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The time-dependent Green’s function of the transverse
vibration of a composite rectangular membrane

V.G.Yakhno1, D. Ozdek2 3

Abstract: A new method for the approximate computation of the time-dependent
Green’s function for the equations of the transverse vibration of a multi stepped
membrane is suggested. This method is based on generalization of the Fourier
series expansion method and consists of the following steps. The first step is finding
eigenvalues and an orthogonal set of eigenfunctions corresponding to an ordinary
differential operator with boundary and matching conditions. The second step is a
regularization (approximation) of the Dirac delta function in the form of the Fourier
series with a finite number of terms, using the orthogonal set of eigenfunctions.
The third step is an approximate computation of the Green’s function in the form
of the Fourier series with a finite number of terms relative to the orthogonal set
of eigenfunctions. The computational experiment confirms the robustness of the
method.

Keywords: Multi stepped membrane, equations of transverse vibration, Green’s
function, analytical method, simulation.

1 Introduction

In recent years, together with the improvements in technology and science, many
researchers have attempted to analyze vibrations in composite structures like non-
homogeneous membranes with continuously varying density or stepped density
(see, for example [Spence and Horgan (1983); Masad (1996); Laura, Rossi and
Gutierrez (1997); Laura, Bambill and Gutierrez (1997); Bambill, Gutierrez, Laura
and Jederlinic (1997); Laura, Rossit and Malfa (1998); Laura, Rossit and Malfa
(1999); Wang (1998); Buchanan and Jr (1999); Jabareen and Eisenberger (2001);
Kang and Lee (2002); Kang (2004); Filipich and Rosales (2007)]).
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Most of investigations dealt with the natural frequencies and mode shapes for the
non-homogeneous membranes of different shapes: Spence and Horgan [Spence and
Horgan (1983)] presented the lower and upper bounds for the natural frequencies
of vibration of a circular membrane with stepped radial density. Masad [Masad
(1996)] used numerical integration and a perturbation method to obtain the natu-
ral frequencies of a non-homogeneous rectangular membrane with linearly varying
density. Kang investigated the natural frequencies and mode shapes of the com-
posite rectangular membranes with oblique and bent interfaces in his works [Kang
and Lee (2002); Kang (2004)] respectively. Filipich and Rosales [Filipich and
Rosales (2007)] found the natural frequencies and mode shapes of the composite
membranes.

The Green’s functions are a very important mathematical tool to solve vibration
problems related to different fields such as electromagnetic, elastic, acoustic etc.
and it is a basic tool to formulate a boundary integral equation of the considered
problem, so it is usually used in boundary element method [Chew (1990); Tewary
(1995); Berger and Tewary (2001); Tewary (2004); Pan and Yuan (2000a); Rashed
(2004); Ting (2005); Nakamura and Tanuma (1997); Pan and Yuan (2000b); Yang
and Tewary (2008); Gu, Young and Fan (2009); Chen, Ke and Liao (2009); Yakhno
(2011); Yakhno and Yaslan (2011); Yakhno and Ozdek (2012)]. The Green’s func-
tions are preferable since they provide simplification for modelling waves and give
powerful computational advantages for engineers to overcome calculational diffi-
culties. The Green’s functions have been used to solve problems of the wave prop-
agation in composite elastic materials. Especially, they are applicable for two di-
mensional problems of composite structures. For example, Kukla used the Green’s
function to obtain a frequency equation and exact solutions for the problems of the
plate systems [Kukla (1996); Kukla (1999); Kukla and Szewczyk (2007)].

The time-dependent Green’s functions of the vibration of elastic materials are de-
fined by the partial differential equations with piecewise constant coefficients and
the Dirac delta function as inhomogeneous term. Methods for constructing the
time dependent-Green’s functions for the multi stepped membrane have not been
developed so far.

The purpose of the present paper is an approximate computation of the time de-
pendent Green’s function for the equations of the transverse vibration of a multi
stepped membrane with a piecewise constant varying density and tension. For the
computation of the Green’s function we suggest a new analytical method. This
method has the following steps. The first step is determination of the eigenvalues
and eigenfunctions of an ordinary differential equation with boundary and match-
ing conditions. These eigenfunctions form an orthogonal set. Second step is an
approximation (regularization) of the Dirac delta function in the form of Fourier
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series with a finite number of terms, using this orthogonal set of the eigenfunc-
tions. The third step is an approximate computation of the Green’s function in the
form of the Fourier series with a finite number of terms relative to the orthogonal
set of eigenfunctions.

