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SGBEM Voronoi Cells (SVCs), with Embedded
Arbitrary-Shaped Inclusions, Voids, and/or Cracks, for
Micromechanical Modeling of Heterogeneous Materials

Leiting Dong1,2 and Satya N. Atluri1,3

Abstract: In this study,SGBEM Voronoi Cells (SVCs), with each cell represent-
ing a grain of the material at the micro-level, are developed for direct microme-
chanical numerical modeling of heterogeneous composites. Each SVC can consist
of either a (each with a different) homogenous isotropic matrix, and can include
micro-inhomogeneities such as inclusions, voids of a different material, and cracks.
These inclusions and voids in each SVC can be arbitrarily-shaped, such as circular,
elliptical, polygonal, etc., for 2D problems. Further, the cracks in each SVC can
be fully-embedded, edge, branching, or intersecting types, with arbitrary curved
shapes. By rearranging the weakly-singular boundary integral equations, a stiff-
ness matrix and a force vector are developed for each SVC with inclusions, voids,
and micro-cracks. The stiffness matrix of each SVC is symmetric, positive semi-
definite, and has the correct number of rigid-body modes. The stiffness matrix of
each SVC and the force vector can also be interpreted to have the same physical
meaning as in traditional displacement finite elements, and related to strain energy
and the work done. Therefore, the direct coupling of different SVCs (each with
a different isotropic material property, and each with heterogeneities of a different
material), or the coupling of SVCs with other traditional or special elements, can be
achieved by the usual assembly procedure. Moreover, because the heterogeneous
micro-structures are modeled directly in the most natural way, as in the present
work, by using an SVC to model each grain, one not only saves the labor of mesh-
ing and re-meshing, but also reduces the computational burden by several orders
of magnitude as compared to the usual FEM. Through several numerical examples,
we demonstrate that the SVCs are useful in not only estimating the overall stiff-
ness properties of heterogeneous composite materials, but they are most useful in
capturing the local stress concentrations and singularities in each grain, which act
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as damage precursors, efficiently. Several examples of interaction of cracks with
inclusions and voids within each SVC (or material grain) are also presented. Accu-
rate results are obtained for stress intensity factors. Non-collinear fatigue growth of
micro-cracks in heterogeneous materialis also modeled very efficiently, with these
SVCs, without a need for the complicated re-meshing as is common when using
the traditional displacement-based finite element methods.

Keywords: SGBEM Voronoi Cell, SGBEM, matrix, inclusion, void, cracks, fa-
tigue, heterogeneous material

1 Introduction

In recent decades,the wide applications of heterogeneous (composite) material-
s have grown very rapidly in mechanical, aerospace and defense industries. For
example, metals/alloys with precipitates/pores, and metal/polymer/ceramic com-
posite materials with fiber/whisker/particulate reinforcements are of particular in-
terest. In addition to these complexities such as inclusions and voids, defects such
as cracks are also commonly observed in heterogeneous materials, caused by man-
ufacturing imperfections, thermal effects, local chemical reactions, etc. The devel-
opment of efficient and accurate tools to model the micromechanical and macro-
mechanical behavior of heterogeneous materials from the bottom-up and top-down
is of fundamental interest in engineering and science.

There are several widely-used analytical tools to predict the overall stiffness prop-
erties of heterogeneous materials. For example, [Hashin and Shtrikman (1963)]
developedvariational methods to estimate the upper and lower bounds of the elas-
ticity or compliance tensor. [Hill (1965)] developed a self-consistent approach to
estimate the homogenized material properties. For a useful reference, one can refer
to the book [Nemat-Nasser and Hori (1999)]. Analytical methods have their unique
values in the study of micromechanics. However, most of these methods follow the
work of an ellipsoidal inclusion in an infinite body, as in [Eshelby (1957)], the work
of 2D straight cracks in [Muskhelishvili (1954)], and the work of 3D elliptical flat
cracks in [Green and Sneddon(1950), and Vijayakumar and Atluri (1981)]. It is
expected that these methods can only accurately model materials with very simple
microstructures.

Computational methods have also become popular in the past several decades, for
direct numerical modeling of microstructuresof heterogeneous (composite) mate-
rials. One of the most popular tools is the finite element method. However, in
spite of the manycommercial finite element software available today, it is difficult
to model microstructures with inclusions, voids and cracks using off-the-shelf FEM
software. This is mainly because of two reasons: the inefficiency to approximate
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high-gradients and singular fields with simple polynomial shape functions, and the
extremely heavy burden for meshing and re-meshing. For example, materials with
fibers, whiskers, particles, and cavities have been studied by [Christman, Needle-
man and Suresh (1989), Bao, Hutchinson, McMeeking(1991), Guedes and Kikuchi
(1991)] and many others. Most of these studies use a Unit Cell model because of
the complexity of meshing and the burden of computation. As for microstructures
with both inclusions and cracks, very little work has been done by using FEM,
see [Li andChudnovsky (1993), LipetzkyandSchmauder(1994), Lipetzky and K-
nesl(1995)] for some example.

