Modulus E 70 GPa

Poisson’s ratio 0.3
Adhesive

Mode I strain energy release rate 7.480 N/mm
Cohesive strength 503 MPa

Table 2: Geometry of DCB specimen

Length L 100 mm
Height h 5 mm

Plane stress thickness b 1 mm
Initial crack length a 30 mm

Baseline crack thickness t 0.1 mm
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4.1.2 Comparison with fracture mechanics

A comparison of linear elastic fracture mechanics (LEFM) predictions with the
SCA approach is provided in figure 6. In the case of plane stress, the end load of a
DCB specimen as a function of crack length is analytically evaluated as Hertzberg
(1996); Sanford (2002)
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Figure 6: Comparison of the analytical and numerical solution of the end force as
a function of crack length

F =
1
a

√
EGICbI. (22)

where F is the applied end load, a is the crack length, I is the area moment of
inertia and b is the beam width. Responses of the numerical and analytical solution
are given in figure 6. They compare quite well. The LEFM solution shows a
higher load for a smaller crack length. With increasing crack length, the SCA
solution shows higher loads compared to the LEFM solution. This can be attributed
to the incorporation of nonlinear geometric effects into the numerical simulation.
The cantilever beams show an appreciable deflection which leads to a geometric
stiffening effect. As the LEFM solution is based on small deflection beam theory,
those effects are not represented in the LEFM solution.
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4.1.3 Influence of element number, fracture strength and crack band thickness

Figure 7 shows the convergence of the load-displacement response of the DCB
simulation with respect to the number of elements used in the adhesive layer. A
clear oscillatory pattern is visible for a smaller number of elements along the crack
direction. This is related to the integration scheme used to calculate nodal forces:
stress and strain are evaluated at the integration points. When the stress at the
integration point reaches a critical value, failure and softening is initiated. This
softening influences the entire integration point volume. With increasing element
number the amplitude and frequency due to failing integration points diminish.
The solutions of 200, 400 and 800 elements are almost identical, suggesting that
the solution is converged and is also mesh objective.
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F
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Figure 7: Convergence of the load-displacement response with respect to number
of elements

A valid criticism of using a two parameter model (cohesive strength and tough-
ness) for a problem governed by linear elastic fracture mechanics (LEFM) is that
the LEFM is governed by only one material parameter (critical strain energy re-
lease rate or fracture toughness). The influence of the cohesive strength, from the
LEFM point of view, is artificial, as is depicted in figure 8. The curves for co-
hesive strengths of 1000 MPa, 503 MPa and 100 MPa show a clear convergence
behavior: an increase in cohesive strength yields a higher maximum load. Sec-
ondly the transition from the linear (loading) regime to the non-linear unloading
and crack progression regime is sharper. Thirdly the numerically induced oscil-
lations increase. The last two effects can be explained from considering that the
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Figure 8: Influence of cohesive strength on the load-displacement curve of DCB

fracture energy (per unit volume) is the area under the stress-fracture strain curve.
As fracture energy is preserved, a decrease in fracture strength causes an increase
in ultimate fracture strain. The implication of this is an increase in the modeled
process zone size. In the case of high fracture stress only one or two elements fail
at the same time. At lower fracture stress, the process zone is increased and several
elements fail simultaneously. The result is a smoother force-deflection curve. In
the cases of 10 MPa and 1 MPa fracture strength, the ultimate fracture strain, for
the given strain energy release rate, is so large, that the process zone extends along
the entire specimen length and even after an apparent separation of the two DCB
arms a force is transmitted along the failure interface. Clearly, within the confines
of the numerical model and LEFM, a desirable value of fracture strength is one that
causes the process zone to extend over two or three elements at most. Thus, at this
point, not just the unloading slope of the stress-strain law, but also fracture strength
can be made a function of the mesh size. On the other hand, when looking beyond
LEFM, it is physically hard to justify a different fracture strength than the one that
would be measured from an independent test (such as the button-peel test, as de-
scribed in Sun (2007), or an appropriate tensile test). Therefore the reverse question
can be posed as well: what is the maximum element size allowed, such that the the
fracture process zone extends across at least two or three elements? When diverg-
ing from LEFM, the ultimate strain (or maximum opening/sliding) will govern the
fracture process zone size or bridging zone size. It has been noted that laminated
composites (multilayered) show a significant bridging zone in the wake of a crack,
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Rudraraju, Garikipati and Waas (2010). A proper choice of cohesive strength and
strain energy release rate will lead not only to the correct load-displacement pre-
diction, but also to a correct prediction of the bridging zone, which is important to
predict size effects.
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Figure 9: Influence of the crack band thickness on the load-displacement curve of
DCB