The paper is organized as follows. The equations of the transverse vibration of a
multi stepped membrane are stated in Section 2. Section 3 describes the steps of
the approximate computation of the time-dependent Green’s function. The com-
putational experiment is given in Section 4. The conclusion and appendix with
technical details are at the end of the paper.

2 The time-dependent Green’s function of the transverse vibration of a com-
posite multi stepped membrane

2.1 Equations for the Green’s function

Let b1, b2, ρi, Ti, `i, i = 1,2, . . . ,N be given real numbers such that 0 = `0 < `1 <
`2 < .. . < `N = b2, ρi > 0, Ti > 0 and ρ(x2), T (x2) be given functions of the form

ρ(x2) = {ρi, x2 ∈ (`i−1, `i), i = 1,2, . . . ,N} , (1)

T (x2) = {Ti, x2 ∈ (`i−1, `i), i = 1,2, . . . ,N} . (2)

Let us consider a multi layered membrane which is located in a rectangular domain
D of the form

D = {x = (x1,x2)| x1 ∈ [0,b1],x2 ∈ [0, `1)∪ . . .∪ (`N−1,b2]} .

Here, ρ(x2) and T (x2) are the density and the tension of this membrane, respec-
tively.

The Green’s function of the transverse vibration on a multi layered membrane is a
generalized function G(x1,x2, t;x0) satisfying for (x1,x2) ∈ (0,b1)× (0, `1)∪ . . .∪
(`N−1,b2), t ∈ R the following equations

ρ(x2)
∂ 2G
∂ t2 =

∂

∂x2

(
T (x2)

∂G
∂x2

)
+T (x2)

∂ 2G
∂x2

1
+δ (x−x0)δ (t), (3)

G(x1,x2, t;x0)|t<0 = 0, (4)
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and the boundary and matching conditions

G(0,x2, t;x0) = 0, G(b1,x2, t;x0) = 0, (5)

G(x1,0, t;x0) = 0, G(x1,b2, t;x0) = 0, (6)

G(x1,x2, t;x0)
∣∣∣
x2=`i−0

= G(x1,x2, t;x0)
∣∣∣
x2=`i+0

, (7)

T (x2)
∂G
∂x2

(x1,x2, t;x0)
∣∣∣
x2=`i−0

= T (x2)
∂G
∂x2

(x1,x2, t;x0)
∣∣∣
x2=`i+0

, (8)

where i = 1,2, . . . ,N−1; x0 = (x0
1,x

0
2) ∈ (0,b1)× (0, `1)∪ . . .∪ (`N−1,b2) is a fixed

point; δ (x−x0) = δ (x1−x0
1,x2−x0

2) is the Dirac delta function concentrated at x0;
δ (t) is the Dirac delta function concentrated at t = 0.

Using the technique of the generalized functions (see, for example [Vladimirov
(1971)]) the following remark holds.

Remark 1. Let (x0
1,x

0
2) ∈ (0,b1)× (0, `1)∪ . . .∪ (`N−1,b2) be a fixed point, Θ(t)

be the Heaviside function (Θ(t) = 1 for t ≥ 0; Θ(t) = 0 for t < 0) and g(x1,x2, t;x0)
be a generalized function satisfying for (x1,x2) ∈ (0,b1)× (0, `1)∪ . . .∪ (`N−1,b2),
t ∈ R the following equation

ρ(x2)
∂ 2g
∂ t2 =

∂

∂x2

(
T (x2)

∂g
∂x2

)
+T (x2)

∂ 2g
∂x2

1
, (9)

and conditions

g(x1,x2,0,x0) = 0,
∂g
∂ t

(x1,x2,0,x0) =
1

ρ(x2)
δ (x−x0), (10)

g(0,x2, t;x0) = 0, g(b1,x2, t;x0) = 0, (11)

g(x1,0, t;x0) = 0, g(x1,b2, t;x0) = 0, (12)

g(x1,x2, t;x0)
∣∣∣
x2=`i−0

= g(x1,x2, t;x0)
∣∣∣
x2=`i+0

, (13)

∂g
∂x2

(x1,x2, t;x0)
∣∣∣
x2=`i−0

= βi
∂g
∂x2

(x1,x2, t;x0)
∣∣∣
x2=`i+0

, β =
Ti+1

Ti
, (14)

where i = 1,2, . . . ,N−1. Then G(x1,x2, t;x0) = Θ(t)g(x1,x2, t;x0) is a generalized
function satisfying (3)− (8).

