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A New Optimal Iterative Algorithm for Solving Nonlinear
Poisson Problems in Heat Diffusion
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Abstract: The nonlinear Poisson problems in heat diffusion governed by elliptic
type partial differential equations are solved by a modified globally optimal itera-
tive algorithm (MGOIA). The MGOIA is a purely iterative method for searching
the solution vector x without using the invert of the Jacobian matrix D. Moreover,
we reveal the weighting parameter αc in the best descent vector w = αcE + DTE
and derive the convergence rate and find a criterion of the parameter γ . When
utilizing αc and γ , we can further accelerate the convergence speed several times.
Several numerical experiments are carefully discussed and validated the proposed
method.
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1 Introduction

Poisson problems that arise from engineering applications are often classified as
linear Poisson problems and nonlinear Poisson problems. In most cases, solving
those nonlinear problems analytically and exactly is impossible, or at least highly
impractical. Therefore, numerical approaches such as the Lagrangian finite differ-
ence method (FDM) and finite element method (FEM) are often utilized to calcu-
late the linear Poisson problems [Whiteman (1974)]; however, these two methods
cost much computer time. Then, because the mesh construction of domain is time-
consuming and cannot always be totally automated, Gu (1991) used the bound-
ary element method (BEM) to solve the linear Poisson problems. Nevertheless,
the mesh generation of boundary still increases the computation time and com-
puter storage necessity. Comparing with those mesh-dependent algorithms such as
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the FDM, FEM and BEM, the method of fundamental solutions [Golberg (1995)],
which does not require any boundary or domain discretization, has been proposed.

For the nonlinear Poisson problems, Kasab, Karur and Ramachandran (1995) an-
alyzed the quasilinear BEM for solving two-dimensional nonlinear Poisson type
problems. They claimed that their method provides extremely accurate results
for mildly nonlinear forcing functions. For strongly nonlinear forcing functions,
the approach is employed at a subdomain level and produces good results with
only a few subdomains; however, their scheme is complex and hard to implement.
Recently, several meshless schemes have been proposed to resolve the nonlin-
ear Poisson problems, like that demonstrated by Balakrishnan and Ramachandran
(1999), Zhu, Zhang and Atluri (1999), Balakrishnan and Ramachandran (2001),
Tri, Zahrouni and Potier-Ferry (2011), Tri, Zahrouni and Potier-Ferry (2012), and
Wang, Qin and Liang (2012), which did not need to deal with the discretization of
the entire domain and boundary. After that, Liu (2008, 2009) proposed the fictitious
time integration method (FTIM) to tackle the elliptic boundary value problems, of
which the FTIM was local convergence and needed to choose the viscous damping
coefficients for different equations in one problem. Later, Liu and his coworkers
[Liu, Dai and Atluri (2011a); Liu, Dai and Atluri (2011b); Liu (2012); Liu and
Atluri (2012)] employed the technique of optimal iterative algorithms to solve a
large system of nonlinear algebraic equations, and demonstrated that high perfor-
mance can be achieved by using these approaches. Furthermore, we modify the
globally optimal iterative algorithm in Liu and Atluri (2012) and obtain a faster
convergence optimal iterative algorithm in this study.

This research is organized as follows. Section 2 demonstrates a theoretical basis
of the proposed scheme. We begin from a continuous manifold defined in terms
of residual-norm, and arrive at a system of ordinary differential equations (ODEs)
driven by a vector, which is a combination of the vectors E and DTE, where D is the
Jacobian. Section 3 is dedicated to deriving a scalar equation to keep the discretely
iterative orbit on the manifold, and then we propose two new concepts of optimal
descent vector and best descent vector to choose the optimal and critical parameters
α0 and αc, which automatically have a convergent behavior of the residual-error
curve, and derive a switch criterion of γ . In Section 4, we employ the present
approach with different convergent rates to resolve four numerical experiments of
nonlinear Poisson problems. At last, some concluding remarks are drawn in Section
5.
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2 An invariant manifold