In the context of fracture mechanics, the crack is infinitesimally thin and infinites-
imally sharp. However standard finite elements are not capable of resolving such
singularities. Figure 9 shows the influence of the crack (band) thickness on the
load-displacement response of the DCB. A decrease in the crack band thickness
causes a reduction in maximum load and a less sharp transition from the loading
to the unloading/ crack progression regime. The reduction in maximum load can
be attributed to the approach of a near singular stress field at the crack tip upon
decrease of the crack band thickness. At the same time, the fracture energy is fixed.
This means that a decrease in crack band size and element thickness increases the
fracture ultimate strain (the ultimate “fracture displacement” is fixed). This causes
a smoother transition from the loading to the unloading regime. When interpreting
the results in figure 9 it should be kept in mind that the arms of the DCB setup have
a thickness of 5 mm. Therefore the question of what constitutes an infinitesimally
thin or sharp crack should be evaluated relative to other geometric dimensions.
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4.1.4 DCB test of composite - Comparison with DCZM, VCCT and interface ele-
ments

Next, the SCA will be used to analyze the debonding of a laminated composite.
Values are taken from, Alfano and Crisfield, Alfano and Crisfield (2001), who used
an interface model to simulate an experiment. Xie and Waas, Xie and Waas (2006)
used the Discrete Cohesive Zone Element (DCZM) to study this same configu-
ration. They also provide a comparison with the virtual crack closure technique
(VCCT) predictions.

The material properties are given in table 3, Alfano and Crisfield (2001). The elastic
modulus E, Poisson’s ratio ν and layer thickness t of the adhesive are values that
are not typically used in DCZM and similar approaches that use interface elements.
Here they are necessary as the interface layer is represented by continuum elements
for the purpose of implementing the SCA.

Table 3: Material properties for debonding of laminated composite beam

Composite
E11(GPa) E22 = E33(GPa) G12(GPa) ν12 = ν13 ν23

135.3 9.0 5.2 0.24 0.46
Interface

GIC(N/mm) σ f (MPa) E(GPa) ν t(mm)
0.28 57.0 5.0 0.3 0.1

The comparison of the four models is given in figure 10. The smeared crack ap-
proach compares very well with the three other methods. The VCCT and DCZM
method show an increase in stiffness at a crack length of about 8 mm which corre-
sponds to the mathematical solution of a crack of that length. The smeared crack
approach on the other hand shows a drop in load at this point. Here the crack has
extended along the entire length of the specimen and the two beams are separated.

4.2 Mesh convergence of single edge notch three-point bending specimen

To show convergence of the SCA with respect to mesh size, consider an edge notch
three-point bending (SETB) test specimen. A typical test setup is described in
figure 13. Three different mesh sizes have been chosen. The meshes are depicted
in figure 11. The meshes consist of C3D6 wedge elements. The mesh sizes are
454, 1976 and 41140 elements, respectively. The results for the load-deflection
response are very similar across all mesh sizes, as shown in figure 12. The material
properties used to generate the data for figure 12, are as follows; E=100 GPa, ν=
0.3, σcr=50 MPa, GIc=1000 J/m2. It can be noted that for the smallest mesh size, the
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Figure 10: Comparison of smeared crack model with models that discretely (zero
thickness) represent the interface layer

initial elastic response is slightly stiffer due to a coarser discretization. The initial
stiffness of the the second and third meshes are much closer. The different levels of
discretization will also have an impact on the simulation of the crack progression,
as smaller elements are better suited to resolve the stress field close to the crack tip.