Therefore, to determine the Green’s function G(x1,x2, t;x0) it is sufficient to find a
generalized function g(x1,x2, t;x0) satisfying (9)-(14).
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3 Approximate computation of a solution of (9)-(14)

3.1 The first step: Solving eigenvalue-eigenfunction problem in a multi layered
rectangle

Let b1,b2 and `i, i = 1,2, . . . ,N be fixed positive numbers, ρ(x2), T (x2) be given
functions of the form (1),(2), respectively and let d(x2) be defined as a piecewise
constant function of the form

d(x2) = {di = ρi/Ti, x2 ∈ (`i−1, `i), i = 1,2, . . . ,N} . (15)

Let us consider the following partial differential equation

∂ 2V
∂x2

1
+

∂ 2V
∂x2

2
+λd(x2)V = 0, x1 ∈ (0,b1), x2 ∈ (0, `1)∪ . . .∪ (`N−1,b2), (16)

subject to the boundary conditions

V (0,x2) = 0, V (b1,x2) = 0, (17)

V (x1,0) = 0, V (x1,b2) = 0, (18)

and the matching conditions

V (x1, `i−0) =V (x1, `i +0), (19)
∂V
∂x2

(x1, `i−0) = βi
∂V
∂x2

(x1, `i +0), βi =
Ti+1

Ti
, i = 1,2, . . . ,N−1, (20)

where λ is a parameter.

We note that a number λ for which there exists a nonzero function V (x1,x2) sat-
isfying (16)− (20) is called an eigenvalue and a nonzero solution V (x1,x2) of
(16)− (20) for this eigenvalue is called an eigenfunction.

Let

ξk =

(
kπ

b1

)2

, Uk(x1) =

√
2
b1

sin(
√

ξkx1), k = 1,2, . . . (21)

be eigenvalues and corresponding to them eigenfunctions of the following problem

U ′′(x1)+ξU(x1) = 0, x1 ∈ (0,b1), (22)

U(0) = 0, U(b1) = 0. (23)

For each fixed k = 1,2, . . . , a non-zero solution of (16)− (20) can be found in the
form

V (x1,x2) =Uk(x1)Z(x2). (24)
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Substituting (24) into (16) and using (22),(23) we find

1
d(x2)

Z′′(x2)+

(
λ − ξk

d(x2)

)
Z(x2) = 0, x2 ∈ (0, `1)∪ . . .∪ (`N−1,b2), (25)

Z(0) = 0, Z(b2) = 0, (26)

Z(`i−0) = Z(`i +0), Z′(`i−0) = βiZ′(`i +0), βi =
Ti+1

Ti
. (27)

Therefore finding eigenvalues and eigenfunctions of (16)− (20) is reducible to
the construction of the eigenvalues and corresponding to them eigenfunctions of
(25)− (27).

Remark 2. The operator Lk =
1

d(x2)
(− d2

dx2
2
+ξk) is positive-definite and symmetric

for all positive ξk, k = 1,2, . . . (see, for example , [Yakhno and Ozdek (2012)]).
Using the general theory of symmetric and positive definite operators (see, for ex-
ample [Vladimirov (1971)]) we find that all eigenvalues λ of (25)− (27) are real
and positive.