In this study, we propose a new iterative approach to solve a system of nonlinear
algebraic equations (NAEs): Ei(x1,. . . , xn) = 0, i =1,. . . , n, or in their vector-form:

E(x) = 0. (1)

For the NAEs in Eq. (1), we can formulate a scalar Newton homotopy function:

g(x, t) =
Q(t)‖E(x)‖2

2
− ‖E(x0)‖2

2
= 0, (2)

in which, we let x be a function of a fictitious time-like variable t, and its initial
value is x(0) = x0.

We anticipate g(x, t) = 0 to be an invariant manifold in the space of (x, t) for a
dynamical system g(x(t), t) = 0 to be specified further. While Q > 0, the manifold
clarified by Eq. (2) is continuous, and therefore the following operation of differ-
ential accomplished on the manifold makes sense [Liu and Atluri (2011a)]. As a
“consistency condition”, by taking the time differential of Eq. (2) with respect to t
and contemplating x = x(t), we obtain

Q̇(t)‖E(x)‖2

2
−Q(t)(DTE) · ẋ = 0. (3)

We presume that the evolution of x is driven by a vector w:

ẋ = λw, (4)

where λ in general is a scalar function of t, and

w = αE+DTE, (5)

is a suitable combination of the residual vector E as well as the gradient vector
DTE, and is α a parameter to be optimized below. Inserting Eq. (4) into Eq. (3),
we can derive

ẋ =−p(t)
‖E‖2

ETq
w, (6)

in which

F := DDT (7)

q := Dw = q1 +αq2 = FE+αDE (8)
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p(t) :=
Q̇(t)

2Q(t)
. (9)

Thus, in this scheme if Q(t) can be promised to be a monotonically increasing
function of t, we may have an absolutely convergent property in solving the NAEs
in Eq. (1):

‖E(x)‖2 =
C

Q(t)
, (10)

where

C = ‖E(x0)‖2 (11)

is chosen by the initial value x0. We do not require to specify the function Q(t)
a priori; however,

√
C/Q(t) only acts as a measure of the residual error of E at

the same time. Hence, we impose on our scheme that Q(t)> 0 is a monotonically
increasing function of t. When t is enormous, the above equation will compel the
residual error ‖E(x)‖ to tend to zero, and meanwhile the solution of Eq. (1) is
acquired accessibly.

3 Dynamics of the proposed iterative scheme

3.1 Discretizing, yet keeping x on the manifold

We discretize the foregoing continuous time dynamics embodied in Eq. (6) into a
discrete time dynamics:

x(t +∆t) = x(t)−β
‖E‖2

ETq
w, (12)

where

β = p(t)∆t (13)

is the step-length. Eq. (10) is acquired from the ODEs in Eq. (6) by employing the
Euler algorithm.

To keep x on the manifold defined by Eq. (10), we can ponder the evolution of E
along the path x(t) by

Ė = Dẋ =−p(t)
‖E‖2

ETq
q. (14)
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Similarly, we utilize the Euler algorithm to integrate Eq. (14) and acquire

E(t +∆t) = E(t)−β
‖E‖2

ETq
q, (15)

Taking the square-norms of both the sides of Eq. (15) and employing Eq. (10), we
can acquire

C
Q(t +∆t)

=
C

Q(t)
−2β

C
Q(t)

+β
2 C

Q(t)
‖E‖2

(ETq)2 ‖q‖
2 . (16)

Hence, by dividing both the sides by C/Q(t), we can derive the following scalar
equation:

a0β
2−2β +1− Q(t)

Q(t +∆t)
= 0, (17)

in which

a0 :=
‖E‖2 ‖q‖2

(ETq)2 ≥ 1, (18)

by employing the Cauchy-Schwarz inequality.

