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Domain Type Kernel-Based Meshless Methods for Solving
Wave Equations
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Abstract: Coupled with the Houbolt method, a third order finite difference time
marching scheme, the method of approximate particular solutions (MAPS) has
been applied to solve wave equations. Radial basis function has played an im-
portant role in the solution process of the MAPS. To show the effectiveness of
the MAPS, we compare the results with the well known Kansa’s method, time-
marching method of fundamental solutions (TMMFS), and traditional finite ele-
ment methods. To validate the effectiveness and easiness of the MAPS, four numer-
ical examples which including regular, smooth irregular, and non-smooth domains
are given.

Keywords: the method of fundamental solutions, radial basis functions, mesh-
less methods, the method of particular solutions, Houbolt method.

1 Introduction

There were many numerical methods proposed for solving hyperbolic-type partial
differential equations such as wave equations which govern many different physical
problems. For instance, water wave propagation in water bodies, the stress wave
in an elastic solid and sound wave propagation in a medium. But, the development
of accurate and efficient numerical methods remains an important and challenging
work in the field of scientific computing.

Over the past two decades, many meshless methods have been proposed and widely
circulated in the community of science and engineering. In general, the mesh-
less methods can be classified into domain-type and boundary-type methods. The
domain-type meshless numerical methods such as the smoothed particle hydrody-
namics (SPH) Jiang, Oliveira and Sousa (2007) and the kernel based collocation

1 Department of Mathematics, University of Southern Mississippi, MS 39406, U.S.A
2 National Center for Research on Earthquake Engineering , Taiwan
3 Department of Civil Engineering, National Taiwan University, Taiwan



214 Copyright © 2013 Tech Science Press CMC, vol.33, no.3, pp.213-228, 2013

(KBC) method Kansa (1990a,b) were well developed for solving partial differen-
tial equations. The boundary-type meshless methods such as the MFS Fairweather
and Karageorghis (1998); Golberg and Chen (1998), the hyper-singular meshless
method (HMM) Young, Chen and Lee (2005) and the Trefftz method Chen, Lee, Yu
and Shieh (2009); Chen, Liu and Chang (2009); Chen, Wu, Lee and Chen (2007),
boundary knot method (BKM) Chen (2002), etc. have also been developed to ob-
tain solutions of homogeneous partial differential equations.

The MFS, a KBC method, was first proposed to approximate the solutions of homo-
geneous elliptic-type partial differential equations Kupradze and Aleksidze (1964);
Mathon and Johnston (1977). Coupled with the use of the method of the par-
ticular solutions, the MFS has been extended to solving inhomogeneous partial
differential equations Golberg (1995); Golberg and Chen (1998). With the deriva-
tion of the particular solution of Helmholtz-type equations using radial basis func-
tions Chen and Rashed (1998), the MFS has further extended to solving various
types of time-dependent problems Chen, Golberg and Rashed (1998). Furthermore,
the Eulerian-Lagrangian method (ELM) was combined with MFS to deal with the
multi-dimensional Burgers and wave equation (called Eulerian-Lagrangian method
of fundamental solutions, ELMFS) Gu, Young and Fan (2009); Young, Fan, Hu
and Atluri (2008). Moreover, the time-marching method of fundamental solution
(TMMFS)has been successfully applied in the wave equations and the result is
competitive with the finite element method (FEM) Gu, Fan and Young (2011);
Young, Gu and Fan (2008). However, the challenge of choosing the location of
source points of the MFS and the uncertainty of determining the shape parameter
of radial basis functions have posed difficulties for the TMMFS.

Recently, the method of approximate particular solutions (MAPS) Chen, Fan and
Wen (2011, 2012) has been developed by simply applying the particular solution
of the given differential operator as the kernel basis without using the MFS. The
MAPS is inspired by the work of Sarra Sarra (2006) which showed that the inte-
grated RBFs are more stable and accurate than the regular RBFs. In the numerical
implementation, we choose MQ as the kernel basis with good value of shape param-
eter Rippa (1999); Wertz, Kansa and Ling (2006). The kernel basis for the MAPS
is obtained in a similar way as in Sarra (2006) except integrating with respect to the
Laplacian. In this paper, we couple the MAPS with the Houbolt method Houbolt
(1950); Soroushian and Farjoodi (2008); Wu (2001); Young, Gu and Fan (2008)
which is a third order finite difference scheme to solve the wave equations. By the
Houbolt method, we reduce the given wave equation to Poisson-type equation. At
each time step, the KBC methods such as the MAPS, and the Kansa’s method have
been applied to solve the Poisson-type equation. The main purpose of this paper
is to demonstrate the effectiveness of the MAPS when coupled with the Houbolt
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method.