In order to reduce the burden of computation and meshing, Voronoi Cell Finite
elements (VCFEMs) were developed by [Ghosh and Mallett (1994); Ghosh, Lee
and Moorthy (1995); Ghosh, Lee and Moorthy (2004)], based on the hybrid stress
model, the originality of which is due to [Pian (1964)]. However, the completeness
of the stress fields generated by polynomial Airy’s stress functions or Maxwell’s
stress functions is of obvious questionability. Incomplete stress field assumptions
lead to very poor results of computed stress/strain fields. For detailed discussion of
completeness, see [Muskhelishvili (1954), Dong and Atluri (2012a)] for 2D prob-
lems, and [Lurie (2005)] for 3D problems. Also, the hybrid-stress method of Pian,
and the Voronoi Cell FEM by Ghosh et al. based on the Pian’s approach, suffer
from the so-called LBB stability conditions, the satisfaction of which is necessary
to obtain a stable solution, and such satisfaction has never been correctly addressed
in all the literature, including in the papers of Ghosh and his co-workers. Thus, the
effectiveness of the VCFEM of Ghosh and Mallett (1994); Ghosh, Lee and Moor-
thy (1995); Ghosh, Lee and Moorthy (2004)] in computational micromechanics is
highly questionable

In a different way, [Moës, Dolbow and Belytschko (1999), Sukumar, Chopp, Moës,
and Belytschko (2000)] developed what they call the XFEM, to model cracks and
inhomogeneities. Although XFEM became extremely popular in the last few years,
its advantages, if any, over the traditional FEM in problems involving inclusions,
voids, and cracks, and their growth and /or propagation, is very minimal at best.This
will be discussed in detail in two forthcoming papers by the authors [Dong and
Atluri (2013b,c)].

In a series of papers in [Dong and Atluri (2011a,b, 2012b,c,d)], a different com-
putational tool was developed—termed TreffzVoronoi Cells(TVCs), which are ex-
tremely efficient and accurate for micromechanical modeling of heterogeneous ma-
terials. The Trefftz Voronoi Cells were developed using a complete Trefftz trial
displacement field (which satisfies exactly the governing differential equations),
by using complex variables and conformal mapping method in 2D problems, and
Papkovich-Neuber solutionsand spherical/ellipsoidal harmonics for 3D problems.
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Only boundary integrals are needed in developing the element stiffness matrices,
making TVCs to be computationally extremely efficient. Also because of the com-
pleteness of the exact trial displacement fields, accurate stress concentrations near
elastic / rigid inclusions and voids in each grain of the material can be determined
exactly. Thus, in addition to predicting the overall stiffness properties of heteroge-
neous composites very accurately and efficiently, the TVCs are extremely useful in
predicting damage initiation at the micro-level in heterogeneous composites.

However, as pointed out by [Dong and Atluri (2012a)], it is computationally incon-
venient to develop a complete Trefftz trial function field for arbitrary-shaped inclu-
sions and voids which are neither circular nor elliptical (or spherical/ellipsoidal).One
way is to use multiple source points instead of only one [see Dong and Atluri
(2012a)]. It is also difficult to develop complete trial functions for TVCs with
non-collinear or non-planar cracks. Therefore, to surmount these difficulties, we
develop in the present paper, a SGBEM Voronoi Cell (SVC), to model each grain
of a composite material, which may contain totally arbitrarily-shaped inclusion-
s/voids/cracks, for micromechanical modeling of heterogeneous composites.

SVCs are developed in this study by rearranging the weakly-singular boundary in-
tegral equations in [Han and Atluri (2003), Dong and Atluri (2013a)]. Each SVC
which contains inclusions/voids/cracks has a stiffness matrix and a force vector.
The stiffness matrix is symmetric, positive semi-definite, and has the correct num-
ber of rigid-body modes. A direct coupling of different SVCs, each cell with differ-
ent isotropic elastic properties, can be achieved by the usual assembly procedure.
The present SVCs not only save the labor of meshing and re-meshing, but also
reduce the computational burden by several orders of magnitude, as compared to
the usual FEM or even the widely-popular XFEM. Through several numerical ex-
amples, we demonstrate that the SVCs can not only estimate the overall stiffness
of composite heterogeneous materials, but can also capture the local stress con-
centrations/singularities/discontinuities exactly and efficiently. Several examples
of interaction of microcracks with inclusions and voids are also presented. Accu-
rate results are obtained for stress intensity factors. Non-collinear fatigue growth of
micro-cracks in heterogeneous composite material is efficiently modeled, without
the need for complicated re-meshing as in traditional displacement finite elements.
The present methods will also be shown to be far more superior in accuracy as well
as human and computational costs, as compared to the XFEM [Moës, Dolbow, and
Belytschko (1999), and the thousands of papers on XFEM in the literature since
then], or the peridynamic methods.

The rest of this paper is organized as follows: in section 2, we review the weakly-
singular boundary integral equations for 2D problems; in section 3, we rearrange
the BIEs to develop the stiffness matrix and force vector of the SVCs with arbi-
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trarily shaped inclusions/voids, but without cracks; in section 4, we develop SVCs
with arbitrarily shaped inclusions/voids, and cracks; in section 5, we demonstrate
the power of the present SVC method through several numerical examples of mi-
cromechanics; in section 6, we complete this paper with some concluding remarks.