Consequently, g(x, t) = 0, t ∈ {0, 1, 2, . . .} remains to be an invariant manifold in
the space of (x, t) for the discrete time dynamical system g(x(t), t) = 0, which will
be explored further in the next two sections. Liu and Atluri (2011a) first derived
the formulae (15) and (16) for a simply gradient-vector driven dynamical system.

3.2 A discrete dynamics

Let

s =
Q(t)

Q(t +∆t)
=
‖E(x(t +∆t))‖2

‖E(x(t))‖2 , (19)

which is a significant quantity to evaluate the convergence property of numerical
scheme for solving NAEs. If s can be promised to be s < 1, then the residual error
‖E‖ will be decreased step-by-step in the iteration process.

From Eqs. (17) and (19), we can acquire

a0β
2−2β +1− s = 0, (20)

of which we can take the solution of β to be

β =
1−
√

1− (1− s)a0

a0
, if 1− (1− s)a0 ≥ 0. (21)
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Let

1− (1− s)a0 = γ
2 ≥ 0, (22)

s = 1− 1− γ2

a0
; (23)

and the condition 1− (1− s)a0 ≥ 0 in Eq. (21) is automatically satisfied. Hence,
we can obtain

β =
1− γ

a0
, (24)

and from Eqs. (12), (18) and (24), we can acquire the approach as follows:

x(t +∆t) = x(t)− (1− γ)
ETq
‖q‖2 w, (25)

in which 0 ≤ γ < 1 is a weighting parameter. Under the above condition, we can
prove that the new scheme satisfies

Convergence Rate :=
‖E(t)‖
‖E(t +∆t)‖

=
1√
s
> 1. (26)

We do not need ∆t to be integrated in the above method. Moreover, the property is
significant because it promises the new approach to be absolutely convergent to the
true solution.

3.3 An alternate value of relaxation parameter

In the above section, the relaxation parameter γ is not specified yet. We will derive
a formula about γ .

By utilizing the Euler approach, we have

Q̇(t)∆t = Q(t +∆t)−Q(t). (27)

From Eqs. (9), (13), (19) and (27), we obtain

β = p(t)∆t =
Q̇(t)∆t
2Q(t)

=
1
2s
− 1

2
. (28)

Then by using Eqs. (24) and (28), we can acquire

s =
1

2β +1
=

a0

a0 +2−2r
. (29)
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On the other hand, Eq. (23) renders

s =
a0−1+ r2

a0
. (30)

By equating the two s in the above two equations, we can derive a third-order scalar
equation for r:

2r3− (a0 +2)r2 +2(a0−1)r−a0 +2 = 0. (31)

Furthermore, we can decompose the above equation into

2(r−1)2(r− a0

2
+1) = 0, (32)

in which r = 1 is the double roots, which is not the desired one in view of 0≤ r < 1,
and another is

r =
a0

2
−1, if 2≤ a0 < 4, (33)

where, we impose the condition of 2≤ a0 < 4 to satisfy 0≤ r < 1.

From Eqs. (9), (13) and (27), it follows that

β =
1
2
(R−1), (34)

where the ratio R is defined by

R :=
Q(t +∆t)

Q(t)
=

1
s
. (35)

Inserting Eqs. (34) and (35) into Eq.(20), we can derive

a0R3−2(a0 +2)R2 +(a0 +8)R−4 = 0. (36)

Note that the above equation can be written as

(R−1)2(a0R−4) = 0. (37)

To satisfy the requirement of Q̇(t) > 0, we require R > 1. Because R = 1 is the
double roots and it is not the desired one, we can take

R =
4
a0

. (38)
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Hence, besides Eqs. (29) and (30), by Eqs. (35) and (38) we have acquired the
third representation of s:

s =
a0

4
. (39)

By equating Eqs. (36) and (26), we obtain the same solution for r as that in Eq.
(30). Nevertheless, if we let the two s in Eqs. (36) and (27) be equal, we can solve

r2 = (
a0

2
−1)2. (40)

In summary, we can set

r =
∣∣∣a0

2
−1
∣∣∣ , if a0 < 4, (41)

where we restrict a0 < 4 to satisfy 0≤ r < 1.

