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On Uniform Approximate Solutions in Bending of
Symmetric Laminated Plates

K. Vijayakumar1

Abstract: A layer-wise theory with the analysis of face ply independent of lam-
ination is used in the bending of symmetric laminates with anisotropic plies. More
realistic and practical edge conditions as in Kirchhoff’s theory are considered. An
iterative procedure based on point-wise equilibrium equations is adapted. The ne-
cessity of a solution of an auxiliary problem in the interior plies is explained and
used in the generation of proper sequence of two dimensional problems. Displace-
ments are expanded in terms of polynomials in thickness coordinate such that con-
tinuity of transverse stresses across interfaces is assured. Solution of a fourth order
system of a supplementary problem in the face ply is necessary to ensure the con-
tinuity of in-plane displacements across interfaces and to rectify inadequacies of
these polynomial expansions in the interior distribution of approximate solutions.
Vertical deflection does not play any role in obtaining all six stress components and
two in-plane displacements. In overcoming lacuna in Kirchhoff’s theory, widely
used first order shear deformation theory and other sixth and higher order theories
based on energy principles at laminate level in smeared laminate theories and at ply
level in layer-wise theories are not useful in the generation of a proper sequence of
2-D problems converging to 3-D problems. Relevance of present analysis is demon-
strated through solutions in a simple text book problem of simply supported square
plate under doubly sinusoidal load.
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1 Introduction

In literature, one finds vast amount of investigations and several review articles
[Rasoul, Siamak, Philip and Vinney (2012); Ahn, Basu and Woo (2011); Tessler,
Sciuva and Gherlone (2010); Carrera and Brischetto (2009); Chen and Wu (2008);
Demasi (2008); Carrera (2003); Reddy and Robbins (1994); Reddy (1984, 1990a);
Noor and Burton (1989); Kapania and Raciti (1989); Hashin (1983)] to quote a

1 Department of Aerospace Engineering, Indian Institute of Science, Bangalore-560012, India



2 Copyright © 2013 Tech Science Press CMC, vol.34, no.1, pp.1-25, 2013

few of them reported on the analysis of laminated composite plates. There exist
many theories such as single layer theories, smeared laminate theories, layer-wise
theories, zigzag theories, etc. in the analysis of bending problems. Emphasis in
these theories is for accurate estimation of displacements and transverse stresses
required to satisfy continuity across interfaces. In layer-wise and zigzag theories,
the analysis is generally based on stationary property of relevant total potential and
neighboring plies are coupled through these continuity conditions.

With reference to the exact solution of a 3-D problem, proper analysis of face ply
is a prerequisite and dependent on 2-D approximate theories like Kirchhoff’s the-
ory [Kirchhoff (1850)], First Order Shear Deformation Theory (FSDT) (based on
Hencky (1947)), etc. In FSDT, vertical deflection w0 and in-plane displacements
are coupled in governing differential equations and boundary conditions. Reactive
(statically equivalent) transverse shears are combined with in-plane shear resulting
in the approximation of the torsion problem. In Kirchhoff’s theory, in-plane shear
is combined with transverse shear that is implied in Kelvin and Tait’s physical in-
terpretation of contracted boundary condition [Love (1934)]. In fact, the torsion
problem is associated with flexure problem whereas flexure problem (unlike di-
rectly or indirectly implied in energy methods) is independent of the torsion prob-
lem. Recently, it is shown Vijayakumar (2011a) that correction to Kirchhoff’s w0
by either Reissner’s theory [Reissner (1945)] or FSDT corresponds to an approx-
imate solution of a torsion problem. In fact, the solution of an associated torsion
problem is to nullify the effect due to applied or reactive edge stress τxy in flexure
problem (In this connection, pertinent observation is that Kirchhoff’s theory and
FSDT are valid in the case of hard and soft simply supported plates, respectively).
This can be inferred from numerical results reported by Lewinski (1990) in which
higher order theories give decreasing values of vertical deflection. FSDT, Reiss-
ner’s theory, other shear deformation theories and reported higher order theories
(other than Kirchhoff’s theory) based on energy principles at the laminate level in
smeared laminate theories and at the ply level in layer-wise theories are definitely
not useful in the generation of a proper sequence of 2-D problems converging to 3-
D problems. It does not serve much purpose to compare results from these theories
with those from the sequence of 2-D problems proposed in the present investigation.

The present work is an extension of layer-wise theory [Vijayakumar (2011c)] with
some useful modifications (note that the first sentence after equation (50) in the
above article should read as “The first term in σ

(k−1)
z is zσ

(k)
z from Eq. (1’) un-

coupled from Eq. (1).”). Modifications are based on the present author’s recently
developed theory titled ‘Poisson’s theory of plates in bending’. In this theory, trans-
verse stresses are determined first and in-plane displacements are obtained in terms
of these stresses in the preliminary solution. These transverse stresses are indepen-
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dent of material constants (unlike in Kirchhoff’s theory and FSDT) and their de-
pendence on material constants is from higher order corrections. The edge support
condition on w is replaced by zero εz derived from a constitutive relation. Vertical
deflection w does not directly play any role in obtaining in-plane displacements and
reactive transverse stresses.

In earlier investigations [Vijayakumar (2011b,c)], it is shown that the expansion of
displacements in polynomials of thickness coordinate z is not adequate for proper
estimation of face and neutral plane deflections. This fact is overlooked till now in
the analysis of even isotropic homogeneous plates through widely used FSDT and
other shear deformation theories. A solution of a supplementary problem is re-
quired for obtaining neutral plane deflection which is higher than face deflection.
It is, however, observed that an error in the estimation of face deflection is much
higher than that of neutral plane deflection. But it is desirable to provide uniform
approximation to deformations in the entire plate. This is particularly necessary in
the analysis of laminates embedded with piezoelectric actuators so as to describe a
proper electric field due to actuators [wide for example, Gopinathan, Varadan and
Varadan (2000)]. It appears that no suitable 2-D modeling is reported till now giv-
ing more or less the same percentage of approximation to a displacement variable
in the entire domain of the plate. Proper higher order theories are only to reduce
maximum error in the estimation of a physical variable to a desirable level but not
(more or less) the same percentage of error throughout the domain.

