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Identification of Parameters of a Nonlinear Material
Model Considering the Effects of Viscoelasticity and

Damage

Jan Heczko1, Radek Kottner2, Tomáš Kroupa2

Abstract: This work deals with mechanical properties of a rubber material that
is used in modern tram wheels as a damping element. Nonlinear static response
as well as strain softening and hysteresis are captured in the material model that
is selected. Method of identification of the model’s parameters is developed. The
identification method relies on successive minimizations with respect to different
sets of parameters. Tests in tension, compression and simple shear are performed.
Parameters of the material model are identified based on the tension and compres-
sion data, while the shear data are used for validation only.
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1 Introduction

Elastomeric materials are nowadays an inherent part of many structures thanks to
their (i) ability to reach large deformations without a failure and/or (ii) good vibra-
tion damping properties. It is because of the polymeric nature of the materials that
these distinctive properties can be achieved. But it is also the main cause of re-
lated effects that have to be taken into consideration when modeling the material’s
response.

An example of an elastomeric part is the utilization of rubber segments in modern
tram wheels. Those rubber sprung wheels excel in the reduction of the traffic noise
and the rail wear. Innovation of the wheels requires sufficient computational model
of the rubber segments considering the segment’s complex mechanical behavior.

Among the most noticeable phenomena observable in mechanical behavior of elas-
tomers are: strain induced softening due to miromechanical damage (Mullins ef-
fect), hysteresis in the case of cyclic loading and permanent set. Many models and
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different approaches have been developed over about the past eighty years that fo-
cus on description of one particular phenomenon or even a combination of them
(typically nonlinear elasticity and some other effect).

The set of models dealing with hyperelasticity seems to be the most extensively
elaborated. One large class of hyperelastic material models is based on express-
ing deformation in terms of strain invariants and is therefore applicable to isotropic
materials. These models are for example the neo-Hookean, Mooney-Rivlin, Yeoh
and other models, which can be generalized into polynomial form of the first and
second strain invariant. The Gent model (see Gent (1996)) also involves a func-
tion of the first strain invariant but is not in the polynomial form. Another class
of hyperelastic models is based on the micromechanics of molecular chains, this
includes the Arruda-Boyce model.

First experimental observation of strain induced softening in filled rubbers can be
traced back to Bouasse and Carrière (1903) and Holt (1932). The phenomenon is
often referred to as the Mullins effect since he did an extensive experimental and
theoretical work on the topic. The influence of stretching on various physical prop-
erties of the material is investigated in Mullins (1948) and it is pointed out that
properties of unfilled rubbers are significantly less affected by previous stretching
than that of filled rubbers. In subsequent works, Mullins and Tobin (1957) and
Mullins (1969), for instance, quantitative models have been developed on molec-
ular basis as well as phenomenological ones. Models of stress softening that are
widely used in today’s computational software were introduced by J. Simo (see
e.g. Simo (1987) where also viscoelasticity is considered or Govindjee and Simo
(1991) and Govindjee and Simo (1992)). Other well known forms of damage evo-
lution, which result in the strain induced softening, have been proposed by Ogden
and Roxburgh (1999) or Qi and Boyce (2004).

Apart from the well known linear theory of viscoelasticity, nonlinear theories have
been developed. For example the multiple integral approach or the Shapery model
(see e.g. Schapery (1966) or Lévesque, Derrien, Baptiste, and Gilchrist (2008)).
A thermodynamically based model with internal variables has been introduced by
Simo (1987) and a similar approach is used also in later models (e.g. Bergström
and Boyce (1998), Reese and Govindjee (1998))

Objectives of this article:

• Select a constitutive model that is able to capture the effects of nonlinear
long-term response, strain induced softening and time-dependence in me-
chanical behavior of a material.

• Develop a method to identify parameters of the model.
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• Apply the method to the rubber of the wheel segments.

2 Material model

2.1 Kinematics

The motion of a body can be described by a mapping ϕ(X, t) : Ω0 ×R → R3.
Here Ω0 is the reference configuration of the body and X ∈ Ω0 ⊂ R3 are material
coordinates of any particle of the body. Then the deformation gradient F and its
isochoric part F are defined respectively as

F(X, t) :=
∂ϕ

∂X
, F := J−1/3F, where J = detF, (1)

the corresponding right Cauchy-Green strain tensors

C := FTF, C := FTF = J−2/3C (2)

and the Green-Lagrangian strain tensor E and its isochoric part E

E :=
1
2

(C− I) , E :=
1
2
(
C− I

)
, (3)

I being identity tensor. In the case of incompressible material, which was assumed
throughout this work, the strain tensors and their isochoric counterparts coincide.