3.1.1 Construction of eigenvalues and eigenfunctions of (25)− (27)

For each k = 1,2, . . . , we find a general solution of the ordinary differential equa-
tion (25) in the form

Z(x2) = Ai cos(
√

diη
ix2)+Bi sin(

√
diη

ix2), x2 ∈ (`i−1, `i), i = 1,2, . . . ,N,

with arbitrary constants Ai, Bi, where η i = λ − ξk
di
, i = 1,2, . . . ,N. We need to de-

termine the constants Ai and Bi to satisfy (26),(27). Setting B1 = 1 and using the
boundary and matching conditions (26), (27) we find A1 = 0 and the algebraic
system

Q(λ ) ·S = 0, (28)

where 0 is zero column vector, S is a column vector with the components 1, A2,
B2, . . . ,AN ,BN and Q is a block matrix of the form

Q(λ )=



P1(λ ) R1(λ ) 0 0 0 0 0
0 P2(λ ) R2(λ ) 0 0 0 0
0 0 P3(λ ) R3(λ ) 0 0 0
...

...
...

...
...

...
...

0 0 0 0 PN−2(λ ) RN−2(λ ) 0
0 0 0 0 0 PN−1(λ ) RN−1(λ )
0 0 0 0 0 0 PN(λ )


,(29)
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where Pr(λ ), R j(λ ) are the submatrices defined by

P1(λ ) =

[
sin(
√

d1η1`1)√
d1η1 cos(

√
d1η1`1)

]
2×1

;

Pr(λ ) =

[
cos(
√

drηr`r) sin(
√

drηr`r)
−
√

drηr sin(
√

drηr`r)
√

drηr cos(
√

drηr`r)

]
2×2

,

for r = 2, . . . ,N−1;

PN(λ ) =
[

cos(
√

ηNdN`N) sin(
√

ηNdN`N)
]

1×2 ;

R j(λ )=

[
−cos(

√
d j+1η j+1` j) −sin(

√
d j+1η j+1` j)

β j
√

d j+1η j+1 sin(
√

d j+1η j+1` j) −β j
√

d j+1η j+1 cos(
√

d j+1η j+1` j)

]
2×2

,

for j = 1, . . . ,N−1.
Hence finding the nonzero functions Z(x2) satisfying (25)− (27) is reduced to determine
the numbers A2,B2, . . . ,AN ,BN satisfying (28). The equation (28) is the homogeneous lin-
ear algebraic system which is written in the matrix form. This system is consistent if
and only if the determinant of the matrix Q(λ ) is equal to zero. Moreover, the roots of
det(Q(λ )) = 0 are eigenvalues of (25)− (27). The roots of det(Q(λ )) = 0 can be com-
puted by MATLAB tools (see, Computational experiment).
Let us assume that roots λkm, k,m = 1,2, . . . of det(Q(λ )) = 0 have been derived. Substi-
tuting λ = λkm and Akm

1 = 0, Bkm
1 = 1 into (28), we find the following relations:

R1(λkm)

[
Akm

2
Bkm

2

]
=−P1(λkm), (30)

R j(λkm)

[
Akm

j+1
Bkm

j+1

]
=−P j(λkm)

[
Akm

j
Bkm

j

]
, j = 2, . . . ,N−1. (31)

Notice that detR j(λkm) = β j
√

λkmd j+1 6= 0 for all j = 1,2, . . . ,N−1 . Then the values of
Akm

2 , Bkm
2 , . . . Akm

N , Bkm
N are found by the following recurrence relations:[

Akm
2

Bkm
2

]
=−R−1

1 (λkm)P1(λkm), (32)

[
Akm

j+1
Bkm

j+1

]
=−R−1

j (λkm)P j(λkm)

[
Akm

j
Bkm

j

]
, j = 2, . . . ,N−1. (33)

Substituting the obtained values Akm
2 ,Bkm

2 , . . . ,Akm
N ,Bkm

N into (28), we find the following
explicit formula for the eigenfunction Zkm(x2) of (25)− (27)

Zkm(x2) = Akm
i cos(

√
η i

kmdix2)+Bkm
i sin(

√
η i

kmdix2), x2 ∈ (`i−1, `i), (34)

where i = 1,2, . . . ,N; k,m = 1,2, . . . .
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Remark 3. Using (24) and (34), the eigenfunctions of (16)− (20) are constructed in the
form

Vkm(x1,x2) =Uk(x1)Zkm(x2), x1 ∈ [0,b1], x2 ∈ [0, `1)∪ . . .∪ (`N−1,b2], (35)

where Uk(x1) has been defined by (21), k,m = 1,2, . . . .