In Kirchhoff’s theory, in-plane displacements are coupled with vertical displace-
ment due to zero face shear conditions. This coupling is the root cause for the
sixteen decade old problem of Poisson-Kirchhoff boundary conditions paradox.
To resolve this paradox, Poisson’s theory mentioned earlier is used. If one ne-
glects the contribution of in-plane shear in stress resultants [Vx,Vy], in-plane distri-
butions [Qx,Qy] of integrated shears [τxz,τyz] correspond to applied vertical shear
loads along edges of the plate. These shear stresses denoted by [τxz0,τyz0] along
with linear σz = z q/2 satisfying face load condition forms the basis in defining the
auxiliary bending problem. These transverse stresses do not participate in static
in-plane equilibrium equations but they contribute to the secondary effects in esti-
mation of in-plane displacements through integration of equilibrium equations. The
need for such a problem exists in the analysis of interior plies due to continuity of
transverse stresses across interfaces.

2 Primary Flexure Problem

For simplicity in presentation, a symmetric laminate bounded by 0 ≤ X ≤ a, 0 ≤
Y ≤ b and −hn ≤ Z ≤ hn with interfaces Z = hk in the Cartesian coordinate system
(X ,Y,Z) is considered. For convenience, coordinates X , Y and Z and displacements
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U , V , and W in non-dimensional form x = X/L, y = Y/L, z = Z/hn, u = U/hn,
v = V/hn, w = W/hn and half-thickness ratio α = hn/L with reference to a char-
acteristic length L in the X −Y plane are utilized. The material of each ply is
homogeneous and anisotropic with monoclinic symmetry. Let αk = hk/hn so that
interfaces are given by z = αk(k = 1,2, . . . ,n−1) in the upper-half of the laminate.

In the primary problem, the laminate is subjected to asymmetric load σz =±q(x,y)/2
and zero shear stresses along its top and bottom faces. Equilibrium equations in
terms of stress components in each ply (denoted with superscript ‘k’ but generally
omitted unless it is required for clarification) take the form

α(σx,x + τxy,y)+ τxz,z = 0 � (x,y) (1)

α(τxz,x + τyz,z)+σz,z = 0 (2)

in which the suffix after ‘,’ denotes the partial derivative operator and � indicates
the interchange in x and y. These three equations have to be solved along with
three edge conditions (to be specified later) and six continuity conditions of three
displacements and three transverse stresses across interfaces.

2.1 Displacement based models

In displacement based models, stress components are expressed in terms of dis-
placements, via, six stress-strain constitutive relations and six strain-displacement
relations. In the present study, these relations are confined to the classical small
deformation theory of elasticity.

Upper face values of displacements [u,v,w]u and transverse stresses [τxz,τyz,σz]
u

in a ply are related to its lower face values [u,v,w]b and [τxz,τyz,σz]b, respectively,
through the solution of equations (1-2) together with three conditions specified later
along constant x (and y) edges. Moreover, they have to satisfy continuity conditions
across interfaces.

It is convenient to denote displacements [u,v] as [ui], (i = 1,2), in-plane stresses
[σx,σy,σy] and transverse stresses [τxz,τyz,σz] as [σi], [σ3+i], (i = 1,2,3), respec-
tively. With the corresponding notation for strains, strain-displacement relations
are

[ε1,ε2,ε3] = α[u,x,v,y,u,y + v,x] (3)

[ε4,ε5,ε6] = [u,z +αw,x,v,z +αw,y,,w,z] (4)
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2.2 Strain-stress and semi-inverted stress-strain relations

εi = Si jσ j (i, j = 1,2,3,6),εr = Srsσs (r,s = 4,5) (5)

σi = Qi j[ε j−S j6σz] (i, j = 1,2,3) (6)

σr = Qrsεs (r,s = 4,5) (7)

Along the wall of the laminate, ε6 = S6 jσ j ( j = 1,2,3) since σ6 does not exist.

In the above equations, usual summation convention is used where repeated suffix
indicates summation over its specified range of integer values.

With σi in Eq. (6), in-plane equilibrium equations (1) become

α[Q1 j(ε j−S j6σz),x +Q3 j(ε j−S j6σz),y]+ τxz,z = 0 (8a)

α[Q2 j(ε j−S j6σz),y +Q3 j(ε j−S j6σz),x]+ τyz,z = 0 (8b)

2.3 fn(z) functions and their use

In reducing 3-D problems into a sequence of 2-D problems, a complete set of coor-
dinate functions fn(z), (n= 0,1,2,3, . . .) are used with the associated 2-D variables.
In the present work, they are chosen such that f2n+1 and f2n are odd and even func-
tions of z with reference to z= 0 plane, respectively. They are generated with f0 = 1
from recurrence relations, f2n+1,zz = f2n,z =− f2n−1(n≥ 1) such that f2n(±αk) = 0.
They are (up to n = 5)

[ f1, f2, f3] = [z,1/2(α2
k − z2),1/2(α2

k − z3/3)] (9)

[ f4, f5] = [(5α
4
k −6α

2
k z2 + z4)/24,z(25α

4
k −10α

2
k z2 + z4)/120] (10)

Displacements, strains and stresses are expressed in the form (with sum n= 0,1,2, . . .)

[w,u,v] = [ f2nw2n, f2n+1u2n+1, f2n+1v2n+1] (11)

[εx,εy,γxy,εz] = f2n+1[εx,εy,γxy,εz]2n+1 (12)

(In-plane distribution components w2n =−εz2n−1,n≥ 1)

[σx,σy,τxy,σz] = f2n+1[σx,σy,τxy,σz]2n+1 (13)

[γxz,γyz,τxz,τyz] = f2n[[γxz,γyz,τxz,τyz]2n (14)

In order to maintain the continuity of a 3-D variable across interfaces and keep the
associated 2-D variable as a free variable, it is necessary to replace f2n+1 by f ∗2n+1
given by

f ∗2n+1 = f2n+1−β2n−1 f2n−1,n = 1,2, . . .
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In the above equation, β2n−1α2
k = [ f2n+1(αk)/ f2n−1(αk)] so that f ∗2n+1(αk) = 0.

With the above replacement of odd fn functions, transverse stresses and the cor-
responding displacements become continuous across the interfaces if the variables
associated with f0 and f1 are continuous across interfaces.

3 Auxiliary Bending Problems

At the first stage of the iterative method, primary transverse stresses [τxz,τyz,σz]
k in

the kth ply are given by

[τxz,τyz,σz] = [τxz0,τyz0,zσz1]
k +[ f2τxz2, f2τyz2, f3σz3]

k (15)

In the above equation, [τxz0,τyz0] are [τxz,τyz]b in (k+1)th ply from interface conti-
nuity and σz1 = −α(τxz0,x + τyz0,y) from equation(2). The second expression con-
sists of reactive stresses in the kth ply.