2 Weakly-Singular Symmetric Galerkin Boundary Integral Equations for
Plane Elasticity

Consider a linear elastic solid undergoing infinitesimal elasto-static deformation-
s. Cartesian coordinates ξi identify a material particle in the solid; and Cartesian
coordinates xi identify the source point of the 2D Kelvin’s solution, see Fig. 1.
σi j,εi j,ui are Cartesian components of the stress tensor, strain tensor and displace-
ment vector of the deformable solid, respectively. f̄i are the components of the
body force. We use (),i to denote differentiation with respect to ξi; and use ∂

∂xi
to

denote differentiation with respect to xi. The governing differential equation of the
solid can be written in terms of displacements:

[
Ei jkluk,l (ξξξ )

]
,i + f̄ j = 0 (1)

 
Figure 1: A solution domain with the source point x and the material point ξξξ , taken
from [Han and Atluri (2003)]
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For isotropic plane elasticity,

Ei jkl = µ

(
2v̄

1−2v̄
δi jδkl +δikδ jl +δilδ jk

)
i, j,k, l = 1,2

v̄ =

{
v for plane strain problems

v
1+v for plane stress problems

(2)

where µ,v are the shear modulus and Possion’s ratio, respectively, of the isotropic
solid.

Using u∗p
j (x,ξξξ ), the 2D Kelvin’s solution for displacements, as the test functions,

we write the weak-form of (1), as:∫
Ω

{[
Ei jkluk,l (ξξξ )

]
,i + f̄ j (ξξξ )

}
u∗p

j (x,ξξξ )dΩξξξ = 0 (3)

wherethe 2D Kelvin’s solution satisfies the equation:

σ
∗p
i j,i (x,ξξξ ) =

[
Ei jklu

∗p
k,l (x,ξξξ )

]
,i
=−δ jp (x,ξξξ ) (4)

where δ jp (x,ξξξ ) = δ jpδ (x,ξξξ ) is a product of the Kronecker delta and the Dirac
delta function in space.

Using the divergence theorem twice, we obtain the traditional displacement BIE:

Cup(x) =
∫

∂Ω

t j(ξξξ )u
∗p
j (x,ξξξ )dSξξξ −

∫
∂Ω

u j(ξξξ )t
∗p
j (x,ξξξ )dSξξξ

+
∫

Ω

f̄ j(ξξξ )u
∗p
j (x,ξ )dΩξξξ

(5)

where

C =


1 for x ∈Ω

1
2 for x ∈ ∂Ω

0 else

(6)

Similarly, using the gradient of the Kelvin’s displacement fundamental solution,
namely, u∗p

j,k (x,ξξξ ), as the test function, we write the vector weak-form of (1), as:∫
Ω

{
[Ei jmnum,n (ξξξ )],i + f̄ j (ξξξ )

}
up

j,k (x,ξξξ )dΩξξξ = 0 (7)

Using divergence theorem three times, we obtain the BIE for up,k(x):

−Cup,k(x) =
∫

∂Ω

t j(ξ )u
∗p
j,k (x,ξξξ )dSξξξ +

∫
∂Ω

D(ξξξ )um(ξξξ )enkσ
∗p
nm (x,ξξξ )dSξξξ

+
∫

Ω

f̄ j(ξξξ )u
∗p
j,k (x,ξξξ )dΩξξξ

(8)
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where the tangential differential operator D is:

D(ξξξ ) = nr (ξξξ )ers
∂

∂ξs

D(x) = nr (x)ers
∂

∂xs

(9)

Eq. (8) was originally given in [Okada, Rajiyah, and Atluri (1988,1989)]. The
integral representation in (8) is only strongly-singular, as opposed to the hyper-
singular BIE for displacement gradients, obtained by directly differentiating Eq.(5).

Pre-multiplying (8) by na(x)Eabpk, and using the inherent property of Kelvin’s so-
lution, we obtain the (only strongly-singular, and not hyper-singular) traction BIE
of 2D plane elasticity:

−Ctb(x) =
∫

∂Ω

tp(ξξξ )na(x)σ∗p
ab (x,ξξξ )dSξξξ +

∫
∂Ω

D(ξξξ )uq(ξ )na(x)Σ∗abq (x,ξξξ )dSξξξ

+
∫

Ω

f̄p(ξξξ )na(x)σ∗p
ab (x,ξξξ )dΩξξξ

(10)

where

Σ
∗
abq (x,ξξξ ) = Eabklenlσ

∗k
nq (x,ξξξ ) (11)

According to the Helmholtz theorem, any vector field (and of course, second or-
der tensor, third order tensor, etc.) can be decomposed into the summation of an
irrotational field and a solenoidal field. Therefore, σ

∗p
i j (x,ξξξ ) can be decomposed

as:

σ
∗p
i j (x,ξξξ ) =−φ

∗p
i j (x,ξξξ )+ψ

∗p
i j (x,ξ ) (12)

where

φ
∗p
i j (x,ξξξ ) = M∗p

j,i (x,ξξξ )

ψ
∗p
i j (x,ξξξ ) = eisG

∗p
j,s (x,ξξξ )

(13)

And Σ∗i jq (x,ξξξ ) can be decomposed as:

Σ
∗
i jq (x,ξξξ ) =−Λ

∗
i jq (x,ξξξ )+K∗i jq (x,ξξξ ) (14)

where

Λ
∗
i jq (x,ξξξ ) = N∗jq,i (x,ξξξ )

K∗i jq (x,ξξξ ) = eisH∗jq,s (x,ξξξ )
(15)
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It is well known that the 2D fundamental solution and its corresponding displacement-
gradient and stress fields are:

u∗p
j =

1
8πµ(1− v̄)

[−(3−4v̄) lnrδ jp + r, jr,p]

u∗p
j,k =

1
8πµ(1− v̄)r

[
−(3−4v̄)r,kδ jp−2r, jr,pr,k +δpkr, j +δ jkr,p

]
σ
∗p
i j =

1
4π(1− v̄)r

[(1−2v̄)(δi jr,p−δipr, j−δ jpr,i)−2r,ir, jr,p]

Σ
∗
i jq =

µ

2π(1− v̄)r
ein [2r, jr,qr,n +δq jr,n−δqnr, j−δ jnr,q]

(16)

Therefore, the decomposition of σ
∗p
i j (x,ξ ) and Σ∗i jq (x,ξξξ )can be worked out in de-

tail in the way presented in [Dong and Atluri (2013a)]:

G∗p
j =

1
8π(1− v̄)

[
ep j [(4v̄−3)+2(2v̄−1) lnr]+2ek jr,kr,p

]
Ψ
∗p
i j =eisG

∗p
j,s =

1
4π(1− v̄)r

[(1−2v̄)(δi jr,p−δipr, j)−2r,ir, jr,p +δ jpr,i]

M∗p
j =

1
2π

(1+ lnr)δp j

φ
∗p
i j =M∗p

j,i =
1

2πr
δp jr,i

H∗jq =
µ

4π(1− v̄)
[δq j (3+2lnr)−2r, jr,q]

(17)

As shown in [Han and Atluri (2003)], the decomposed kernel functions can be
used to regularize the displacement and traction BIEs. Using the same approach,
we consider the traction BIE (10) and a test function wb(x), and write down the
Petrov-Galerkin weak-form:

−1
2

∫
∂Ω

wb(x)tb(x)dSx =
∫

∂Ω

wb(x)dSx

∫
∂Ω

tq(ξξξ )na(x)σ∗qab (x,ξξξ )dSξξξ

+
∫

∂Ω

wb(x)dSx

∫
∂Ω

D(ξξξ )uq(ξξξ )na(x)Σ∗abq (x,ξξξ )dSξξξ

+
∫

∂Ω

wb(x)dSx

∫
Ω

f̄q(ξξξ )na(x)σ∗qab (x,ξξξ )dΩξξξ

(18)

Similarly, using the displacement BIE in (5), and using a test function vb(x), we
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write down the Petrov-Galerkin weak-form:

1
2

∫
∂Ω

vp(x)up(x)dSx =
∫

∂Ω

vp(x)dSx

∫
∂Ω

t j(ξξξ )u
∗p
j (x,ξξξ )dSξξξ

−
∫

∂Ω

vp(x)dSx

∫
∂Ω

ni(ξξξ )u j(ξξξ )σ
∗p
i j (x,ξξξ )dSξξξ

+
∫

∂Ω

vp(x)dSx

∫
∂Ω

f̄ j(ξξξ )u
∗p
j (x,ξξξ )dΩξξξ

(19)

Substituting (12)-(15) into (18) and (19), and integrating by parts, we have:

1
2

∫
∂Ω

vp(x)up(x)dSx

=
∫

∂Ω

vp(x)dSx

∫
∂Ω

t j(ξξξ )u
∗p
j (x,ξξξ )dSξξξ

+
∫

∂Ω

vp(x)dSx

∫
∂Ω

D(ξξξ )u j(ξξξ )G
∗p
j (x,ξξξ )dSξξξ

+
∫

∂Ω

vp(x)dSx

∫
∂Ω

ni(ξξξ )u j(ξξξ )φ
∗p
i j (x,ξξξ )dSξξξ

+
∫

∂Ω

vp(x)dSx

∫
∂Ω

f̄ j(ξξξ )u
∗p
j (x,ξξξ )dΩξξξ

(20)

− 1
2

∫
∂Ω

wb(x)tb(x)dSx

=
∫

∂Ω

D(x)wb(x)dSx

∫
∂Ω

tq(ξξξ )G
∗q
b (x,ξξξ )dSξξξ

−
∫

∂Ω

wb(x)dSx

∫
∂Ω

na(x)tq(ξξξ )φ ∗qab (x,ξξξ )dSξξξ

+
∫

∂Ω

D(x)wb(x)dSx

∫
∂Ω

D(ξξξ )uq(ξξξ )H∗bq (x,ξξξ )dSξξξ

+
∫

∂Ω

wb(x)dSx

∫
Ω

f̄q(ξξξ )na(x)σ∗qab (x,ξξξ )dΩξξξ

(21)

When wb = δub, vb = δ tb is used, equations (20)(21) leads to Symmetric Galerkin
BIEs and global SGBEMs. The current BIEs are different from a lot of previous
SGBEM studies which involve regularization of hyper-singular kernels, such as
[Frangi and Novati (1996); Bonnet, Maier and Polizzotto (1998); Li, Mear and X-
iao (1998); Frangi, Novati, Springhetti, Rovizzi (2002)]. Eq. (20)(21) developed
here are only weakly singular, because the kernels u∗qb (x,ξξξ ) ,G∗qb (x,ξξξ ) ,H∗bq (x,ξξξ ) ,
ni(ξξξ )φ

∗p
i j (x,ξξξ ) ,ni(x)φ ∗p

i j (x,ξξξ ) are all weakly-singular. Therefore, the implemen-
tation of (21)(20) for SGBEM can be carried out much more easily.