3.1.2 Orthogonality Property of Eigenfunctions

Let ρ(x2) be a function defined by (1), Vkm(x1,x2), k,m = 1,2, . . . be eigenfunctions of the
form (35) and

Xkm(x1,x2) =Vkm(x1,x2)/αkm, k,m = 1,2, . . . , (36)

where α2
km =

∫ b1
0
∫ b2

0 ρ(x2)V 2
km(x1,x2)dx1dx2. Then the set of the functions Xkm, k,m =

1,2 . . . and Xk′m′ , k′,m′ = 1,2 . . . is orthonormal, that is∫ b1

0

∫ b2

0
ρ(x2)Xkm(x1,x2)Xk′m′(x1,x2)dx2dx1 =

{
0, if k 6= k′ or m 6= m ,′

1, if k = k′ and m = m′ . (37)

The validity of the equation (37) can be found in Appendix A.

3.2 The second step: Approximation of the Dirac delta function

The Dirac delta function is very often used for modelling the point source in physics and
engineering (see, [Vladimirov (1971); Yakhno (2008); Yakhno (2011); Yakhno and Ozdek
(2012); Faydaoglu and Yakhno (2012)]). We note that the Dirac delta function does not
have point-wise values and can not be drawn. For this reason, a regularization (approxima-
tion) of the Dirac delta function in the form of the classical function which has point-wise
values, is usually used for drawing a graph of the Dirac delta function or for computations
[Vladimirov (1971)].
Let M be a fixed natural number, then we consider a function δM(x,x0) defined by the
formula

δM(x,x0) =
M

∑
k=1

M

∑
m=1

ρ(x0
2)Xkm(x0

1,x
0
2)Xkm(x1,x2). (38)

Using the formula (38), we have computed values of δM(x,x0) for different M. The result
of this computation for (x0

1,x
0
2) = ( 3

2 ,
7
2 ), (x1,x2) ∈ (0,5]× [0, 5

2 )∪ (
5
2 ,5] and the material

properties

ρ1 = 1400kg/m3, ρ2 = 2400kg/m3, T1 = 0.5×102N/m, T2 = 6×102N/m.

is presented in Fig 1,2.
We note that the values of the Dirac delta function have been interpreted as zero for all
points except (x0

1,x
0
2). The value at (x0

1,x
0
2) is +∞. The result of the computation indicates

that as we increase M, the values of δM(x,x0), near (x0
1,x

0
2), are increasing and values at
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Figure 1: Screenshot of δM(x,x0) for M = 15; x0
1 =

3
2 ; x0

2 =
7
2 .

Figure 2: Screenshot of δM(x,x0) for M = 35; x0
1 =

3
2 ; x0

2 =
7
2 .

other points (x1,x2) are vanishing. This means that δM(x,x0) regularizes (approximates)
the Dirac delta function δ (x−x0) and M is the parameter of the regularization.
Hence, δM(x,x0), defined by the formula (38), is useful for an approximate computation
of the Green’s function.
Let us consider (9)−(14) when δ (x−x0) is replaced by δM(x,x0). We obtain the following
problem of finding gM(x1,x2, t;x0) satisfying

ρ(x2)
∂ 2gM

∂ t2 =
∂

∂x2

(
T (x2)

∂gM

∂x2

)
+T (x2)

∂ 2gM

∂x1
2
, (39)
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(x1,x2) ∈ (0,b1)× (0, `1)∪ . . .∪ (`N−1,b2),

gM(x1,x2,+0;x0) = 0,
∂gM

∂ t
(x1,x2,+0;x0) =

1
ρ(x0

2)
δM(x,x0), (40)

gM(0,x2, t;x0) = 0, gM(b1,x2, t;x0) = 0, (41)
gM(x1,0, t;x0) = 0, gM(x1,b2, t;x0) = 0, (42)

gM(x1, `i−0, t;x0) = gM(x1, `i +0, t;x0), (43)
∂gM

∂x2

∣∣∣
x2=`i−0

= βi
∂gM

∂x2

∣∣∣
x2=`i+0

, βi =
Ti+1

Ti
, i = 1,2, . . . ,N−1, (44)

where x0 = (x0
1,x

0
2) ∈ (0,b1)× (0, `1)∪ . . .∪ (`N−1,b2).