In view of equation (2), [τxz0,τyz0]
k are expressed in the form

[τxz0,τyz0]
k = α[ψ0,x,ψ0,y]

k (16)

so that ψ0(x,y) in the kth ply is governed by

α
2
∆ψ0 +σz1 = 0 (17)

in which ∆ is the plane Laplace operator (∂ 2/∂x2 +∂ 2/∂y2). Due to σz = zq/2 in
the face ply, σz1 = q/2 remains same throughout the laminate.

One finds that σz1 is neglected in shear deformation theories in the analysis of
cross-ply and angle-ply laminates. Its influence through constitutive relations in
the case of isotropic plies is considered earlier [Vijayakumar (2011c)] by proper
modification of σz3 but neglected in the face plies. Moreover, transverse shear stress
conditions along the edges, unlike in Kirchhoff’s theory, are specified in the form
of ply-wise parabolic distributions, though mathematically valid but not practical
even in the face plies.

The equation (17) which is independent of material constants is to be solved with
condition along x (and y) constant edges

ψ0 = 0, αψ0,x = Txz0(y) � (x,y) (18)

In the above equation, Txz0(y) is the prescribed distribution along the x = constant
wall of the laminate independent of material constants of plies. If it is independent
of y, it becomes a more practical condition compared to the stress resultant which
has no unique point-wise distribution of the relevant shear stress.
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3.1 Homogeneous isotropic plate: Significance of function ψ0(x,y)

The condition ψ0 = 0 is different from the usual condition w0 = 0 in the Kirch-
hoff’s theory and FSDT. The function ψ0 is related to normal strain εz. In the
isotropic case, ψ0 is proportional to e1(x,y) = (εx1 + εy1). e1 is proportional to
∆w0 in the Kirchhoff’s theory. Gradients of ψ0 are proportional to gradients of
transverse strains in FSDT. If the plate is free of applied transverse stresses, that
is , the plate is subjected to bending and twisting moments only, ψ0(x,y), thereby,
∆w0 ≡ 0 from equation (2). (In Kirchhoff’s theory, the tangential gradient of ∆w0 is
proportional to the corresponding gradient of applied τxy along the edge of the plate
implied from Kelvin and Tait’s physical interpretation of the contracted transverse
shear condition). This Laplace equation is not adequate to satisfy two in-plane
edge conditions. One needs its conjugate harmonic functions to express in-plane
displacements in the form

[u1,v1] =−αz[w0,x +ϕ0,y,w0,y−ϕ0,x]

The function ϕ0 was introduced earlier by Reissner (1945) as a stress function in
satisfying equation (2).

After finding w0 and ϕ0 from solving in-plane equilibrium equations (1), correction
w0c to w0 from zero face shear conditions is given by

w0c =
∫
[ϕ0,y dx−ϕ0,x dy]

One should note here that w(x,y) = w0 +w0c does not satisfy prescribed edge con-
dition on w.

In FSDT, [u1,v1] are obtained from solving Eqs. (1). w0 has to be obtained from
zero face shear conditions in the form

αw0 =
∫
[u1 dx+ v1 dy]

In the case of non-homogeneous applied transverse stresses, w0 is coupled with
equations (1, 2) and edge conditions in FSDT.

With reference to the present analysis, it is relevant to note the following observa-
tion: In the preliminary solution, σz, α[τxz,τyz], α2[σx,σy,τxy] are of O(1). As such,
estimation of in-plane stresses, thereby, in-plane displacements are not dependent
on w0. The support condition w0 = 0 along the edge of the plate does not play any
role in the estimation of in-plane displacements. In fact, Kirchhoff’s theory gives
only a lower bound for α for validity of small deformation theory. The validity
of its application is a questionable proposition for small values of α even slightly
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higher than this lower bound. Edge condition on w0 gives highly constrained so-
lutions for displacements. Shear deformations are included in FSDT in which face
shear conditions are not satisfied and Reissner’s theory in which edge condition on
w0 is not satisfied. Both these theories give more or less same maximum vertical
deflection. It shows that satisfying either edge condition on w0 or face shear condi-
tions have equal effect on deformations. In each of these theories, both conditions
are satisfied only in the limit. Limiting processes, however, nullify the effect due
to the applied or reactive edge stress τxy in the bending problem. Moreover, linear
variation of σz in z is neglected in constitutive relations. The present analysis is to
show that this linear σz results in more flexible plate deformations in conjunction
with zero face shear conditions.

In view of the above observations, utility of ψ0 in the auxiliary problem and gradi-
ents of [ψ,ϕ] in representing [u,v] like in the earlier work [Vijayakumar (2011b,c)]
will be clear in the iterative procedure adapted in the present work. ψ0 = 0 implies
ε0 along the supported edge. The edge condition εz = 0 is mathematically valid
and more so at point supports along an edge of the plate. It is to be noted that
ψ0, thereby, [τxz0,τyz0] remain same throughout the laminate. The condition εz = 0
along the supported edge does not ensure zero w0. One can have a support to pre-
vent the vertical deflections of intersections of faces with the wall of the laminate.

In the 3-D problem of homogeneous plates, w0(x,y,0) and w0(x,y,h) are neutral
plane deflection w0N and face deflection W0F , respectively. Both of them are 2-
D functions and they are from thickness-wise integration of εz in a 2-D problem.
Determination of w0N used as unknown variable is dependent on edge support con-
dition and that of w0F on zero face shear conditions. The present analysis is with
reference to finding w0F and the need to satisfy edge condition on w0N does not
exist.

3.2 In-plane displacements (u1,v1)c in Auxiliary Problem

The function ψ0, thereby, σz(= zq/2) do not participate in the static in-plane equi-
librium equations (1) and are independent of ply material constants. They pro-
vide corrections in the semi-inverted in-plane stress-strain relations and secondary
corrections in relevant transverse stresses through solutions of in-plane displace-
ments. In the present analysis, displacements similar to those in Kirchhoff’s theory
(and FSDT) are denoted by (w0,u1,v1)b. In-plane distributions of reactive trans-
verse stresses in the primary problem are considered to be transverse stresses in
the auxiliary problem. As such, (w0,u1,b1)b correspond to transverse stresses
[τxz,τyz] = f2[τxz0,τyz0] and σz = f3σz1. Transverse stresses [τxz0,τyz0,σz1] partic-
ipate in the integrated equilibrium equations in the determination of corrections
(u1,v1)c to bending displacements (u1,v1)b but not in static in-plane equilibrium
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equations. Hence, (u1,v1) are considered as real in the former but are absent in
the latter case. Correspondingly, εz1 due to σz1 from the constitutive relation in the
auxiliary problem is virtual but real if one neglects σz1 like in Kirchhoff’s and shear
deformation theories.