The eigenvalues of the right Cauchy-Green strain tensor are squares of the principal
stretches, λ 2

1 , λ 2
2 and λ 2

3 .

2.2 Strain induced softening

Mullins effect was captured using the Ogden-Roxburgh model (proposed in Ogden
and Roxburgh (1999)) of strain induced softening. One particular advantage from
the point of view of parameters identification is that the damage model does not
influence the first-loading response. In some other models (Qi-Boyce, Govindjee-
Simo), the damage takes place at all times which is for sure physically reasonable
but couples the elastic response with the damage evolution. As a consequence, the
identification of damage parameters must be carried out together with the identifi-
cation of the underlying hyperelastic model parameters which is not necessary in
the case of Ogden-Roxburgh damage model. Details of this approach are given in
section 5.1. The model could be described as follows.

An internal variable η is introduced to quantify the damage at a given material
point. The strain energy density function can be written as

W = W (F,η). (4)
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In the case of an isotropic material the strain energy can be expressed as a function
of principal stretches λ1, λ2 and λ3. In addition, considering incompressibility

W (λ1,λ2,η)≡W (λ1,λ2,(λ1)−1(λ2)−1,η). (5)

The dependency of W (λ1,λ2,η) on the damage variable η is usually expressed as

W (λ1,λ2,η) = η ·W̃ (λ1,λ2), (6)

where W̃ (λ1,λ2) = W (λ1,λ2,1), which is in fact the strain energy density of a
hyperelastic material. The values of η are assumed to lie between 0 and 1.

As a suitable representation of the strain energy density function, the five-parameter
Mooney-Rivlin model was chosen in this paper:

WMR(λ1,λ2,λ3) = C10 (I1−3)+C01 (I2−3)+C11 (I1−3)(I2−3)

+C20 (I1−3)2 +C30 (I1−3)3 ,
(7)

where

I1 = λ
2
1 + λ

2
2 + λ

2
3 and

I2 = λ
2
1 λ

2
1 + λ

2
2 λ

2
3 + λ

2
1 λ

2
3

(8)

are the first two strain invariants (in terms of principal stretches λ1, λ2 and λ3).

The damage variable η in the Ogden-Roxburgh model is expressed as

η = 1− 1
r

erf

((
Wm−W̃ (λ1,λ2)

)
m−βWm

)
, (9)

where r, m and β are parameters of the model, Wm is the maximum strain energy
density achieved at the material point during the loading prior to the current time,
t,

Wm(t) = max
τ≤t

W̃ (λ1(τ),λ2(τ)), (10)

and the error function is defined as

erf(z) :=
2√
π

∫ z

t=0
e−t2

dt. (11)
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2.3 Finite-strain viscoelasticity

To introduce time dependency of the material behavior, the concept of free energy
is used. The development of Simo (1987) for derivation of stress-strain relation-
ships is being followed here. The split of the free-energy function Ψ(E,Sneq) is
postulated to be

Ψ(E,Sneq) = U0(J)+ Ψ
0 (E)−Sneq : E + Ψl(Sneq), (12)

where Sneq is the nonequilibrium stress which serves as an internal variable, the
functions U0 and Ψ

0 are the volumetric and deviatoric parts of the initial free energy
function Ψ0. The last function in Eq. 12, Ψl , can be determined from the condition
of thermodynamic equilibrium. The initial free energy function, Ψ0, is assumed to
take the form of Eq. 7 in this work.

The damage is introduced into the viscoelastic model under the assumption that it
affects only the elastic energy term

Ψ(E,Sneq,Wm) = η · (Wm)Ψ
0 (E)−Sneq : E + Ψl(Sneq). (13)

The second Piola-Kirchhoff stress then becomes

S = η(Wm) · ∂Ψ0 (E)

∂E
−Sneq. (14)

Considering linear evolution of the internal variable Sneq

Ṡneq +
1
τ

Sneq =
1−δ

τ
η(Wm)

∂Ψ0 (E)

∂E
, (15)

with τ being the so-called relaxation time and δ a dimensionless coefficient, a
convolutional model is obtained

S =
∫ t

0
K(t− s)

d
ds

(
η(Wm)

∂Ψ0 (E)