3.4 The method driven by the optimal descent vector w = α0E+DT E

The scheme (25) does not specify how to determine the parameter α . We can
choose a suitable α such that s clarified in Eq. (23) is minimized with respect to α ,
because a smaller s will result in a faster convergence as displayed in Eq. (26).

Therefore, by inserting Eq. (18) for a0 into Eq. (31), we can obtain s as follows:

s = 1− (1− γ2)(E ·q)2

‖E‖2 ‖q‖2 , (42)

where q as defined by Eq. (8) includes a parameter α . Let ∂ s/∂α = 0, and through
some algebraic operations we can resolve α by

α0 =
[q1,E,q2] ·q1

[q2,E,q1] ·q2
. (43)

where

[a,b,c] = (a ·b)c− (c ·b)a, a,b,c ∈ Rn (44)

is defined by Liu (2000) for a Jordan algebra. Inserting the above α0 into Eq. (5),
we can acquire the optimal vector:

w = α0E+DTE . (45)
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3.5 A critical value for α

Previously, Liu and Atluri (2011b) have derived the optimal α in the descent vec-
tor w = αE+(1-α)DTE by letting ∂ s/∂α = 0. In Section 3.4, we have utilized
∂ s/∂α = 0 (or equivalently, ∂a0/∂α = 0) to reveal the optimal value of α in the
descent vector w = αE+DTE. Usually, this value of α acquired from ∂ s/∂α = 0
is not the global minimum of a0 (or s), and instead of a local minimum. We try an-
other scheme and attempt to develop a more powerful choice principle of α , such
that the value of α acquired is the global minimum of a0 (or s); however, before
that we give a remark about the best selection of the descent vector w.

Remark 1: The best choice of w would be w = D−1E, which by Eq. (8) results in
q = E, and by Eq. (18) further results in the smallest value of a0 = 1. If w = D−1E
is realizable, we obtain s = γ2 by Eq. (23), and therefore from Eq. (26), we have an
infinite convergence rate by letting γ = 0, which can reveal the solution with one
step. In this regard, D−1E is the best vector and is the best descent direction for a
numerical scheme used to resolve Eq. (1). The Newton iterative method is of this
type; nevertheless, it is very hard to be realized in a numerical algorithm because
D−1 is difficult to reveal.

In accordance with the following equivalent relation:

a0 = 1≡ w = D−1E (46)

we introduce a new approach to estimate the best vector in our framework of opti-
mal iterative scheme.

Motivated by the above remark about the best vector, which is very hard to obtain
in practice, we can slightly relax the necessary of the value of a0 to be 1. It means
that we can relax the choice of w = D−1E by Eq. (46). Instead of, we can decide a
suitable α such that a0 defined by Eq. (18) takes a suitable small value as >1. That
is

a0 :=
‖E‖2 ‖q‖2

(ETq)2 = as. (47)

When as is near to 1, the convergence speed is very fast. Inserting Eq. (8) for q
into the above equation, and through some elementary operations we can derive a
quadratic equation to solve α:

e1α
2 + e2α + e3 = 0, (48)

where

e1 := ‖E‖2 ‖q2‖2−as(E ·q2)
2, (49)
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e2 := 2‖E‖2 q2 ·q1−2asE ·q1E ·q2, (50)

e3 := ‖E‖2 ‖q1‖2−as(E ·q1)
2. (51)

If the following condition is satisfied

D := e2
2−4e1e3 ≥ 0, (52)

then α has a real solution:

α =

√
D− e2

2e1
. (53)

Inserting Eqs. (49)-(51) into the critical equation:

D := e2
2−4e1e3 = 0, (54)

we can derive an algebraic equation to decide which as is the lowest bound of Eq.
(52) of which the equality holds. In this lowest bound as is a critical value denoted
by ac, and for all as ≥ ac it can satisfy Eq. (52). From Eq. (54) through some
operations, the critical value ac can be solved as:

ac :=
‖E‖2 [‖q1‖2 ‖q2‖2− (q1 ·q2)

2]

‖[q1,E,q2]‖2 . (55)

Then, inserting it for as into Eqs. (49) and (50), we can acquire a critical value αc

for α from Eq. (53)

αc :=
acE ·q1E ·q2−‖E‖2 q1 ·q2

‖E‖2 ‖q2‖2−ac(E ·q2)2
, (56)

such that

w = αcE+DTE (best descent vector) (57)

is the best descent vector, which is in practice the best approximation to the real best
vector w = D−1E employed in the Newton iterative scheme. Owing to its critically,
if one attempts to reveal a better value than αc, there would be no real solution of
α . Moreover, the current best descent vector is also better than the optimal descent
vector w = α0E+DTE derived in Eq. (45), as being a search direction of the solution
for the NAEs in Eq. (1).
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3.6 The present algorithm driven by the best descent vector u = αcE+DT E,
without inverting D

Then, we can derive the following modified globally optimal iterative algorithm
(MGOIA) to deal with the NAEs in Eq. (1):

(1) Choose 0≤ γ < 1, and give an initial guess of x0.

(2) For k= 0, 1, 2. . . we repeat the following calculations:

qk
1 = FkEk,

qk
2 = DkEk,

ak
c =

∥∥qk
1

∥∥2∥∥qk
2

∥∥2− (qk
1 ·qk

2)
2∥∥[qk

1,Ek,qk
2]
∥∥2 ,

α
k
c =

ak
cEk ·qk

1Ek ·qk
2−qk

1 ·qk
2∥∥qk

2

∥∥2−ak
c(Ek ·qk

2)
2

, (critical α
k
c ) (58)

wk = α
k
c Ek +DT

k Ek, (best descent vector)

qk = qk
1 +α

k
c qk

2,

xk+1 = xk− (1− γ)
ET

k qk

‖qk‖2 wk. (59)

If xk+1 converges according to a given stopping criterion ‖Ek+1‖ < ε, then stop;
otherwise, go to step (2). In the above, we have excluded the common term ‖Ek‖2

in Eqs. (55) and (56).

Remark 2: In the iterative process, it may occur that

Ek ·qk = ET
k [DkDT

k +α
k
c Dk]Ek = 0, (60)

such that the above iterative scheme stagnates at a one point, i.e.,

xk+1 = xk. (61)

There are two situations which may cause the above condition; one is Ek = 0 and
another is that the matrix DkDT

k +αk
c Dk is singular at that point. In the first case of

Ek = 0 the solution is already obtained, and we do not need a special treatment of
it. In the second case, we can set αk

c = 0 when Ek ·qk is very small, e.g. Ek ·qk ≤
10−15, and re-run this step; such that we have

Ek ·qk = ET
k DkDT

k Ek =
∥∥DT

k Ek
∥∥2

> 0. (62)

This special treatment of the singularity of the matrix DkDT
k +αk

c Dk can improve
the stagnation of the iterative sequence of xk. Nevertheless, in all the computations
below, we do not yet face this situation.
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4 Nonlinear Poisson problems in heat diffusion and numerical examples

4.1 Example 1

In this example, we apply the proposed method to solve the following two-dimensional
boundary value problem of nonlinear Poisson equation:

∆u =−(∂u
∂y

)2 +2y+ x4, 0≤ x≤ 1, 0≤ y≤ 1, (63)

with the boundary conditions

u(0,y) = 0, u(1,y) = y,
u(x,0) = 0, u(x,1) = x2.