In view of linear σz, normal strains including εz = zεz1(x,y) are linear in z from con-
stitutive relations. As such, in-plane displacements (u,v) in the auxiliary problem
are linear in z so that (u,v) = z(u1,v1). Determination of (u,v) satisfying equi-
librium equations requires f2[τxz2,τyz2] along with σz = f3σz3. Hence, transverse
stresses in each ply in the auxiliary problem are

τxz = f0τxz0 +[ f2τxz2]
k � (x,y) (19)

σz = f1q/2+[ f3σz3]
k (20)

To keep corrective σz3 as a free variable, f3 is modified in the form

f ∗3 = f3(z)−β1 f1(z) (21)

In the above equation, β1α2
k = [ f3(αk)/ f1(αk)] so that f ∗3 (αk) = 0. Above trans-

verse stresses with σz = z(q/2)+[ f ∗3 σz3]
k are continuous across interfaces. Normal

stress σz in Eq. (15) becomes

σz = [q/2−β1σz3]z+ f3(z)σz3 (22)

In-plane distributions (u1,v1) are modified in the form with

γxz0 = S44τxz0 +S45τyz0 (23)

u∗1 = u1 + γxz0−αw0,x � (x,y),(u,v) (24)

Modified transverse shear stresses from stress-strain and strain-displacement rela-
tions are

τ
∗
xz0 = Q44u1 +Q45v1 + τxz0 � (x,y),(u,v),(4,5) (25)

Substitution of the above shear stresses in Eq. (2) with σz = [q/2−β1σz3]z gives

α[(Q44u1 +Q45v1),x +(Q54u1 +Q55v1),y = β1σz3 (26)

For the use of [u∗1,v
∗
1] in the integration of equilibrium equations (1, 2) and the need

to keep τ∗xz0 equal to the prescribed τxz0 along segments of the edge, it is necessary
to express [u1,v1] as

[u1,v1] =−α[ψ1,x +ϕ1,y,ψ1,y−ϕ1,x] (27)
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Contributions of ψ1 and w0 in [u1,v1]
∗ are one and the same in giving corrections

to w(x,y,z) and transverse stresses (in fact, contribution of w0 is through strain-
displacement relations in static equilibrium equations and through constitutive re-
lations in through-thickness integration of equilibrium equations). Hence, w0 in
[u1,v1]

∗ is replaced by ψ1 (so as to be independent of w0 used in strain-displacement
relations) so that [u1,v1,εx1,εy1,γxy1]

∗ are

[u1,v1]
∗ =−α[(2ψ1,x +ϕ1,y),(2ψ1,y−ϕ1,x)]+ [γxz0,γyz0] (28)

ε
∗
x1 = (ε̃x1 +αγxz0,x) � (x,y) (29a)

γ
∗
xy1 = [γ̃xy1 +α(γxz0,y + γyz0,x)] (29b)

In the above equations,

[ε̃x1, ε̃y1] =−α
2[(2ψ1,xx +ϕ1,xy),(2ψ1,yy−ϕ1,xy)]

γ̃xy1 =−α
2[(4ψ1,xy +ϕ1,yy−ϕ1,xx)]

From integration of equilibrium equations (8, 2) using the above strains, reactive
transverse stresses are

τxz2 = α[Q1 j(ε̃ j−S j6σz1),x +Q3 j(ε̃ j−S j6σz1),y],( j = 1,2,3) (30)

τyz2 = α[Q2 j(ε̃ j−S j6σz1),y +Q3 j(ε̃ j−S j6σz1),x],( j = 1,2,3) (31)

α(τxz2,x + τyz2,y)+σz3 = 0 (here, σz3 is coefficient of f3) (32)

The equation governing in-plane displacements (u1,v1), noting that σz3 from Eq.(26)
is negative of the one from Eq.(32) due to ( f3,zz + f1) = 0 (since f3,zz = − f1 from
f (z) functions in Eq. (9)), is given by

αβ1(τxz2,x + τyz2,y) = α[(Q44u1 +Q45v1),x +(Q54u1 +Q55v1),y] (33)

With the condition zero ωz(= v,x− u,y) required to decouple bending and torsion,
the above equation consists of a harmonic equation ∆ϕ1 = 0 and a fourth order
equation in ψ1 to be solved with conditions along constant x (and y) edges

u∗1 = 0 or σ
∗
1 = 0 � (x,y),(u,v) (34a)

v∗1 = 0 or τ
∗
xy1 = 0 � (u,v) (34b)

ψ1 = 0 or τxz2 = 0 � (x,y) (34c)

(If ψ1 is zero in the above condition all along the closed contour of the edge, it can
be shown that ϕ1 is identically zero like in the simply supported (hard type) plate)
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Solutions for ψ1 and ϕ1 from Eqs.(33, 34) give in-plane displacements [u1,v1].
Edge conditions (34) are due to displacements in Eq. (28) which are independent
of w0 and used in the integration of equilibrium equations. The displacements and
transverse stresses thus obtained are dependent on material constants.

These displacements and transverse stresses in each ply are designated with suffix
‘c’ for use in the further analysis so that

[u,v] = z[u1c,v1c];σz = zq/2+ f3(z)σz3c

[τxz,τyz] = [τxz0,τyz0]+ f2(z)[τxz2c,τyz2c] (35)

4 Displacements (u1b,v1b) in a ply in the primary bending problem

In the absence of higher order in-plane displacement terms, transverse stresses in
the bending problem with addition of solutions denoted by subscript ‘c’ from an
auxiliary problem are

τxz2 = τxz0 +(τxz2c) � (x,y) (36)

σz3 = σz1 +(σz3c) (37)

Since the added terms are dependent on material constants, above transverse shear
stresses are no longer applied stresses along the edges but they are completely
known.