3.3 The third step: Computation of a solution gM(x1,x2, t;x0) of (39)− (44)

We find a solution of (39)− (44) in the form

gM(x1,x2, t;x0) =
M

∑
k=1

M

∑
m=1

Hkm(t;x0)Xkm(x1,x2), (45)

where Hkm(t;x0) are unknown functions and Xkm(x1,x2) are eigenfunctions for all k,m =
1,2, . . . for (x1,x2) ∈ [0,b1)× [0, `1)∪ . . .∪ (`N−1,b2], t > 0. Substituting (45) into (39)−
(40) and using the orthogonality Property 3.1.2 we get for each k,m = 1,2, . . . ,N the fol-
lowing ordinary differential equation with initial data

H ′′km(t;x0)+λkmHkm(t;x0) = 0, (46)
Hkm(0;x0) = 0, H ′km(0;x0) = Xkm(x0

1,x
0
2). (47)

The solution of (46)− (47) is given by

Hkm(t;x0) =
Xkm(x0

1,x
0
2)√

λkm
sin(
√

λkmt),

for k,m = 1,2, . . . ,M. As a result of it, a solution of (39)− (43) is found by

gM(x1,x2, t;x0) =
M

∑
k=1

M

∑
m=1

Xkm(x0
1,x

0
2)√

λkm
sin(

√
λkmt)Xkm(x1,x2). (48)

As a last step, using Remark 1 and above mentioned reasonings, we declare the function
GM(x1,x2, t;x0) = Θ(t)gM(x1,x2, t;x0) as a regularized (approximate) Green’s function of
the transverse vibration of the multi-layered membrane. The number M is the parameter of
the regularization.
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4 Computational experiment

For the computational experiment, a two layered membrane, located in a rectangular do-
main

D = {x = (x1,x2)| x1 ∈ [0,5],x2 ∈ [0,(5/2))∪ ((5/2),5]}

has been taken. The density and the tension of the first membrane are

ρ1 = 1400kg/m3, T1 = 0.5×102N/m.

The density and the tension of the second membrane are

ρ2 = 2400kg/m3, T2 = 6×102N/m.

Notice that in this example N = 2 and d(x) = d1 for x ∈ [0, `1); d(x) = d2 for x ∈ (`1, `2].

The main goal of this experiment is the approximate computation of the Green’s function
for the transverse vibration of the two stepped membrane.
In the first step, we construct eigenvalues and corresponding to them eigenfunctions of
(16)− (20) using the technique of Section 3.1.1. For this, we substitute N = 2 into the
algebraic system (28), then the matrix Q(λ ) takes the form

Qk(λ )=


sin(

√
η1

k d1`1) −cos(
√

η2
k d2`1) −sin(

√
η2

k d2`1)√
η1

k d1 cos(
√

η1
k d1`1) β

√
η2

k d2 sin(
√

η2
k d2`1) −β

√
η2

k d2 cos(
√

η2
k d2`1)

0 cos(
√

η2
k d2b2) sin(

√
η2

k d2b2)

,

where η i
k = (λ − ξk

di
), i = 1,2; k = 1,2, . . . .

For each k = 1,2, . . . , we have computed the roots λkm, m = 1,2, . . . of the equation
det(Qk(λ )) = 0 using MATLAB. These roots are eigenvalues of (16)− (20).
After computation of eigenvalues λkm, the set of eigenfunctions Vkm(x1,x2) is constructed
by the following formulas

Vkm(x1,x2) =Uk(x1)Zkm(x2), x1 ∈ [0,b1], x2 ∈ [0, `1)∪ (`1, `2], (49)

where Uk(x1) are given by (21) and Zkm(x2) is defined by

Zkm(x2) =


sin(

√
λkmd1−ξkx2) x2 ∈ [0,r),

sin(
√

λkmd1−ξk`1)cos(
√

λkmd2−ξk(x2− `1))

+

√
λkmd1−ξk

β

√
λkmd2−ξk

cos(
√

λkmd1−ξk`1)sin(
√

λkmd2−ξk(x2− `1)), x2 ∈ (r,b2].

Here the values of d1, d2, β are defined by di = ρi/Ti, i = 1,2; β = T2
T1
.