In Section 2, a brief review of the Houbolt method and kernel-based collocation
methods are given. In Section 3, four numerical examples with regular and irreg-
ular domains are given to illustrate the effectiveness of the kernel-based meshless
methods. We also compare the MAPS and the Kansa’s method with other tradi-
tional methods such as FEM. In Section 4, we make the concluding remarks.

2 Wave Equation

Let Ω be a bounded domain in R2 with boundary ∂Ω = ∂ΩD ∪ ∂ΩN and ∂ΩD ∩
∂ΩN = /0. In this paper we consider the following wave equation:

utt (x, t) = k2
∆u(x, t)− f (x, t) , x ∈Ω, t > 0, (1)

with boundary conditions:

u(x, t) = hD (x, t) , x ∈ ∂ΩD, t > 0,
∂u
∂n

(x, t) = hN (x, t) , x ∈ ∂ΩN , t > 0,
(2)

and initial conditions:

u(x,0) = I1 (x) , x ∈Ω, (3)

ut (x,0) = I2 (x) , x ∈Ω, (4)

where ∆ is the Laplacian, k a constant, t the time variable, n the outward unit vector
normal to ∂Ω, and hD(x, t), hN(x, t), I1(x), I2(x), and f (x, t) are known functions.

Many numerical methods have been developed for solving wave equations. In
general, we first try to remove the time dependent varialbe by various numerical
schemes. In this paper we focus on the Houbolt method which is a third order
time marching scheme to transform the given wave equation to a series of elliptical
differential equations.

Houbolt Method

To remove the time variable, the wave equation (1) and its boundary conditions (2)
are reformulated as follows:

∆u(x, t) =
1
k2 utt (x, t)+

1
k2 f (x, t) , x ∈Ω, t > 0, (5)

Bu(x, t) = h(x, t) , x ∈ ∂Ω, t > 0, (6)
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where B is the boundary operator. The time domain of wave equation is dis-
cretized by Houbolt finite difference method Houbolt (1950); Soroushian and Far-
joodi (2008); Young, Gu and Fan (2008) which required to solve the Taylor series
expansions as follows:

un ≈ un+1− (δ t)un+1
t +

(δ t)2

2
un+1

tt −
(δ t)3

6
un+1

ttt (7)

un−1 ≈ un+1− (2δ t)un+1
t +

(2δ t)2

2
un+1

tt −
(2δ t)3

6
un+1

ttt (8)

un−2 ≈ un+1− (3δ t)un+1
t +

(3δ t)2

2
un+1

tt −
(3δ t)3

6
un+1

ttt (9)

where un = u(x, tn), δ t = tn+1− tn, un+1
t = ∂un+1/∂ t, un+1

tt = ∂ 2un+1/∂ t2, and
un+1

ttt = ∂ 3un+1/∂ t3. After solving Eqns. (7), (8), and (9), the Houbolt method can
be obtained as follows:

un+1
t ≈ 1

6δ t
(11un+1−18un +9un−1−2un−2), (10)

un+1
tt ≈ 1

δ t2 (2un+1−5un +4un−1−un−2). (11)

From Eqns. (5) and (6), we have

∆un+1− 2
k2 δ t2 un+1 =

1
k2 δ t2 (−5un +4un−1−un−2)+

1
k2 f (x, tn+1), x ∈Ω,

(12)

Bu
(
x, tn+1)= h

(
x, tn+1) , x ∈ ∂Ω.

(13)

In order to fully implement the Houbolt method, we need to know the initial values
of the first three time steps. As a result, the Euler method with very tiny step will
be implemented to obtain the initial values of these three time steps. After that, the
right hand side of Eqns. (12) and (13) are known and the Houbolt method can be
started. Meanwhile, the left hand side of equations are discretized by Kernel based
collocation method which is to be described in next section.

Kernel Based Collocation Method

The KBC method (Kernel Based Collocation Method) is one of the well-known
meshless methods for solving PDE problems. In this section, we brief review how
the method coupled with the time discretization scheme we introduced in the last
section for solving wave equations.