4.3 Fracture of laminated composite

Rudraraju et al., Rudraraju, Salvi, Garikipati and Waas (2010) have investigated
size effects using geometrically scaled specimens. Details of the experimental
studies and numerical predictions using the VMCM are given in, Rudraraju, Salvi,
Garikipati and Waas (2010). The geometry of the smallest size is depicted in figure
13. The laminate has a quasi-isotropic lay-up with an in-plane Elastic Modulus
E=51.5 GPa and a Poisson’s ratio ν=0.32. Experimental results are matched well
with the SCA predictions as shown in figure 14. It is noted that crack initiation
takes place in the rising part of the load-deflection response. Further growth leads
to a load maximum and beyond this maximum, the load drops with increasing crack
advancement. The SCA predictions are shown to be mesh objective. Furthermore,
both experimental and numerical simulations show a large bridging zone in the
wake of the crack tip.
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(a) 454 elements

(b) 1976 elements

(c) 41140 elements

Figure 11: Three meshes used in SETB simulation
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Figure 12: Comparison of the SETB response for different mesh sizes
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Figure 13: Geometry of single edge notch three point bending (SETB) specimen
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Figure 14: Normalized load-displacement response of SETB specimen
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4.4 Open hole tension test of single layer laminate composite

The application of the novel, 2 dimensional orthotropic SCA is demonstrated using
the open hole tension test of a single lamina, with the fiber direction oriented at var-
ious angles relative to the loading direction. The problem is described in figure 15.
The hole diameter to width ratio is chosen to be 1/5. Additionally the loaded edges
of the specimen are modeled as an isotropic soft material to reduce edge effects
and to prevent failure at the grips. The mesh of the FE model is shown in figure
16. The mesh around the hole is finer than at the edges because of the stress gra-
dients near the hole. The mesh consists of 15,425 reduced integration rectangular
shell elements (S4R) in ABAQUS. The lamina properties are as follows; E11=142
GPa, E22=7.7 GPa, G12=3.99 GPa, ν12= 0.343, σIc=8.064 GPa, σIIc=89.26 MPa,
τ12c=102 MPa, GIc f iber =1.204x103 KJ/m2, GIcmatrix = GIIcmatrix=10.05 KJ/m2. The
length including the grip section is 86.02 mm and, between the grips is 76.2 mm.
The width of the lamina, the thickness and hole diameter are 38.1 mm, 1 mm and
3.81 mm, respectively.

Figure 15: Single layer open hole configuration

Figure 16: Typical mesh used for the open hole off-axis lamina tension test
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(a) 0◦ (b) 5◦

(c) 45◦ (d) 85◦

(e) 90◦

Figure 17: Crack opening strain for various off-axis angles
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Five different off-axis angles have been investigated: 0◦, 5◦, 45◦, 85◦ and 90◦.
There is a clear shift in fracture modes noticeable. In the 0◦ and 5◦ case, the fracture
strains for mode II are large, while the other fracture strains remain negligible.
Therefore these cases are mode II dominated. On the other hand, the fracture strains
for 45◦, 85◦ and 90◦ are large for mode I parallel to the fibers (“matrix mode I”).
This crack pattern is in agreement with the linear elastic stress distribution that can
be used to draw conclusions about the nature of the fracture onset. In the case of
0◦ and 5◦, the shear stress τ12 is dominant, while in the cases 45◦, 85◦ and 90◦,
the stress component perpendicular, to the fibers σ22 is largest. In all cases, the
crack direction lines up with the fiber direction. These results are encouraging and
current work is aimed at incorporating the SCA in a laminate model for studying
progressive failure and damage in multi-directional laminates.

5 Conclusion

The smeared crack approach (SCA) to capture post-peak softening, in a mesh ob-
jective manner, in fracture and delamination of composites has been demonstrated.
The loading stages of this technique can be interpreted in two ways. Prior to reach-
ing an allowable stress, strain or a combined (in terms of stress and strain, in the
form of f (σi j,εi j) = 0), onset criterion, a classical continuum description is used.
After reaching the onset criterion, the behavior has to be modeled through a descrip-
tion that departs from continuum mechanics. In the present work, we have used
fracture energy and fracture strength, in opening and sliding modes, as quantities
that supply characteristic length scales, to describe the post-peak non-continuum
response. The introduction of these characteristic length scales, which are based on
physically measured properties that describe the failure of the composite material,
leads to a mesh objective description that is necessary for predicting progressive
damage and failure in composite structures. For the cases presented, the present
approach leads to a high degree of objectivity with respect to mesh size used.
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