∂E

)
ds, (16)

where K(t) is a relaxation function. Usually it is expressed in the form

K(t) = δ0 +
N

∑
n=1

δne−t/τn (17)

involving more values of relaxation times τn and coefficients δn, where the number
of the viscoelastic terms, N, must be chosen according to the number of time scales
that have to be modeled. Apart from the values of δn and τn all being positive,
a natural requirement on the coefficients is that δ0 + δ1 + . . .+ δN = 1. The first
coefficient, δ0, corresponds to the long term elastic modulus. A material with δ0 = 0
is a fluid.
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3 Experiments

The tram wheel segments are made from a rubber based on synthetic isoprene and
butadiene elastomers. Experimental samples had to be cut directly from the seg-
ments used in the wheels. The water jet cutter was used. The small size of the
segments limited the specimens geometry. Therefore, the specimens’ geometry
could not be in complete agreement with published recommendations (see Brown
(2006)) and the rubber could not be tested in the pure shear. Fig. 1 illustrates used

Figure 1: Experimental specimens.

shapes of the experimental specimens. Three types of tests were performed using
Zwick/Roell Z050 testing machine: the tension, the compression and the simple
shear test (see Fig. 2).

Major deformations of the real wheel segments are compressive and minor are
shear. Predominantly, the segment strain magnitude is in the range from 10 to 15%.
Maximum strain magnitude is 25%. Therefore, prescribed deformation progress
during the experiments was as shown in Fig. 3, where ε1 = 0.15, ε2 = 0.05 and
ε3 = 0.25. The dwell was ∆t1 = 60 s. The strain rate between the dwells was
0.4min−1 in all performed tests. The temperature influence was not analysed in
this work, presented results were obtained in room temperature of 20 ◦C to 25 ◦C.

Unfortunately, the simple shear test was not successful. Adhesive bonded joints
between the specimen and steel loading plates failed prior to achievement of the
maximum strain. An example of obtained force-displacement curve is obvious
from Fig. 10.
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Figure 2: Simple shear test.

4 Solution of the state problems

As will be shown in section 5, a boundary value problem (BVP) has to be defined
(and solved) for each experiment (tension, compression) in order to define the pa-
rameter identification problem. Solutions of the BVPs that were performed in this
work are described below.

4.1 Uniaxial tension/compression

A state of uniform uniaxial strain can be assumed in the measured part of the tensile
specimen. Therefore, the tensile test does not need to be simulated using the finite
element method.

In the state of uniaxial tension/compression, the principal stretches are

λ1 = λ , λ2 = λ3 =
1√
λ

(18)

and substitution into Eq. 8 yields the following formulas for strain energy density

WMR(λ ) = ∑
i j

Ci j

(
λ

2 +
2
λ
−3
)i(

2λ +
1

λ 2 −3
) j

, (19)
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Figure 3: Prescribed deformation.

and true stress

σMR(λ ) =∑
i j

Ci j

(
2λ +

1
λ 2 −3

) j−1(
λ

2 +
2
λ
−3
)i−1

(
j
(

2− 2
λ 3

)
(λ

2 +
2
λ
−3)+ i

(
2λ − 2

λ 2

)(
2λ +

1
λ 2 −3

))
,

(20)

where the indices i, j correspond to the indices that appear in the Mooney-Rivlin
model, namely i j = 10, 01, 11, 20, and 30.

The relations below have been derived by following the integration procedure de-
scribed in Aba (2011):

σi = η(W (i)
m ) ·σ (i)

MR−∑
n

σ
(i)
n (21)

σ
(i)
n = α

(i)
n δnσ

(i)
MR + β

(i)
n δn

(
λ (i)

λ (i−1)

)2

σ
(i−1)
MR + γ

(i)
n

(
λ (i)

λ (i−1)

)2

σ
(i−1)
n (22)

γ
(i)
n = e−∆ti/τn (23)

α
(i)
n = 1− τn

∆ti
(1− γ

(i)
n ) (24)

β
(i)
n =

τn

∆ti
(1− γ

(i)
n )− γ

(i)
n (25)

with λ (i) being the value of prescribed stretch at i-th time level, ti, σ
(i)
MR = σMR(λ (i))

and ∆ti = ti− ti−1.
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4.2 Finite-element simulations of compression and shear

The strain distribution in a compression specimen is not uniform (see Fig. 4) be-
cause it is not possible to fully avoid the friction between the specimen and the
loading plates. The strain distribution in the shear specimen is also influenced, in
this case, by adhesively bonded loading plates (see Fig. 5). Therefore, the com-
pression and shear tests were simulated using the finite element method (FEM) in
Abaqus 6.11 software.