Meshless Methods for Solving Wave Equations 217

Let {x j}m
j=1 be m distinct collocation points in Ω of which {x j}mi

j=1 are in Ω and
{x j}m

j=mi+1 are in ∂Ω. The main idea of the KBC method is to approximate the
exact solution u(x, tn+1) at each time step by kernel as follows:

∆û(x, tn+1) =
m

∑
j=1

α
n+1
j ∆Φ(r j) =

m

∑
j=1

α
n+1
j φ(r j), (14)

û(x, tn+1) =
m

∑
j=1

α
n+1
j Φ(r j), (15)

∂ û
∂n

(x, tn+1) =
m

∑
j=1

α
n+1
j

∂Φ

∂n
(r j), (16)

where r j = ‖x−x j‖, j = 1,2, ...,m. Therefore, at each time step Eqns. (12) and
(13) can be approximated as follows:

φ
n+1
i − 2

k2 δ t2 Φ
n+1
i =

1
k2 δ t2 (−5Φ

n +4Φ
n−1−Φ

n−2)+
1
k2 f (xi)

n+1, i = 1, ...,mi

(17)

BΦ
n+1
i = h

(
xi, tn+1) , i = mi +1, ...,m (18)

where

Φ
n+1
i =

m

∑
j=1

α
n+1
j Φ(ri j), ri j = ‖xi−x j‖, (19)

φ
n+1
i =

m

∑
j=1

α
n+1
j φ(ri j), ri j = ‖xi−x j‖. (20)

The above linear system can be written as the following matrix form:[
φ − 2

k2 δ t2 Φ

BΦ

]
m×m

[
αn+1 ]

m×1 =

[ 1
k2 δ t2

[
−5Φn +4Φn−1−Φn−2]+ 1

k2 f n+1

h

]
m×1

. (21)

where φ and Φ for the Kansa’s method and the MAPS in the two dimensional case
are listed as follows:

The Kansa’s method Kansa (1990a,b):

Φ =
√

r2 + c2, (22)

φ =

(
r2 +2c2

)(√
r2 + c2

)3 . (23)
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The MAPS Chen, Fan and Wen (2011, 2012):

Φ =
1
9
(
r2 +4c2)(√r2 + c2

)
− c3

3
ln
(

c+
√

r2 + c2
)
, (24)

φ =
√

r2 + c2. (25)

Note that the m×m interpolation matrix in Eqn. (21) remains unchange for each
time step. Hence, we need only one matrix inversion for all the time steps. As a
result, the solution process is very efficient.

The Houbolt method is a third order multi-steps scheme to deal with the time de-
pendent problem. For solving the first two steps Φ1 and Φ2, we need the numerical
data Φ0, Φ−1, and Φ−2. Notice that Φ0 is the given initial condition in Eqn. (3), and
the Φ−1, and Φ−2 can be obtained using the Euler method associated with initial
conditions in Eqns. (3) and (4) as follows:{

Φ−1 = I1(x)−δ t · I2(x)
Φ−2 = I1(x)−2δ t · I2(x)

(26)

3 Numerical results

To demonstrate the efficiency and consistency of the proposed Kernel Based Collo-
cation methods, four numerical examples are considered in this section. The exam-
ples are examined in the same possible factors which will affect the accuracy. For
instance, the numbers of node, the length of the time step, and the shape parameter
of MQ. Furthermore, a good shape parameter c of kernel function has to be chosen
properly Rippa (1999); Wertz, Kansa and Ling (2006). To validate the numerical
accuracy of the solution u, we use the L2 relative error (EL2) which is defined as
follows:

EL2 =


mt

∑
j=1

(u(x j)− û(x j))
2

mt

∑
j=1

u2(x j)


1/2

(27)

where the mt is the number of testing points, u and û are exact and approximate
solution respectively. The test points are randomly selected. For the notation in all
the numerical examples, we denote m as the total number of interpolation points
which include the interior and boundary points, mi the number of interior points, c
the shape parameter of MQ.