It should also be pointed out that,the Symmetric Galerkin BIEs for 2D problems as
shown here, are only slightly different from the BIEs presented in [Han and Atluri
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(2003)]. For example, the tensors G∗,H∗,ΣΣΣ∗ have different orders. We would like
to point out that, this slight difference originates from the difference between the
2D Levi-Civita symbol ers and the 3D Levi-Civitasymbol erst . In other words, the
difference arises because of the fact that the curl of a vector field, and the cross-
product of two in-plane vectors, are out-of-plane. If one carefully distinguishes the
in-plane and out-of-plane components of each tensor and vector in [Han and Atluri
(2003)], one can see that BIEs developed in [Han and Atluri (2003)] are equivalent
to the current ones. However, in this study, we keep the present way, for clarity.

3 SGBEM Voronoi Cell (SVC) with Arbitrary Voids and Inclusions

In this Section, we apply the BIEs developed in section 2, to a local polygonal
subdomain Ω containing arbitrary shaped voids and elastic/rigid inclusions, and
develop a Voronoi Cell (SVC), with its own stiffness matrix, by using some alge-
braic manipulations. We first consider that the subdomain Ω is homogenous and
isotropic, but it can contain arbitrarily-shaped voids in it, as in Fig. 2, or arbitrar-
ily shaped inclusions which can be of a different material. Without distinguishing
what types of boundary conditions are considered at ∂Ω, we assume the bound-
ary displacements as ui= Nqi and boundary tractions as ti= Mpi, both at the entire
boundary ∂Ω of the local subdomain. By using both the displacement BIE (20) and
traction BIE (21) for the entire ∂Ω, we have:

 
Figure 2: An SGBEM Voronoi Cell (SVC) with a Void
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−1
2 δpT

j
∫

∂Ω
MT (x)N(x)dSxq j

=−δpT
p
∫

∂Ω
MT (x)dSx

∫
∂Ω

u∗p
j (x,ξξξ )M(ξξξ )dSξξξ p j

−δpT
p
∫

∂Ω
MT (x)dSx

∫
∂Ω

G∗p
j (x,ξξξ )D(ξξξ )N(ξ )dSξξξ q j

−δpT
p
∫

∂Ω
MT (x)dSx

∫
∂Ω

ni(ξ )φ
∗p
i j (x,ξξξ )N(ξ )dSξξξ q j

(22)

1
2 δqT

b
∫

∂Ω
N(x)T M(x)dSxpb

=−δqT
b
∫

∂Ω
D(x)NT (x)dSx

∫
∂Ω

G∗qb (x,ξξξ )M(ξ )dSξξξ pq

+δqT
b
∫

∂Ω
N(x)T dSx

∫
∂Ω

na(x)φ ∗qab (x,ξξξ )M(ξξξ )dSξξξ pq

−δqT
b
∫

∂Ω
D(x)NT (x)dSx

∫
∂Ω

H∗bq (x,ξξξ )D(ξ )N(ξξξ )dSξξξ qq

(23)

Without ambiguity, one can rewrite (22)(23) as:

−1
2

δpT Uq = δpT PPp+δpT PQq (24)

1
2

δqT Tp = δqT QPp+δqT QQq (25)

where(24) corresponds to (22), and (25) corresponds to (23).

From the property of SGBEM, or by some trivial math manipulation, one can see
that, if M = N, then:

U = TT

PP = PPT

QQ = QQT

PQ = QPT

(26)

One can easily rewrite (24)(25) as:

0 = δpT PPp+δpT
(

PQ+
1
2

U
)

q (27)

δqT Tp = δqT
(

QP+
1
2

T
)

p+δqT QQq (28)

Because δp is arbitrary (unlike δq), we can use static condensation of (27)(28) to
obtain:

δqT Tp = δqT
[

QQ−
(

QP+
1
2

T
)

PP−1
(

PQ+
1
2

U
)]

q (29)

From the properties in (26), we can see that the matrix in the right-hand side is
symmetric.
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One more interesting observation is that:

δqT Tp = δqT
b

∫
∂Ω

N(x)T M(x)dSxpb

= δqT
b

∫
∂Ω

N(x)Ttb(x)dSx

= δqT Q

(30)

where the vector Q has the exact form of the generalized “force vector” as in FEM.
Therefore, it is clear that the right hand side of (29) has the physical meaning of the
variation of strain-energy of Ω, and the symmetric matrix can be considered as the
“stiffness matrix” of the local subdomain Ω. Eq.(29) can be therefore written as:

δqT Q = δqT Kq (31)

For numerical implementation, one can simply evaluate the stiffness matrix of the
SVC, as:

K = QQ−
(

QP+
1
2

T
)

PP−1
(

PQ+
1
2

U
)

(32)

One can also evaluate the force vector Q using the usual FEM procedure.