The orthonormal set of eigenfunctions is defined by (36).



166 Copyright © 2013 Tech Science Press CMC, vol.33, no.2, pp.155-173, 2013

The second step is an approximation (regularization) of the Dirac delta function. For the
computational experiment we take x0 = ( 3

2 ,
7
2 ) and the parameter M of the regularization

(approximation) has been chosen by the following natural logic. Using the formula (38),
δM(x,x0) has been computed for the different values of M = 5,10, . . . ,35. The results of
the computation are presented in Fig. 1,2 for M = 15 and M = 35, respectively.
We note that the values of the Dirac delta function have been interpreted as zero for all
points except (x0

1,x
0
2). The value at (x0

1,x
0
2) is +∞. The result of the computation indicates

that as we increase M, the values of δM(x,x0), when (x1,x2) is near (x0
1,x

0
2), are increasing

and values at other points (x1,x2) are vanishing. This means that δM(x,x0) regularizes (ap-
proximates) the Dirac delta function δ (x−x0) and M is the parameter of the regularization.
We have observed that there is not much difference between the figures of regularization of
Dirac delta function SM(x,x0) for the values M = 35 and for the values of M greater than
35. So, we have chosen number M = 35 as an optimal value of the parameter of approxi-
mation.
In the third step, the problem (39)− (44) has been solved for M = 35, b1 = 5, `1 = 5

2 ,

b2 = `2 = 5, N = 2. The solution gM(x1,x2, t;x0) of (39)− (44) has been computed by
formula (48). The values of the function gM(x1,x2, t;x0) (M = 35) have been accepted as
values of an approximate solution of (9)− (14). This means

GM(x, t;x0) = Θ(t)
M

∑
k=1

M

∑
m=1

Xkm(x0
1,x

0
2)√

λkm
sin(

√
λkmt)Xkm(x1,x2)

is an approximate Green’s function for the equations of the transverse vibration (3)− (8),
respectively.
Using the formula for GM(x, t;x0) the approximate computation of the Green’s function has
been made. The results of this computation are presented in Figs.3-7. The horizontal axis of
the lower picture in Fig.3 is x1−axis and the vertical one is the magnitude of GM(x, t;x0).
The upper picture in Fig.3 is the plan of the surface z = GM(x, t;x0) (view from the top
of z−axis). Here the horizontal axis is x1−axis and vertical one is x2−axis. The plan
of the surface z = GM(x, t;x0) for the different time t is presented in Figs.4-7, where the
vertical axis is x2−axis and horizontal one is x1−axis. The different colors correspond to
different values of GM(x, t;x0). The scale of the values of GM(x, t;x0) and corresponding
to them colors is marked out in Fig.3. The graphs of GM(x, t;x0) at time t = 0.1 (Fig.3)
are similar to graphs of the initial excitation at t = 0, which is modeled by the function
δM(x,x0) (Fig.2). We note that from physical point of view GM(x, t;x0) describes the wave
propagation in the considered membrane (the vibration of the membrane) arising from the
pulse source modeled by δM(x,x0) · δ (t). Figs.4-7 demonstrate the process of this wave
propagation. For example, we see the wave front at t = 1 in the form of the circle in
Fig.4. The further propagation of the wave, arising from the pulse source modeled by
δM(x,x0) ·δ (t) (M = 35), is presented in Figs.5-7. The wave front crossed the line of the
interface of two materials at time t = 3 (Fig.5). We see the fronts of the transmitted wave
(indicated by arrow 2) and the reflected wave (indicated by arrow 1) in Fig.5. In Fig.6,
it is clearly seen that the reflected and the transmitted waves are moving in the opposite
directions. Moreover, the front of the transmitted wave has touched the boundaries of the
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Figure 3: Screenshots of the Green’s function G(x1,x2,x0
1,x

0
2, t) for t = 0.1; x0

1 =
3
2 ;

x0
2 =

5
2 .
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Figure 4: Screenshots of the Green’s function G(x1,x2,x0
1,x

0
2, t) for t = 1.

Figure 5: Screenshots of the Green’s function G(x1,x2,x0
1,x

0
2, t) for t = 3.



Computation of the Green’s function 169

Figure 6: Screenshots of the Green’s function G(x1,x2,x0
1,x

0
2, t) for t = 4.