The computation were performed using MATLAB on a Window 7, 32 bit, Intel
Core i7 M520 with 2.5GHz CPU and 4GB memory.
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Example 1 In the first example, we consider the wave equation in a unit square as
follows:

utt(x,y, t) = ∆u(x,y, t)+ f (x,y, t), (x,y) ∈Ω, t > 0. (28)

where

f (x,y, t) = (2x(1− x)+2y(1− y)− x(1− x)y(1− y))cos(t). (29)

The initial and boundary condition are given as follows:

u(x,y,0) = 1+ x(1− x)y(1− y), (x,y) ∈ ∂Ω, (30)

ut(x,y,0) = 0, (x,y) ∈ ∂Ω, (31)

u(x,y, t) = x(1− x)y(1− y)cos(t), (x,y) ∈Ω. (32)

The analytical solution is given as follows:

u∗(x,y, t) = 1+ x(1− x)y(1− y)cos(t). (33)

For the numerical implementation, we choose 400 evenly distributed interior and
boundary interpolation points in Ω and set the time step δ t = 0.02. In the Figure
1, we show the relative errors EL2 of both methods. No significant difference in
term of accuracy has been observed. In Table 1, the maximum relative errors of
the MAPS is similar to the Kansa’s method when we extended the simulation to a
much larger time domain t ∈ [0,100].

For the results showed in Figure 1 and Table 1, we observe that the accumulated
error which is commonly happen over a long simulation period is apparently not oc-
curred for an extended period of time. This is significant for solving time-dependent
problems, in particular for the wave equations. This is an indication that both meth-
ods are not only accurate but also stable. In the time-dependent problems, the sta-
bility of the computational algorithm is as important as the accuracy and efficiency.

Example 2 In this example, we investigate the homogeneous wave equation in
irregular domain which is considered in Gu, Fan and Young (2011). The wave
problem can be written as follows:

utt(x,y, t) = ∆u(x,y, t), (x,y) ∈Ω, t > 0. (34)

u(x,y,0) = 3, (x,y) ∈Ω, (35)

ut(x,y,0) =

√
2π

10
cos
(

πx
10

)
cos
(

πy
10

)
, (x,y) ∈Ω, (36)

u(x,y, t) = 3+ cos
(

πx
10

)
cos
(

πy
10

)
sin

(√
2πt
10

)
, (x,y) ∈ ∂Ω. (37)
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Figure 1: EL2 relative error for m = 400 in a unit square in Example 1.

Table 1: Maximum relative error EL2 using various number of interpolation points
with time step δ t = 0.02 and t ∈ [0,100] in Example 1.

MAPS Kansa

m mi c EL2 c EL2

196 144 0.5 4.4×10−5 0.64 5.5×10−5

289 225 0.37 2.6×10−5 0.47 3.4×10−5

400 324 0.30 1.7×10−5 0.39 2.6×10−5

529 441 0.25 1.4×10−5 0.32 2.5×10−5

The analytical solution is given by

u∗(x,y, t) = 3+ cos
(

πx
10

)
cos
(

πy
10

)
sin

(√
2πt
10

)
(38)

The irregular domain (see Figure 2) is defined as follows:

∂Ω = {(r(θ)cos(θ),r(θ)sin(θ)) : θ ∈ [0,2π)}

where

r(θ) = 10

[
cos(4θ)+

(
18
5
− sin2 (4θ)

)1/2
]1/3
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Figure 2: Profile of the computational domain (Cassini) in Example 2.

In the numerical implementation, we choose 400 evenly distributed interior and
boundary points in Ω with the time step δ t = 0.02 for both methods. Figure 3 (left)
shows that the EL2 error over a long period of time (t ∈ [0,120]). We observe that
the errors are stably oscillating between 10−5 and 10−4 without accumulating the
error. In Figure 3 (left) we observe that the error of the MAPS method is half order
more accurate than the Kansa’s method. In Table 2, we observe that the MAPS
requires only m = 200 to reach a very high accuracy in a large domain and a long
period of time t ∈ [0,120]. The MAPS converges rapidly and hence very efficient.
Furthermore, when comparing the results with the MFS-MPS and FEM as shown in
Figure 3 (right) Gu, Fan and Young (2011), the MAPS is apparently much superior
in term of accuracy and stability. From Table 2, the MAPS is slightly better than
the Kansa’s method.

Example 3 In this example we consider the same wave equation as in the last
example but with more complicate domain and without symmetry. The profile of
the domain is shown in Figure 4. The parametric equation of the boundary of the
domain is as follows:

∂Ω = {(r(θ)cos(θ),r(θ)sin(θ)) : θ ∈ [0,2π)}

where

r(θ) = esin(θ) sin2 (2θ)+ ecos(θ) cos2 (2θ).
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Figure 3: EL2 relative error using m = 400 (left) and the results obtained in Gu, Fan
and Young (2011).