Figure 4: Distribution of normal strain in loading direction in case of compression
test simulation.

Figure 5: Distribution of engineering shear strain in xy plane in case of shear test
simulation.
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The compression and shear tests were simulated using first-order axisymmetric
quadrilateral elements (see Fig. 4) and brick elements (see Fig. 5), respectively.
The friction coefficient between the compression sample and the plates (modeled
as rigid surfaces in a contact) was assumed 0.4. One symmetry plane was consid-
ered (xy plane in Fig. 5) in the shear simulation.

5 The identification problem

In the case of material parameters identification, a specimen is usually loaded with
a prescribed displacement (deformation) or force and during the test both force and
displacement at selected locations of the specimen are measured. The identification
procedure usually consists of the following steps: Construct a state problem where
only some of the measured quantities (displacement for instance) are used to define
boundary conditions. From the solution of this state problem another quantities
can be computed that can be compared to the other set of measured values. The
difference between the measured and computed values defines a objective function
to be minimized.

The most common way to define this function, which is also used in this work,
is the least squares approach. Let us consider a system the state of which at a
time step t(i) is described by a vector y(i). The measured quantity and its computed
counterpart are denoted ϕ i and ϕ(x,y(i)) respectively, where x denotes the vector of
material parameters. The objective function that measures the difference between
the model and the experiment is then defined as

F1(x) = ∑
i∈I

(
ϕ i−ϕ(x,y(i))

)2
, (26)

where the set I is a set of all time steps in which the quantity ϕ i has been measured.

As mentioned above, three experiments have been performed in different modes
of loading: uniaxial tension, uniaxial compression, and simple shear (see section
3 for details). The shear loading mode was not used in the identification because
of significantly higher requirement on FEM computational time and the shear ex-
periment failure mentioned above. The shear simulation response was used only
for the validation of the identified parameters. The tensile and compressive loading
modes mean two different state problems and two different sets of measured data
ϕ i that must together lead to a single set of material parameters x. To account for
this, the objective function Eq. 26 has been modified as follows:

F2(x) =
∑i∈I

(
ϕ

t
i−ϕ t(x,y(i))

)2

∑i∈I
(
ϕ

t
i
)2 +

∑i∈I
(
ϕ

c
i −ϕc(x,y(i))

)2

∑i∈I (ϕ
c
i )

2 . (27)
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The upper index t or c denotes either value corresponding either to the tension or
the compression experiment/model. The sums in denominators have been intro-
duced to compensate for the difference of magnitude of response in tension and
compression. In this work, the response in tension were calculated analytically as
ϕ t

i = σi using Eq. 21 and the response in compression is the force computed by the
finite element method.

A general formulation of the identification problem is then

min
x

F2(x)

s.t.h(x)≤ 0
(28)

where the constraints represent requirements on the model’s parameters imposed
mostly by physical admissibility. These constraints are

r : h1(x) = 1− r ≤ 0, (29)

m : h2(x) =−m ≤ 0, (30)

β : h3(x) =−β ≤ 0, (31)

δn : h2+2n(x) =−δn ≤ 0, (32)

τn : h3+2n(x) =−τn ≤ 0. (33)

Only in the case of the first two Mooney-Rivlin parameters, C10 and C01, there was
an additional constraint in the form 0.9E ≤ 6(C10 +C01)≤ 2E

C10,C01 : h3+2N(x) = 0.9E−6(C10 +C01) ≤ 0, (34)

h4+2N(x) = 6(C10 +C01)−2E ≤ 0, (35)

with the constant E being Young’s modulus at infinitesimal strains. Here the rela-
tionship E = 6(C10 +C01), which holds for the Mooney-Rivlin material, has been
used.

5.1 Method for parameter identification

Considering that in the Ogden-Roxburgh model (OR), the damage does not evolve
when Wm = W0, we can identify the Mooney-Rivlin (MR) hyperelastic parameters
(Ci j) first (considering only the first-loading parts of data). The parameters of the
OR model (r, m, β ) can be identified independently afterwards considering, simi-
larly, only the reloading paths. Incorporating also the unloading paths would lead
to local minima in the identification problem since the elastic response predicted
by the model becomes attracted either to the loading or the unloading curve (Fig. 6)
which differ in the real material’s response due to viscoelastic effects.
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Figure 6: Examples of stress-stretch curves for two different local minima when
optimizing parameters of Ogden-Roxburgh model.