It is convenient in the further analysis to express [τxz2,τyz2] as gradients of a function
ψ so that

[τxy2,τyz2] = α[ψ2,x,ψ2,y] (38)

Displacements (u1b,v1b) are governed by Eqs. (8) without σz1 since (u1c,v1c) are
due to σz1 in constitutive relations (it has to be neglected in Kirchhoff’s and shear
deformation theories due to the absence of relevant transverse stresses from the
auxiliary problem). Hence,

α[Q1 jε j,x +Q3 jε j,y] = αψ2,x (39a)

α[Q2 jε j,y +Q3 jε j,x] = αψ2,y (39b)

Above equations have to be solved with edge conditions

u1 = 0 or σx1 = zTx1(y) � (x,y),(u,v) (40a)

v1 = 0 or τxy1 = zTxy1(y) � (x,y),(u,v) (40b)
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Due to the condition that the rotation (v,x−u,y) = 0 required to decouple bending
and torsion problems, derivatives of in-plane strains are

[ε1,y,ε1,x,ε3,y,ε1,x] = α
2[v,xx,u,yy,2u,yy,2v,xx] (41)

With the use of the above relations, equations (39) and edge conditions become
independent of cross derivative terms [uxy,vxy]. Equations (39) together with two
edge conditions (40) form a fourth order system in each ply for finding (u1,v1)b in
the primary bending problem. Like in the auxiliary problem, these displacements
are also independent of lamination.

5 Supplementary problem in the face ply

It is known that use of polynomial f (z) functions satisfying zero face shear con-
ditions in reducing 3-D problems to 2-D problems is not adequate to reflect true
solutions of 3-D problems [Vijayakumar (2011b)]. It is due to the same rotations
of normal to the deformed face and neutral planes, like in Kirchhoff’s theory and
FSDT, implying same deformations of these planes. Neutral plane deflection has to
be higher than face deflection since elastic medium is on either side of the neutral
plane whereas it is on one side of the face plane. This deficiency is rectified here
as in the above referred work through the solution of a supplementary problem in
which odd functions of z are replaced by sin(πz/2).

Transverse stresses in the face ply with τxz2 = (τxz0 + τxz2c) and σz3 = (σz1 +σz3c)
are

τxz = τxz0 + f2τxz2 � (x,y) (42)

σz = zσz1 + f3σz3 (43)

In-plane distributions of displacements corresponding to the above transverse stresses
are

u1 = (u1c +u1b) and u∗1 = (u1c +u1b)
∗ � (u,v) (44)

Corrective in-plane displacements in the supplementary problem are assumed in
the form:

us = u1s sin(πz/2)� (u,v) (45)

In-plane stresses are

σ1si = Qi jε1s j sin(πz/2)(i, j = 1,2,3) (46)
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With the above in-plane stresses along with [τxz,τyz] = [τxz2,τyz2]s cos(πz/2) and
σz3 = σz3s sin(πz/2), integration of equilibrium equations give

τxz2s =−(2/π)α[Q1 jε1s j,x +Q3 jε1s j,y] (47a)

τyz2s =−(2/π)α[Q2 jε1s j,y +Q3 jε1s j,x] (47b)

σz3s = (2/π)2
α

2[Q1 jε1s j,xx +2Q3 jε1s j,xy +Q2 jε1s j,yy] (48)

In-plane distributions u1s and v1s are added as corrections to the known in-plane
displacements (u∗1,v

∗
1) so that (u,v) in the supplementary problem are

u = (u∗1 +u1s)sin(πz/2) (u,v) (49)

By equating σz3s (from integration of equations (1, 2) with ‘s’ variables) with β1σz3c

(from static equations with ‘*’ variables), one equation governing [u1s,v1s] is

(2/π)2
α[Q1 jε1s j,xx +2Q3 jε1s j,xy +Q2 jε1s j,yy] = β1σz3c (50)

By expressing [u1s,v1s] =−α[ψ1s,x,(ψ1s,y] due to the second equation v1s,x = u1s,y,
equation (50) becomes a fourth order equation in ψ1s to be solved with two in-plane
conditions along constant x (and y) edges

(u∗1 +u1s) = 0 or σ
∗
x1 +σxs1 = 0 � (x,y),(u,v) (51a)

(v∗1 + v1s) = 0 or τ
∗
xy1 + τxys1 = 0 � (u,v) (51b)

6 Continuity of displacements and transverse stresses across interfaces

In-plane displacements and transverse stresses in the face ply from the above anal-
ysis are

u = zu1 +(u∗1 +u1s)sin(πz/2) (u,v) (52)

τxz = τxz0 + f2τxz2 +(τ∗xz2 + τxz2s)(π/2)cos(πz/2) (x,y) (53)

σz = z(q/2)+ [ f3− sin(πz/2)]β1σz3−σz3s sin(πz/2) (54)

In the interior plies, displacements [u1,v1], thereby, [u∗1,v
∗
1] in the neighboring plies

are obtained from solution of sixth order system of equations (1, 2) governing
[u1,v1]. They are dependent on material constants but independent of lamination.
Displacements [u1,v1]s and transverse stresses [τxz2,τyz2,σz3]s are obtained from
continuity conditions across interfaces.

Continuity of (u,v) across interfaces is simply assured through the following recur-
rence relations

[u(k)1s −u(k+1)
1s ]sin

π

2
αk = αk[u

(k+1)
1 −u(k)1 ]+ [αk + sin

π

2
αk][u

(k+1)
1 −u(k)1 ]∗ (55)
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Since [τxz0,τyz0] and σz1 = zq/2 are same throughout the laminate, recurrence rela-
tions for [τxz2,τyz2,σz3] are

{τ(k)
xz2s− τ

(k+1)
xz2s +[τ

(k)
xz2− τ

(k+1)
xz2 ]∗}π

2
cos

π

2
αk = f (k+1)

2 (αk)τ
(k+1)
xz2 � (x,y) (56)

{σ (k)
z3s −σ

(k+1)
z3s +β1[σ

(k)
z3 −σ

(k+1)
z3 ]}sin

π

2
αk = β1[ f

(k+1)
3 (αk)σ

(k+1)
z3 − f (k)3 (αk)σ

(k)
z3 ]

(57)

With εz1 from constitutive relation, vertical deflection w(x,y,z) is given by

w = w0− f2εz1 +w0s(π/2)cos(πz/2) (58)

Vertical deflections w0 and w0s in the above equation are obtained from integra-
tion of shear strain- displacement relations (whereas εz1 which does not participate
in determination of (u1,v1)b is obtained from the constitutive relation (5) in the
interior of each ply). They are

αw0 =
∫
[(ε40−u1)dx+(ε50− v1)dy] (59)

αw0s =
∫
[(ε40−u1s)dx+(ε50− v1s)dy] (60)

Due to zero face shear conditions, ε40 and ε50 are zero in the face ply and w0
corresponds to face deflection. To satisfy edge support condition, one needs only a
support so as to prevent vertical movement of intersections of supported segments
of the faces and wall of the plate.