Table 2: Maximum relative error EL2 using δ t = 0.02 with time domain t ∈ [0,120]
in Example 2.

MAPS Kansa

m mi c EL2 c EL2

200 136 6.8 4.5×10−5 9.0 1.4×10−4

300 205 5.3 4.4×10−5 7.6 7.0×10−5

400 268 2.8 4.8×10−5 3.9 9.9×10−5

500 328 2.3 6.9×10−5 3.8 9.8×10−5

1400 976 1.3 5.5×10−5 2.1 1.2×10−4



Meshless Methods for Solving Wave Equations 223

−2 −1 0 1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 4: The profile of computational domain (Amoeba) in Example 3.

In the numerical implementation, we choose δ t = 0.02 for the Houbolt method.
In general, the error will oscillate when time goes by for wave equation. But in
the case, Figure 5 shows that the error is coincidentally stable in the time domain
t ∈ [0,120]. In Table 3, we observe that the MAPS is slightly more accurate than
the Kansa’s method. Both methods converge rapidly to its potential. Therefore, the
numerical error for the the MAPS is more stable and a half order more accurate
than the Kansa’s method in this example of irregular domain.
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Time

E
L2
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Figure 5: EL2 relative error for m = 400 in Example 3.
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Table 3: Maximum EL2 relative error. Time step δ t = 0.02, with time domain
t ∈ [0,120] in Example 3.

MAPS Kansa

m mi c EL2 c EL2

100 64 0.05 4.6×10−4 0.21 1.6×10−3

200 145 0.1 1.5×10−4 0.19 4.8×10−4

300 237 0.12 1.0×10−4 0.25 3.3×10−4

400 317 0.22 1.4×10−5 0.35 4.9×10−5

Example 4 In this example, we consider the following wave equation

utt(x,y, t) = ∆u(x,y, t), (x,y) ∈Ω, t > 0 (39)

u(x,y,0) = 2+ sin(
πx
4
)sin(

πy
4
), (x,y) ∈Ω, (40)

ut(x,y,0) = 0, (x,y) ∈Ω, (41)

u(x,y, t) = 2, (x,y) ∈ ∂Ω, (42)

where Ω is a L shape domain (see Figure 6). The analytical solution is given as
follows:

u∗(x,y, t) = 2+ sin(
πx
4
)sin(

πy
4
)cos(

√
2πt
4

) (43)

In this example, we intend to test the effectiveness of both methods for the non-
smooth and irregular domain. For the numerical implementation, we choose δ t =
0.02 for the Houbolt method for t ∈ [0,120]. In Figure 7, we choose m = 408 for
both the Kansa’s method and the MAPS which has the clear advantage with respect
to the FEM. The Figure 7 and the Table 4 are the results of the Kansa’s, MAPS,
and FEM methods. In Table 4, we observe that the MAPS requires only m = 225
to reach the accuracy of 10−4 while the Kansa’s method requires m = 408 to have
such accuracy. For the FEM, the convergent rate is much slower. The MAPS has
the clear advantages in term of accuracy, convergent rate, and stability.

4 Conclusion

In this study, the solution of wave equations are approximated by two domain type
kernel-based collocation meshless methods (the Kansa’s and MAPS methods). In
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Figure 6: The profile of the non-smooth Domain - L shape.
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Figure 7: EL2 relative error for m = 408 in Example 4.

Table 4: EL2 relative error. The time step δ t = 0.02 with time domain t ∈ [0,120]
for the MAPS, the Kansa’s method, and FEM in Example 4.

MAPS Kansa FEM

m mi c EL2 c EL2 m EL2

96 56 3.3 1.5×10−2 4.2 2.9×10−2 1027 2.2×10−2

225 161 2.1 4.1×10−4 2.95 1.9×10−3 5004 2.6×10−3

408 320 1.28 3.3×10−4 2.1 4.6×10−4 10088 1.8×10−4

736 616 0.68 2.9×10−4 1.35 3.0×10−4 15001 3.5×10−4
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addition, the standard Houbolt method is implemented to remove the time variable.
The numerical results show that the MAPS is superior to the Kansa’s method in
term of accuracy and stability. The superiority of the MAPS is even more pro-
nouncing for the case of non-smooth and irregular boundary. Comparing to other
numerical methods such as TMMFS or FEM, both the Kansa’s method and MAPS
have clear advantages in term of accuracy and stability.
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