(64)

The exact solution is

u(x,y) = x2y. (65)

By applying the new algorithm to solve the above equation in the domain of 0 ≤
x ≤ 1 and 0 ≤ y ≤ 1, we use n1 = n2 = 5, which are numbers of nodal points in a
standard finite difference approximation of Eq. (57). The residual error and con-
vergence rate are shown in Figs. 1(a) and 1(b), respectively. Under a convergence
criterion ε = 10−4, the present algorithm with γ = 0.3 can converge with 18 steps,
and obtains an accurate solution with the maximum error 5.13×10−7. The numer-
ical solutions and errors are plotted in Figs. 2 and 3, respectively. Upon compared
with the numerical results computed by Wang and Qin (2006) with the coupling
virtual boundary collocation method with the radial basis functions and the analog
equation method (see Table 2 of the above cited paper), we can find that the current
scheme is much more accurate than the above-mentioned approach.

Table 1: Comparisons of Wang and Qin (2006), exact ones and errors.
Location Exact solutions Errors of Wang and Qin (2006) Errors of MGOIA
(0.00, 0.00) 0.000000 0. 0.
(0.25, 0.25) 0.015625 2.8E-4 2.6E-7
(0.50, 0.50) 0.125000 1.0E-4 5.1E-7
(0.75, 0.75) 0.421875 3.0E-4 2.8E-7
(1.00, 1.00) 1.000000 0. 0.
(1.00, 0.50) 0.500000 0. 0.
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Figure 1: For example 1, solved by MGOIA, (a) the residual errors, and (b) the
convergence rates.
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Figure 2: The results of MGOIA for Example 1 along the x-axis are plotted in (a)
the numerical solutions, and (b) the numerical errors
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Figure 3: The results of MGOIA for Example 1 along the y-axis are plotted in (a)
the numerical solutions, and (b) the numerical errors.
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Figure 4: For example 2, solved by the MGOIA, (a) the residual errors, and (b) the
convergence rate.
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Figure 5: The results of MGOIA for Example 2 along the xaxis are plotted in (a)
the numerical solutions, and (b) the numerical errors.
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Figure 6: The results of MGOIA for Example 2 along the y-axis are plotted in (a)
the numerical solutions, and (b) the numerical errors.
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4.2 Example 2

Then, we ponder the following two-dimensional boundary value problem of non-
linear Poisson equation:

∆u = u2 +6x− x6−4x4y−4x2y2, −1≤ x≤ 1, −1≤ y≤ 1, (66)

with the boundary conditions

u(−1,y) =−2y−1, u(1,y) = 2y+1,
u(x,−1) = x3−2x, u(x,1) = x3 +2x.

(67)

The exact solution is

u(x,y) = x3 +2xy. (68)

By using the proposed scheme to tackle the above equation in the domain of −1≤
x ≤ 1 and −1 ≤ y ≤ 1, we use n1 = n2 = 9, which are numbers of nodal points
in a standard finite difference approximation of Eq. (66). The residual error and
convergence rate are displayed in Figs. 4(a) and 4(b), respectively. Under a con-
vergence criterion ε = 10−6, the present approach with γ = 0.1 can converge with
41 steps, and attains an accurate solution with the maximum error 3.34×10−8. The
numerical solutions and errors are drawn in Figs. 5 and 6, respectively. Upon com-
pared with the numerical results computed by Liu (2008) with the fictitious time
integration method (FTIM) (see Fig. 2(b) of the above cited paper), the proposed
algorithm is more accurate than the above-mentioned scheme.

4.3 Example 3

Let us further consider another two-dimensional boundary value problem of non-
linear elliptic equation:

∆u+ω
2u+ εu3 = p(x,y), 0≤ x≤ 1, 0≤ y≤ 1, (69)

with the boundary conditions

u(0,y) = −5
6 y3, u(1,y) = −5

6 (y3 +1)+3(y+ y2),

u(x,0) = −5
6 x3, u(x,1) = −5

6 (x3 +1)+3(x+ x2).
(70)

The exact solution is

u(x,y) =
−5
6
(x3 + y3)+3(x2y+ xy2). (71)