Continuity across interfaces gives the recurrence relation

α[w(k)
0s −w(k+1)

0s ]
π

2
cos

π

2
αk = α[w(k+1)

0 −w(k)
0 ]− [ f2(αk)εz1]

(k+1) (61)

Combined with the 12th order system in the auxiliary problem (required to elimi-
nate parabolic distribution of applied vertical shear and assumptions in Kirchhoff’s
theory), the present analysis constitutes of the 16th order system in the face ply
and a sixth order system in the interior plies in obtaining preliminary solutions of
a primary problem. Solutions for displacements and transverse stresses from this
system of equations are initial solutions in the iterative procedure in solving 3-D
problems to generate a proper sequence of sets of 2-D equations.

7 Higher order corrections in the ply from iterative procedure

The only error in the above analysis with reference to 3-D problems is in the trans-
verse shear strain-displacement relations. Displacements f3[u3,v3] (thereby, εz3)
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consistent with f2[τxz2,τyz2] and reactive transverse stresses (τxz4,τyz4,σz5) have to
be obtained from the first stage of the iterative procedure. Like in the auxiliary
problem, it is necessary to keep σz5 as a free variable by modifying f5 in the form

f ∗5 (z) = f5(z)−β3 f3(z) (62)

Here, β3kα2
k = [ f5(αk)/ f3(αk)] so that f ∗5 (αk) = 0. Denoting coefficient of f3 in σz

by σ∗z3, it becomes

σ
∗
z3 = σz3−β3σz5 (63)

Displacements (u3,v3) are modified such that they are corrections to face paral-
lel plane distributions of the preliminary solution and are free to obtain reactive
stresses τxz4, τyz4, σz5 and normal strain εz3.

Transverse shear strains from constitutive relations are

γxz2 = S44τxz2 +S45τyz2 (x,y),(4,5) (64)

Corrective displacements are assumed in the form

w = f2(z)(w2− εz1)

u∗3 = u3 + γxz2−α(w2− εz1),x (x,y),(u,v) (65)

in which u3 = u1 +u3c with u3c denoting correction due to transverse shear strain-
displacement relation, w2 is the corresponding correction to vertical displacement.
Normal εz1 is known from constitutive relation and given by

εz1 = S6iQi jε j1 (i, j = 1,2,3)

Transverse shear strains and stresses become

γ
∗
xz2 = u3 + γxz2 � (x,y),(u,v) (66)

τ
∗
xz2 = Q44u3 +Q45v3 + τxz2 � (x,y),(4,5) (67)

The following equation governing (u3,v3,σz5) is derived from equations (2, 63,
67):

α[(Q44u3 +Q45v3),x +(Q54u3 +Q55v3),y = β3σz5−α
2
∆σz1 (68)

For the use of [u∗3,v
∗
3] in integrating equilibrium equations (1, 2), [u3,v3] like in the

earlier analysis are expressed as

[u3,v3] =−α[ψ3,x +ϕ3,y,ψ3,y−ϕ3,x] (69)
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Contributions of ψ3 and w2 in [u∗3,v
∗
3] are one and the same in giving corrections

to w(x,y,z) and transverse stresses so that w2 in [u∗3,v
∗
3] is replaced by ψ3. (There

is no need to determine w2 since it is a virtual one due to its non-participation
in the static in-plane equilibrium equations. In-plane distribution of corrective
displacement is given by εz3 from Eq. (5)). [u∗3,v

∗
3] and the corresponding in-plane

strains are

[u3,v3]
∗ =−α[(2ψ3,x +ϕ3,y),(2ψ3,y−ϕ3,x)]+ [γxz2,γyz2] (70)

ε
∗
x3 = (ε̃x3 +αγxz2,x) (x,y) (71a)

γ
∗
xy3 = [γ̃xy3 +α(γxz2,y + γyz2,x)] (71b)

In the above equations,

[ε̃x3, ε̃y3] =−α
2[(2ψ3,xx +ϕ3,xy),(2ψ3,yy−ϕ3,xy)] (72a)

γ̃xy3 =−α
2[(4ψ3,xy +ϕ3,yy−ϕ3,xx)] (72b)

From integration of equilibrium equations, reactive transverse stresses are

τxz4 = α[Q1 jε
∗
j,x +Q3 jε

∗
j,y] ( j = 1,2,3) (73a)

τyz4 = α[Q2 jε
∗
j,y +Q3 jε

∗
j,x] ( j = 1,2,3) (73b)

α(τxz4,x + τyz4,y)+σz5 = 0 (here, σz5 is coefficient of f5) (74)

Normal strain εz3 from the constitutive relation (5) is given by

εz3 = [S6 jσ j +S66(σz +α
2
∆σz1)] (75)

Noting that f5,zz =− f3 from f (z) functions in Eqs.(9, 10), one equation governing
in-plane displacements (u3,v3) from Eqs (68, 74) is given by

αβ3(τxz4,x + τyz4,y) = α
2[(Q44u3 +Q45v3),xx +(Q54u3 +Q55v3),yy]+α

2
∆σz1 (76)

With the condition zero ωz = (v,x−u,y) required to decouple bending and torsion,
the above equation consists of a harmonic equation ∆ϕ3 = 0 and a fourth order
equation in ψ3 to be solved with conditions along constant x (and y) edges

u∗3 = 0 or σ
∗
3 = 0 � (x,y),(u,v) (77a)

v∗3 = 0 or τ
∗
xy3 = 0 � (u,v) (77b)

ψ3 = 0 or τxz4 = 0 � (x,y) (77c)
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7.1 Supplementary problem in the face ply

Corrective displacements in the supplementary problems are assumed in the form:

w = w2s(π/2)cos(πz/2), us = u3s sin(πz/2) � (u,v) (78)

σ3si = Qi jε3s j (i, j = 1,2,3) (79)

Analysis here is a repetition of the corresponding analysis in the auxiliary problem
with suffixes 1, 2, 3 in equations (42-51) changing to 3, 4, 5. Leaving out the text
and trivial equations, the necessary equations are listed below:

τxz2s =−(2/π)α[Q1 jε3s j,x +Q3 jε3s j,y] (80a)

τyz2s =−(2/π)α[Q2 jε3s j,y +Q3 jε3s j,x] (80b)

u = (u∗3 +u3s)sin(πz/2) � (u,v) (81)

(2/π)2
α

2[Q1 jε
∗
s j,xx +2Q3 jε

∗
s j,yy](3) = β3σz5 (82)

Corrective displacements are

w = w04(x,y)− f4εz3 +w04s(π/2)cos(πz/2) (83)

u = f3u∗3 +(u∗3 +u3s)sin(πz/2) � (u,v) (84)