Identification of MR

parameters only, x = [Cij ]

Identification of OR parameters

only, MR fixed, x = [r,m, β]

Identification of

x = [cMR; δn, τn],

OR fixed, C2
ij = cMR · C1

ij

Identification of

x = [Cij ; δn, τn], OR fixed

Identification of

x = [Cij ; r,m, β; δn, τn]

C0
ij

C1
ij

C1
ij ; r

1,m1, β1

C2
ij ; r

1,m1, β1; δ1n, τ
1
n

δ0n, τ
0
n

r0,m0, β0

C3
ij ; r

1,m1, β1; δ2n, τ
2
n

Cout
ij ; rout,mout, βout; δoutn , τoutn

Identification of MR starting point

using genetic algorithm, x = [Cij ]

Figure 7: Block diagram of the identification process.

The identification of the viscoelastic parameters (δn, τn), however, cannot be per-
formed without adjusting at least the Mooney-Rivlin parameters because viscoelas-
ticity affects the response of the material in every time step. This part of the iden-
tification has been divided into three steps:
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1. The vector of optimization variables is x = [cMR; δn, τn]. The parameter cMR

serves for roughly adjusting the overall stiffness by multiplying the Mooney-
Rivlin parameters that have been identified earlier.

2. Treating all Mooney-Rivlin parameters as separate optimization variables in
addition to the viscoelasticity parameters, x = [Ci j; δn, τn].

3. All previous successive steps lead to the final optimization of all parameters,
x = [Ci j; r, m, β ; δn, τn] (see Fig. 7).

The starting point for the identification of Mooney-Rivlin parameters were obtained
by a genetic algorithm in OptiSLang software. All other minimizations were car-
ried out using the interior-point algorithm that is part of the Matlab Optimization
Toolbox, although other algorithms were also tested during the early stages of the
work. Namely SQP (Sequential Quadratic Programming), which also provided
good results and seemed to be comparable in computation cost, and a simple gra-
dient method, which was too demanding in the number of objective function eval-
uations.

6 Identification results

Using the procedure described in section 5.1, a set of parameters has been obtained.
Their values are shown in Tab. 1 together with corresponding starting values.

Table 1: The identified values of material parameters.

parameter starting point identified value
C10 kPa 2242 3753
C01 kPa 1091 4506
C11 kPa −4326 −5558
C20 kPa 301 463
C30 kPa 10227 11080

r - 1.5 1.873
m MJ 1.0 1.000
β - 0 0.201
δ1 - 0.10 0.315
τC1 s 1.00 1.931
δ2 - 0.05 0.136
τC2 s 10.00 10.125

Fig. 8 shows the comparison of stress-strain curves of the model and experiment in
tension.
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Figure 8: Stress-stretch curve of tensile test.

Figure 9: Force-displacement curve of compression test.

Similarly, Fig. 9 and Fig. 10 depict the force–displacement curves for the cases of
compression and simple shear. Recall that the parameters of the material model
have been identified on basis of tension and compression experimental data and the
simple shear model serves only for validation of the results here.

As opposed to tension and compression, the shear experiment exhibits stiffer be-
havior under first loading. This can be attributed to the technology of bonding the
shear specimens to metal plates; the specimen becomes stiffer near the surfaces
where glue has been applied. The finite-element model did not account for this
effect.

From the model response in compression and shear (see Fig. 9 and Fig. 10) a signif-
icant increase of stiffness is obvious at strain values close to maximum. Therefore
maximum operational deformations have to be known prior to the identification to
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Figure 10: Force-displacement curve of shear test.

ensure that the investigated strain range is wider than the operational strain range. If
there are any uncertainties about the operational strain range, the objective function
should be adjusted to include final tangent of the model response.

7 Conclusion

In this work, a material model capable of describing dominant mechanical proper-
ties of the analyzed rubber has been composed. The rubber is used as a damping
element in tram wheels. Applicable method of the identification of parameters of
the material model was proposed. The comparison of numerical simulations and
all experiments was in sufficient agreement although the simple shear test was not
used directly in the identification process.

The selected model is suitable for quasistatic analysis which is satisfactory for
present requirements of the rubber sprung wheels producer. Future work will focus
on: (i) investigation of cyclic behavior of this type of material at broader range
of strain rates and time scales and (ii) on analyzing of material model that could
account for plasticity or permanent set.
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