By employing the present approach to resolve the above equation in the domain of
0≤ x≤ 1 and 0≤ y≤ 1, we use n1 = n2 = 10, which are numbers of nodal points in
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a standard finite difference approximation of Eq. (69). The residual error and con-
vergence rate are shown in Figs. 7(a) and 7(b), respectively. Under a convergence
criterion ε = 10−4, the present scheme with γ = 0.1 can converge with 41 steps, and
acquires an accurate solution with the maximum error 7.35×10−7. The numerical
solutions and errors are depicted in Figs. 8 and 9, respectively. Upon compared
with the numerical results in [Atluri and Zhu (1998a); Atluri and Zhu (1998b)]
with that from the new meshless local Petrov-Galerkin approach, in [Zhu, Zhang
and Atluri (1999)] with that from the local boundary integral equation method and
the moving least squares approximation, in [Shen and Liu (2011)] with that from
the new differential quadrature method and the FTIM (see Figs. 17-19 of the above
cited paper), in [Liu, Dai and Atluri (2011a)] with that from the optimal iterative
algorithms with optimal descent vectors (see Fig. 3 of the above cited paper), and
in [Liu, Dai and Atluri (2011b)] with that from the different optimal iterative al-
gorithms with optimal descent vectors (see Fig. 3 of the above cited paper), and
in [Liu (2012)] with that from the manifold-based exponentially convergent algo-
rithm (see Fig. 4 of the above cited paper), we can reveal that the MGOIA is more
accurate than the above-mentioned schemes.

4.4 Example 4

The following nonlinear diffusion reaction equation is contemplated:

∆u = 4u3(x2 + y2 +a2), −1≤ x≤ 1, −1≤ y≤ 1, (72)

with the boundary conditions

u(−1,y) = −1
1+y2−a2 , u(1,y) = −1

1+y2−a2 ,

u(x,−1) = −1
1+x2−a2 , u(x,1) = −1

1+x2−a2 .
(73)

The exact solution is

u(x,y) =
−1

x2 + y2−a2 (74)

is singular on the circle with a radius a.

For the square domain, Algahtani (2005) has solved this problem by using a radial
basis method, whose results as shown there in Fig. 3 are not matched well to the
exact solution. By employing the present approach to resolve the above equation
in the domain of −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1, we utilize n1 = n2 = 17, which are
numbers of nodal points in a standard finite difference approximation of Eq. (72).
At the point y0 = 0 the error of uwas plotted with respect to xin Fig. 10 by the
dashed line, of which the maximum error is about 2.52×10−4. At the point x0 = 05
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Figure 7: For example 3, solved by the MGOIA, (a) the residual errors, and (b) the
convergence rate.
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Figure 8: The results of MGOIA for Example 3 along the x-axis are plotted in (a)
the numerical solutions, and (b) the numerical errors.
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Figure 9: The results of MGOIA for Example 3 along the y-axis are plotted in (a)
the numerical solutions, and (b) the numerical errors.
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Figure 10: Plotting the numerical errors of Example 4 for a= 2 of a nonlinear
reaction-diffusion equation in rectangular domain.

the error of uwas plotted with respect to yin Fig. 10 by the solid line, of which the
maximum error is about 3.05×104. Under a convergence criterion ε = 10−2, the
present algorithm with γ = 0.1 can converge with 45 steps. The numerical solutions
and errors are illustrated in Figs. 11 and 12, respectively. Upon compared with the
numerical results in Liu (2008) with the FTIM (see Fig. 3(a) of the above cited
paper), the MGOIA is more accurate than the above-mentioned two approaches.