Figure 7: Screenshots of the Green’s function G(x1,x2,x0
1,x

0
2, t) for t = 5.
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membrane at right side (x1 = 5) and the bottom (x2 = 0). As a result, the reflected wave
fronts have arisen. In Fig.6 the fronts of reflected waves from the boundaries x1 = 5 and
x2 = 0 are marked by arrows 4 and 3 respectively. The reflected wave from the boundary
x2 = 0 has gone through the line of the interface of two materials at time t = 5. In Fig.7, the
arrow 5 indicates the transmitted wave front while the arrow 6 indicates the reflected wave
front.

5 Conclusion

The method of the approximate computation of the time-dependent Green’s function for
the equations of the transverse vibration of a multi stepped membrane is suggested. This
method is based on determination of the eigenvalues and orthogonal set of the eigenfunc-
tions; regularization of the Dirac delta function in the form of the Fourier series with a finite
number of terms; expansion of the unknown Green’s function in the form of Fourier series
with unknown coefficients and computation of a finite number of unknown Fourier coeffi-
cients. Computational experiment confirms the robustness of the method for the approxi-
mate computation of the Dirac delta function and Green’s function. Using visualization of
the computed values of the Green’s function we can observe in details the wave propagation
in the composite rectangular membrane, in particular the movement of the wave fronts.
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Appendix A:

Let x1 ∈ [0,b1] and x2 ∈ [`0, `1)∪ (`1, `2)∪ . . .∪ (`N−1, `N ] be variables (`0 = 0, `N = b2);
ρ(x2), T (x2), d(x2) be functions defined by (1), (2), (15); λkm, λk′m′ be eigenvalues and
Vkm(x1,x2),Vk′m′(x1,x2) be corresponding to them eigenfunctions of EEP (16)− (20) for
k,m = 1,2, . . . ; k′,m′ = 1,2, . . . , respectively. Then multiplying the partial differential
equation (16) by Vkm(x1,x2), Vk′m′(x1,x2), respectively, we find

1
d(x2)

∂ 2Vkm

∂x2
1

Vk′m′ +
1

d(x2)

∂ 2Vkm

∂x2
2

Vk′m′ +λkmVkmVk′m′ = 0,

1
d(x2)

∂ 2Vk′m′

∂x2
1

Vkm +
1

d(x2)

∂ 2Vk′m′

∂x2
2

Vkm +λk′m′Vk′m′Vk′m′ = 0,
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Subtracting gives

1
d(x2)

[
∂

∂x1
(

∂Vkm

∂x1
Vk′m′ −

∂Vk′m′

∂x1
Vkm)+

∂

∂x2
(

∂Vkm

∂x2
Vk′m′ −

∂Vk′m′

∂x2
Vkm)

]
+(λkm−λk′m′)VkmVk′m′ = 0.

Integrating the obtained relation with respect to x1 from 0 to b1 and with respect to x2 from
`i−1 to `i we get

∫ `i

`i−1

1
di

(
∂Vkm

∂x1
Vk′m′ −

∂Vk′m′

∂x1
Vkm

)∣∣∣b1

0
dx2 +

∫ b1

0

1
di

(
∂Vkm

∂x2
Vk′m′ −

∂Vk′m′

∂x2
Vkm

)∣∣∣`i

`i−1
dx1

+
∫ b1

0

∫ `i

`i−1

(λkm−λk′m′)VkmVk′m′dx2dx1 = 0.

Multiplying the last relation by ρi and then summing with respect to i from i = 1 to i = N,
we find

(λkm−λk′m′)
∫ b1

0

[∫ `1

0
ρ1VkmVk′m′dx2 + . . .+

∫ b2

`N−1

ρN−1VkmVk′m′dx2

]
dx1 = 0.

Here we have used the boundary and matching conditions (17)− (20).
As a result, we have∫ b1

0

∫ b2

0
ρ(x2)Vkm(x1,x2)Vk′m′(x1,x2)dx =

{
0, if k 6= k′ or m 6= m′;
αkm, if k = k′ and m = m,

where αkm =
∫ b1

0
∫ b2

0 ρ(x2)V 2
km(x1,x2)dx2dx1.