One direct result of the assembly of different SVCs is a microstructurewith inclu-
sions. One can first develop the stiffness matrix of a SVC with holes only, and then
develop a different SVC to represent an elastic or rigid inclusion, with exactly the
same shape as that of the hole, but with a different material, as shown in Fig. 3.
By assembling these two SVCs together, one obtains an SVC with elastic or rigid
inclusions. Without loss of generality, we consider an SVC with only one inclu-
sion. We use qm,qc to denote the degree of freedoms on the outer boundary of the
parent SVC, and at the matrix-inclusion interface. The FEM equation of the matrix
material can be developed as:{

δqm
δqc

}T[Kmm Kmc
Kcm Kcc

]{
qm
qc

}
=

{
δqm
δqc

}T{Qm
Qc

}
(33)

If no external force is applied at the matrix-inclusion interface, the FEM equation
of the inclusion can be written as:

δqT
c K̄ccqc=−δqT

c Qc (34)

By using the assembly procedure, the FEM equations of the SVC with an inclusion
can be written as:{

δqm
δqc

}T[Kmm Kmc
Kcm Kcc + K̄cc

]{
qm
qc

}
=

{
δqm
δqc

}T{Qm
0

}
(35)
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                                                (a)                                                        (b) 

 
     (c)      

 
Figure 3: (a) SVC for the matrix material; (b) SVC for the inclusion material, which
can be different from the matrix material; (c)the assembled SVC with an inclusion
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Using static condensation (35) can be rewritten as:

δqT
mK̄mmqm= δqT

mQm (36)

where

K̄mm = Kmm−Kmc
(
Kcc + K̄cc

)−1 Kcm (37)

It should be noted that, the SVCs developed in this study do not involve Lagrange
multipliers at all. Therefore, no L.B.B. conditions as in [Brezzi (1974)] are in-
volved, which plagues the stability of solution by hybrid/mixed FEMs

4 SVC with ArbitraryShaped Micro-Cracks

The SVC developed in last section is for a grain of a material without any micro-
cracks. However, when micro-cracks are present, some modifications are neces-
sary. This is because of the fact that, the weakly-singular BIEs developed in sec-
tion 2, can only allow users to consider cracks as part of the traction-prescribed
boundary, where unkowns are the displacement discontinuity ∆ui at crack surface
Sc. Therefore,the traction BIE(21), in a symmetric Galerkin weak form, can be
directly applied to the crack surface. On the other hand, the displacement BIE (20)
as developed in section 2 cannot be directly applied to crack surfaces.

 
Figure 4: An SVC (a grain of a material) with a Void and a Micro-crack
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Therefore, the following modifications are made. Consider the boundary of domain
Ω which can be divided into Sb and Sc, where Sb is the summation of all the close
contours representing the outer boundary and the inner cavities, and Sc is the sum-
mation of crack surfaces, see Fig. 4. We assume both the unknown displacements
ui= Nqi and the tractions ti = Mpi at the entireboundary Sb, and we only assume
displacement jumps at the crack surface Sc as ∆ui = Lri. Then we write down the
following equations:

−1
2 δpT

j
∫

Sb
MT (x)N(x)dSxq j

=−δpT
p
∫

Sb
MT (x)dSx

∫
Sb

u∗p
j (x,ξξξ )M(ξξξ )dSξξξ p j

−δpT
p
∫

Sb
MT (x)dSx

∫
Sb

G∗p
j (x,ξξξ )D(ξ )N(ξξξ )dSξξξ q j

−δpT
p
∫

Sb
MT (x)dSx

∫
Sb

ni(ξξξ )φ
∗p
i j (x,ξξξ )N(ξξξ )dSξξξ q j

−δpT
p
∫

Sb
MT (x)dSx

∫
Sc

G∗p
j (x,ξξξ )D(ξ )L(ξξξ )dSξξξ r j

−δpT
p
∫

Sb
MT (x)dSx

∫
Sc

ni(ξξξ )φ
∗p
i j (x,ξξξ )L(ξξξ )dSξξξ r j

(38)

1
2 δqT

b
∫

Sb
N(x)T M(x)dSxpb

=−δqT
b
∫

Sb
D(x)NT (x)dSx

∫
Sb

G∗qb (x,ξξξ )M(ξξξ )dSξξξ pq

+δqT
b
∫

Sb
N(x)T dSx

∫
Sb

na(x)φ ∗qab (x,ξξξ )M(ξξξ )dSξξξ pq

−δqT
b
∫

Sb
D(x)NT (x)dSx

∫
Sb

H∗bq (x,ξξξ )D(ξξξ )N(ξξξ )dSξξξ qq

−δqT
b
∫

Sb
D(x)NT (x)dSx

∫
Sc

H∗bq (x,ξξξ )D(ξξξ )L(ξξξ )dSξξξ rq

(39)