Besides, for the amoeba-like domain, one illustrious meshfree numerical approach
to resolve the non-linear PDE of elliptic type is the radial basis function (RBF)
scheme, which expands the solution u by

u(x,y) =
n

∑
k=1

akφk, (75)

where ak are the expansion coefficients to be determined and φk is a set of RBFs,
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for instance,

φk = (r2
k + c2)N−3/2, N = 1,2, . . . ,

φk = r2N
k lnrk, N = 1,2, . . . ,

φk = exp
(
−r2

k
a2

)
,

φk = (r2
k + c2)N−3/2 exp

(
−r2

k
a2

)
, N = 1,2, . . . ,

(76)

where the radius function rk is given by rk =
√
(x− xk)2 +(y− yk)2, in which (xk,

yk), k = 1,. . . , n are called source points. The constants a and c are shape param-
eters. In the below, we take the first set of φk as trial functions, which is known
as a multi-quadric RBF [Golberg, Chen and Karur (1996); Cheng, Golberg, Kansa
and Zammito (2003)], with N = 2. In this numerical experiment, we employ the
multi-quadric radial basis function to solve Eq. (66), and a = 4 is fixed. The domain
is an amoeba-like domain with

ρ(θ) = (sin2θ)2 exp(sinθ)+(cos2θ)2 exp(cosθ). (77)

Inserting Eq. (75) into Eq. (72) and placing some field points inside the domain
to satisfy the governing equation and some points on the boundary to gratify the
boundary condition, we can derive n NAEs to select the n coefficients ak. The
source points (xk, yk), k = 1, . . . , n are uniformly distributed on a contour given by
R0 + ρ(θ ), in which θ k = 2kπ/n. The residual error and convergence rate are shown
in Figs. 13(a) and 13(b), respectively. Under a convergence criterion ε = 0.01, R0=
0.4, and c = 0.5, the current method with γ = 0.13 can converge with 288 steps, and
acquires an accurate solution with the maximum error 2.68×10−3. The numerical
solutions and errors are exhibited in Figs. 14 and 15, respectively.

Upon compared with the numerical results in Liu (2009) with the FTIM (see Fig.
7 of the above cited paper), ,in [Liu and Atluri (2011)] with that from the opti-
mal vector driven algorithm (see Fig. 16 of the above cited paper), in [Liu, Dai and
Atluri (2011a)] with that from the optimal iterative algorithms with optimal descent
vectors (see Fig. 2 of the above cited paper), and in [Liu, Dai and Atluri (2011b)]
with that from the different optimal iterative algorithms with optimal descent vec-
tors (see Fig. 2 of the above cited paper), and in [Liu (2012)] with that from the
manifold-based exponentially convergent algorithm (see Fig. 2 of the above cited
paper), we can show that the MGOIA is more accurate than the above-mentioned
schemes.

5 Conclusions

In this paper, we have derived the switch criterion to accelerate the convergence
speed of globally optimal iterative algorithm (GOIA), which was called modified
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Figure 11: The results of MGOIA for Example 4 in rectangular domain along the
x-axis are plotted in (a) the numerical solutions, and (b) the numerical errors.
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Figure 12: The results of MGOIA for Example 4 in rectangular domain along the
y-axis are plotted in (a) the numerical solutions, and (b) the numerical errors.
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Figure 13: For example 4 in amoeba-like domain, solved by the MGOIA, (a) the
residual errors, and (b) the convergence rate.
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Figure 14: The results of MGOIA for Example 4 in amoeba-like domain along the
x-axis are plotted in (a) the numerical solutions, and (b) the numerical errors.
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Figure 15: The results of MGOIA for Example 4 in amoeba-like domain along the
y-axis are plotted in (a) the numerical solutions, and (b) the numerical errors.
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globally optimal iterative algorithm (MGOIA). The proposed approach is conver-
gent automatically, and without calculating the inversions of the Jacobian matrices.
It can solve a large system of nonlinear algebraic equations with a few iterations.
On the basis of those numerical experiments, we exhibit that the MGOIA is appli-
cable to the nonlinear Poisson problems in heat diffusion and validate the accuracy
and efficiency of the proposed approach. The numerical errors of our scheme are
in the order of O(10−3)–O(10−8).
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