αw04 =
∫
[(γxz2−u3)dx+(γyz2− v3)dy] (85a)

αw04s =
∫
[(γxzs2−u3s)dx+(γyzs2− v3s)dy] (85b)

7.1.1 Continuity of displacements across interfaces

Here, continuity of [τxz4,τyz4,σz5] across inter faces is not presented since these
stresses require further correction due to the next higher order terms. Recurrence
relations for continuity of displacements are

[u(k)3s −u(k+1)
3s ]sin

π

2
αk = αk[u

(k+1)
1 −u(k)1 ]+ [ f (k+1)

3 (αk)+ sin
π

2
αk][u

(k+1)
3 −u(k)3 ]∗

(86a)

[v(k)3s − v(k+1)
3s ]sin

π

2
αk = αk[v

(k+1)
1 − v(k)1 ]+ [ f (k+1)

3 (αk)+ sin
π

2
αk][v

(k+1)
3 − v(k)3 ]∗

(86b)

(Similar recurrence relation involving with w04 and w04s)

Successive application of the above equations starting from top ply ensures conti-
nuity of displacements across the interfaces.
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In the face ply, the second set of equations from the above analysis consists of
sixth and fourth order sets of equations governing (ψ3,ϕ3) and ψ3s, respectively.
Obviously, similar sets of equations govern (ψ,ϕ)2n+3 and ψ2n+3s (n = 1,2,3, . . .)
corresponding to higher order displacement terms. In the interior plies, only a sixth
order system of equation govern (ψ,ϕ)2n+3.

8 Assessment of present analysis: Bench-mark problem

Relevance and significance of the present analysis of face ply is demonstrated
through the solution of a simple text book problem of the bending of simply sup-
ported homogeneous square plate under doubly sinusoidal vertical load. In this
example, we present a new analysis (mentioned in the Introduction) with a proper
resolution of Poisson-Kirchhoff boundary conditions paradox.

In Kirchhoff’s theory, reactive transverse shear stresses are gradients of ∆w0(x,y).
Here, ∆w0(x,y) related to εz is replaced by ψ2(x,y) (without the consideration of
an auxiliary problem) so that [τxz2,τyz2] are expressed as

[τxz2,τyz2] =−α[ψ2,x,ψ2,y]

The equation governing ψ2(x,y) from Eq. (2) and face load condition is

α
2
∆ψ2 = (3/2)q (87)

The above equation is to be solved with edge condition either ψ2 = 0 or the sum of
its normal gradient and applied transverse shear stress is zero.

In-plane equilibrium equations (1) in terms of [u1,v1] using v1,x = u1,y required to
decouple bending and torsion problems are

E
′
α

2
∆u1 = αψ2,x � (x,y),(u,v) (88)

in which E
′
= E/(1− v2).

Solutions of Laplace equations in the equations (88) are conjugate harmonic func-
tions since both (u1,x + v1,y) and (v1,x− u1,y) are zero. Edge conditions take the
form

u1 = 0 or Eαu1,x = (1+ v)Tx(y) � (x,y),(u,v) (89a)

v1 = 0 or 2Gv1,x = Txy(y) � (x,y),(u,v) (89b)

Equation (87) with one edge condition and equations (88) with two edge conditions
(89), form a sixth order system. Vertical deflection w0(x,y) from zero face shear
conditions is given by

αw0 =−
∫
[u1 dx+ v1 dy]
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The above analysis may be titled as ‘Poisson’s theory of plates in bending’ but ap-
plied shear loads are associated with f2(z) distributions corresponding to statically
equivalent stresses in Kirchhoff’s theory.

Poisson-Kirchhoff boundary condition is indirectly resolved in the Technical Note
[Vijayakumar (2009)]. In this Note, w0 from equation (8) is w0F and it is same as
w0N from equation (13). In Kirchhoff’s theory and FSDT, determination of in-plane
displacements is coupled with w0N . Both these theories and Reissner’s sixth order
theory are based on parabolic distribution of transverse shear stresses. In Reissner’s
theory, average displacements include w2 due to εz1 from constitutive relation and
the corresponding higher order displacements (u3,v3) consistent with w2. As such,
Reissner’s theory gives more accurate estimation of stress components.

Applied vertical shear along the edge is satisfied in terms of stress resultant in
Reissner’s theory and contracted vertical shear in Kirchhoff’s theory. Transverse
shear strain from strain-displacement relation is associated with satisfaction of ap-
plied vertical stress in FSDT only along with shear correction factor. Reddy’s shear
deformation theory without shear correction factor [Reddy (1984)] is equivalent to
Reissner’s theory [Reissner (1985)] in terms of displacements. The above men-
tioned Poisson’s theory eliminates the use of auxiliary function ϕ in Reissner’s
theory and coupling with w0N in Kirchhoff’s theory and FSDT.

8.1 Exact and approximate solutions

Use of polynomials in z without satisfying zero shear conditions along faces in
plate element equations results in approximation to w(x,y,z) in series form for face
deflection whereas it is w0(x,y) for neutral plane deflection corresponding to the
same order of approximation of the face deflection. The converse is true if fn(z)
satisfy, a priori, face shear conditions. In the present analysis along with the so-
lution of the supplementary problem, both face and neutral plane deflections are
obtained in series form.

In the case of a simply supported plate, Poisson-Kirchhoff’s boundary conditions
paradox does not exist. With q = q0 sin(πx/a)sin(πy/b), v = 0.3, α = 1/6 and
β =
√

2απ , one obtains from the exact solutions [Vijayakumar (2011b)]

(E/2q0)w(a/2,a/2,0) = 4.487

(E/2q0)w(a/2,a/2,1) = 4.166

With reference to face value, Kirchhoff’s theory gives a value of 2.27 which is same
for all face parallel planes.

Poisson’s theory gives an additional value of 0.267 due to εz1. Face and neutral
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plane deflection are one and the same since w(x,y,z) can be expressed as

w(x,y,z) = w0F(x,y)+ f2(z)w2 = w0N(x,y)− z2
εz1/2

In the above expression, w0F and w0N are face and neutral plane deflections, re-
spectively.