δrT
b
∫

Sc
L(x)T t̄b(x)dSx

=−δrT
b
∫

Sc
D(x)LT (x)dSx

∫
Sb

G∗qb (x,ξξξ )M(ξξξ )dSξξξ pq

+δrT
b
∫

Sc
L(x)T dSx

∫
Sb

na(x)φ ∗qab (x,ξξξ )M(ξξξ )dSξξξ pq

−δrT
b
∫

Sc
D(x)LT (x)dSx

∫
Sb

H∗bq (x,ξξξ )D(ξξξ )N(ξξξ )dSξξξ qq

−δrT
b
∫

Sc
D(x)LT (x)dSx

∫
Sc

H∗bq (x,ξξξ )D(ξξξ )L(ξξξ )dSξξξ rq

(40)

Without ambiguity, one can rewrite these equations as:

−1
2

δδδpTUq = δδδpTPPp+δδδpTPQq+δδδpTPRr (41)

1
2

δqT Tp = δqT QPp+δqT QQq+δqT QRr (42)

δrT R = δrT RPp+δrT RQq+δrT RRr (43)

One can rewrite these equations as:

0 = δpT PPp+δpT
(

PQ+
1
2

U
)

q+δδδpTPRr (44)

δqT Q = δqT
(

QP+
1
2

T
)

p+δqT QQq+δqT QRr (45)
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δrT R = δrT RPp+δrT RQq+δrT RRr

Following the same static condensation procedure, we obtain the following equa-
tions:(

δq
δr

)T [Kqq Kqr
Krq Krr

](
q
r

)
=

(
δq
δr

)T (Q
R

)
(46)

where:

Kqq = QQ−
(
QP+ 1

2 T
)

PP−1 (PQ+ 1
2 U
)

Kqr = QR−
(
QP+ 1

2 T
)

PP−1 (PR)

Krq = RQ− (RP)PP−1 (PQ+ 1
2 U
)

Krr = RR− (RP)PP−1 (PR)

(47)

As described before, the vector Q has exactly the same form of the generalized
“force vector” as in FEM, and δδδqT Q has the physical meaning of work done by
force Q subjected to the displacement δδδq at the boundary Sb. We can also see that
δδδrT R has the physical meaning of the work done by the forces R , which represent
the crack surface tractions, subjected to the crack surface opening displacement
δδδr. If traction free conditions are considered at the crack surfaces, the vector R
vanishes and so does δδδrT R.

We also point out that, if inclusions as well as cracks are considered, one can follow
the same assembly procedure used in section 3.

It should be noted that, although the SVC is implemented as a two-dimensional
version in this study, it can be easily extended to three-dimensional cases, with the
weakly-singular BIEs developed by [Han and Atluri (2003)], and the Wachspress
shape functions as used in [Bishay and Atluri(2012); Dong and Atluri(2012c,d)].

 

Figure 5: An infinite plate, with a circular hole/inclusion, under remote tension
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5 Numerical Examples

We consider the problem of an infinite plate with a circular hole as in Fig. 5, under
remote tension. The exact solution for this problem can be found in [Muskhelishvili
(1954)].

Although this is actually a problem of an infinite domain, a truncated domain is
used here instead. A plane stress problem with E = 1,v = 0.25 is considered. A
100× 100 square plate is considered, and the radius of the hole is taken to be 10.
Only a single SVC is used to solve this problem. The boundary discretization of the
SVC has 20 nodes at the outer boundary, and 24 nodes in the cavity. The computed
σ11 and σ22 are plotted along axis x2 and x1 respectively, in Fig. 6.

We also solve the problem of a circular inclusion. The same geometry and loading
condition is considered as last example. The matrix material properties are Em =
1,vm = 0.25, and the inclusion properties are Ec = 2,vc = 0.3. A single SVC with
an inclusion is used to solve this problem. The boundary discretization of the SVC
has 20 nodes in the outer boundary and 24 nodes in the matrix-inclusion interface.
The exact solution for this problem can also be found in [Muskhelishvili (1954)].
The computed σ11 and σ22 are plotted along axis x2 and x1 respectively, in Fig. 7.

We consider the problem of an infinite plate with an elliptical hole as in Fig. 8 under
remote tension. The exact solution for this problem can be found in [Muskhelishvili
(1954)].

A 100×100 square plate is considered as the domain of interest, and the semi-axes
a,b are set to be 10 and 5 respectively. A plane stress problem with E = 1,v = 0.25
is considered. We consider a remote tension in the x2 direction. One SVC is used
to solve this problem. The boundary discretization of the SVC has 20 nodes in the
outer boundary and 36 nodes in the cavity. The computed σ11 and σ22 are plotted
along axes x2 and x1 respectively, in Fig. 9

We also solve the problem of an elliptical inclusion. The same geometry and load-
ing condition is considered as last example. A plane strain problem is considered.
The matrix material properties are Em = 1,vm = 0.25, and the inclusion properties
are Ec = 2,vc = 0.3. A single SVC with an elliptical inclusion is used to solve this
problem. The boundary discretization of the SVC has 20 nodes in the outer bound-
ary and 36 nodes in the matrix-inclusion interface. The exact solution for this
problem can be found by an equivalent inclusion method as in [Eshelby (1957)],
considering an infinitely long cylinder. The computed σ11 and σ22 are plotted along
axis x2 and x1 respectively, in Fig. 10.