(Correction due to coupling with torsion is 1.45 [Vijayakumar (2011a)] whereas it
is 1.423 from FSDT and other sixth order theories [Lewinski (1990)]. With refer-
ence to numerical values reported in Lewinsky’s work, the above correction is less
than 1.23 in Reissner’s 12th order and other higher order theories. It clearly shows
that shear deformation and other higher order theories do not lead to the solutions
of bending problems. Vertical deflection w0 from FSDT corresponds to w0N and its
estimated value is 3.693 lower by about 17.7% from the exact value 4.487)

Higher order correction to w0 uncoupled from torsion is 1.262 so that total cor-
rection to the value from Kirchhoff’s theory is about 1.53 [Vijayakumar (2011b)].
Neutral plane deflection w0N is corrected from the solution of a supplementary
problem. This total correction over face deflection is about 0.658 giving a value of
4.458 which is very close to the exact value 4.487 (Hence, it is safe to conclude
that second order corrections in transverse stresses from the iterative method serve
the purpose of assessing data from Kirchhoff’s theory and FSDT).

However, error in the estimated value (= 3.8) of w0F is relatively high compared
to the accuracy achieved in neutral plane deflection. It is possible to improve esti-
mation of w0F by including εz1 in (u∗3,v

∗
3) in equations (46) in the earlier work [Vi-

jayakumar (2011b)] such that (τxz2,τyz2) are independent of εz1. In the present ex-
ample, correction to face deflection changes to 1.431 giving 3.97 (= 2.27+0.267+
1.431) for face deflection which is under 4.7% from the exact value. The correction
1.431 to the face deflection is due to εz3 from a constitutive relation. Determina-
tion of εz3 in terms of (σz3,u3,v3) involves lengthy algebra and arithmetical work.
Since this correction is mainly due to inclusion of σz1 in the in-plane constitutive
relations, it is much simpler to find its effect from solutions of the present auxiliary
problems.

8.1.1 Utility of auxiliary problem

In the case of homogeneous isotropic plates, the equation corresponding to Eq. (33)
is

E
′
β1α

4
∆∆(2ψ1 +ψ0/G)+Ge1c−µβ1α

2
∆σz1 = 0 (33’)
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After some algebra with G = E/2(1+ v), µ = v/(1− v) and β1 = 1/3 and ψ1 =
c1c sin(πx)sin(πy), equation governing c1c becomes

[β 2 +
3(1− v)

4
]c1c−

(1+ v)
8

(2− v)(2q0/E) = 0 (90)

The solution of the above equation gives c1c = 0.2574(2q0/E),(v = 0.3,α = 1/6).

Face deflection w0c from the integration of transverse shear strain-displacement
relations is

w0c = {[(1+ v)/2β
2](2q0/E)+ c1c} (91)

from which w0c = 1.389(2q0/E) in the present example. The above solution for
w0c is in the absence of applied in-plane stresses along edges of the plate.

8.1.2 w0b due to (u1b,v1b)

In the case of applied in-plane stresses along the edges of the plate,

E
′
α

4
∆∆ψ1b = 3[q/2+Ge1c/β1] (92)

The above equation is expressed in the form

α
4
∆∆ψ1b =

3(1− v)(1+ v)
4

(2q/E)− 3(1− v)
2

α
2
∆ψ1c (93)

from which

c1b =

[
3(1− v)(1+ v)

4
(2q/E)+

3(1− v)
2

β
2c1c

]
/β

4 (94)

In the present example, estimated c1b is 2.4182(2q0/E),(= 2.27+ 0.1482). It is
also equal to w0b from the integration of strain-displacement relations.

Estimated face deflection (E/2q0)wF = 4.0742(= 2.4182+0.267+1.389) which
is fairly close to the exact value (4.166). It shows that solution to w from the present
analysis provides proper correction to the estimation of face deflection. It is under-
estimated by 2.2%.

8.1.3 Correction to neutral plane deflection

Additional corrections to in-plane displacements in face parallel planes are obtained
by assuming

[u,v] = [sin(πz/2)us1,sin(πz/2)vs1]
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The above in-plane distributions [us1,vs1] are added as corrections to [u∗1,v
∗
1] so that

[u,v] in the supplementary problem are

[u,v] = sin(πz/2)[(u∗1 +us1),(v∗1 + vs1)]

Since in-plane distribution of σz from the integration of equilibrium equations with
s variables is the same as σz from the static equilibrium equations with * variables,
ψs1 is related to e1c by the equation

E
′
(4/π)α4

∆∆ψs1 = Ge1c&(E/2q0)cs1 = [
1− v

2
π

2−β
2
1 ](E/2q0)c1c (95)

so that cs1 = 0.5478(2q0/E) with v = 0.3 and α = 1/6.

Neutral plane deflection w0N = 4.355(2q0/E), (= 2.4182+1.389+0.5478) is un-
derestimated by 2.94% from the exact value (4.487).

Evaluation of neutral plane deflection involves u1c and u1s associated with f2(z)
and cos(πz/2) distributions of transverse shear stresses, respectively. As such, the
solution of the present auxiliary problem provides second order corrections to the
solution of the primary problem. The significant implication of this observation
is that the solution of the present auxiliary problem is necessary so as to obtain a
(more or less) uniform approximation to the deformation of face-parallel planes.
Moreover, applied transverse shear stress along an edge is independent of material
constants.

9 Concluding remarks

Estimation of transverse stresses in the preliminary solution is independent of mate-
rial constants through Poisson’s theory in the analysis of primary bending problem
defined from Kirchhoff’s theory. Hence, it is unaltered in the analysis of bending
of homogeneous and laminated plates with orthotropic and anisotropic material.
Analysis of homogeneous plates along with estimation of higher order distributions
of displacements is necessary in the layer-wise theory of laminates [Vijayakumar
(2011c)] in which the analysis of face plies is independent of lamination. Lami-
nate analysis is, however, with ply-wise parabolic distribution of transverse shear
stresses along its edges.

Application of transverse shear stresses independent of material constants and thick-
ness coordinate z along the edges of the plate is more practical particularly in lam-
inates though higher order thickness-wise distributions are mathematically valid.
Coupling of w0(x,y) in obtaining in-plane displacements which is the root cause
for the Poisson-Kirchhoff boundary condition paradox is eliminated. In addition,
inclusion of the tangential gradient of applied in-plane shear stress in transverse
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shear in Kirchhoff’s theory is removed. Thickness-wise distributions of displace-
ments in terms of polynomials in z are not adequate to reduce 3-D problems into a
sequence of 2-D problems.

Determination of in-plane displacements and stress components in each ply are in-
dependent of the edge support condition on w. Dependence of transverse stresses on
material constants is initially through the preliminary solution of a primary problem
in conjunction with the auxiliary problem. Analysis at the first stage of the iterative
method forms the basis for the generation of a proper sequence of 2-D problems
converging to 3-D problems and provides a (more or less) uniform approximation
of the deformation of face parallel planes.
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