We also consider the problem of an infinite plate with a rectangular hole under
remote tension, see Fig. 11. Theoretically speaking, the exact solution of this prob-
lem requires conformal mapping which is infinite series: z = ω(ς) = R( 1

ς
+Aς +
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 Figure 6: Computed σ11 along axis x2 , and computed σ22 along axis x1 for the

problem of a circular hole
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Figure 7: Computed σ11 along axis x2 , and computed σ22 along axis x1 for the
problem of a circular inclusion
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Figure 8: An infinite plate with an elliptical hole/inclusion under remote tension

Bς3 +Cς5 + ...), see [Savin (1961)]. However, keeping only the first four terms
can produce a fairly reasonable result, as shown in [Lei, Ng, and Rigby (2001)].
In this study, we use the explicit result in [Lei, Ng, and Rigby (2001)] as the exact
solution.

A 100×100 square plate is considered as the domain of interest, and both a,b are
set to be 20. A single SVC is used to solve this problem. The boundary discretiza-
tion of the SVC has 20 nodes in the outer boundary and 48 nodes in the cavity. The
computed σ22 are plotted along the line AB and the line AC, in Fig. 12 and Fig. 13.

We also study the Al/SiC material by using the present SVCs. Three different
volume fractions of SiC are considered: 10%, 20% and 30% of SiC respectively.
For each volume fraction, an RVE with 25 polygonal SiC particles are randomly
generated, as shown in Fig. 14. The material properties of Al and SiC are EAl =
74GPa, vAl = 0.33, ESiC = 410GPa, vSiC = 0.19. The size of the RVE is 100 µm×
100 µm. A uniform tensile stress of 100 MPa is applied in the vertical direction.
The computed over-all stiffness of the composite is plotted in Fig. 15, together
with results from using semi-analytical methods such as Hanshin-Strikman bounds,
and the Halpin-Tsai method. As compared to the experimental results of [Chawla,
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Figure 9: The computed σ11 along axis x2 , and the computed σ22 along axis x1 for
the problem of an elliptical hole
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Figure 10: The computed σ11 along axis x2 , and the computed σ22 along axis x1
for the problem of an elliptical inclusion
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 Figure 11: An infinite plate with a rectangular hole under remote tension

 
Figure 12: The computed σ22 along the line AB
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Figure 13: The computed σ22 along the line AC

Sidhu, and Ganesh (2006)], the present SVCs give much better results than the
semi-analytical methods, even though a 2D RVE is used in this study.

The maximum principal stressand the strain energy density variations in the RVEs
with different volume fractions of SiC are also computed and plotted in Fig. 16-21.
While the inclusions are in a relatively uniform stress state, the stresses/strains vary
rapidly in the Al matrix. To be more specific, very high stress level is observed
near each corner of the polygon. Also,steep stress gradients are also observed in
the Al material between the SiC particles, in the direction of loading. On the other
hand, in the direction which is perpendicular to the direction of loading, relatively
low stress values and strain energy density are observed.

It should be pointed out that, the very high accuracy of the computed stress/strain
variations inan arbitrary heterogeneous material, is one of the major advantages of
using the SVCs developed in this study, as compared to the VCFEMs developed
by Ghosh and his coworkers in the past 15 years. Because high stresses/strains are
indicators of damage-prone zones, and because SVCs are also very efficient and
highly accurate for modeling arbitrary micro-crack and their non-collinear growth
(as shown later), it is expected that SVCs are much more suitable for studying the
damage development in composite materials, than VCFEMs.
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(a) 

 
(b)                                                              (c) 

 
Figure 14: The RVEs of Al/SiC material with 25 polygonal inclusions, with differ-
ent volume fractions of SiC: (a) 10% of SiC; (b) 20% of SiC; (c) 30% of SiC



136 Copyright © 2013 Tech Science Press CMC, vol.33, no.2, pp.111-154, 2013

 
Figure 15: The computed stiffness of the Al/SiC material by the present SVCs,
as compared to the Hanshin-Strikman upper and lower bounds, the Halpin-Tsai
method, and the experimental results by [Chawla, Sidhu, and Ganesh (2006)]

 
Figure 16: The distribution of maximum principal stress in the RVE of an Al/SiC
material with 10% SiC
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Figure 17: The distribution of strain energy density in the RVE of an Al/SiC mate-
rialwith 10% SiC

 
Figure 18: The distribution of maximum principal stress in the RVE of an Al/SiC
materialwith 20% SiC
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Figure 19: The distribution of strain energy density in the RVE of an Al/SiC mate-
rialwith 20% SiC

 
Figure 20: The distribution of maximum principal stress in the RVE of an Al/SiC
materialwith 30% SiC
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Figure 21: The distribution of strain energy density in the RVE of an Al/SiC mate-
rialwith 30% SiC

We also study the interaction between a micro-crack and an inclusion, see Fig. 22.A
truncated 200×200 finite plate is considered. The radius of the inclusion is rv = 5.
The length of the crack is 2av = 10. A plane strain condition is considered. The
material properties of the matrix are Em = 1,vm = 0.35. The material properties
of the inclusion are Ec = 22.15,vc = 0.3. The center point of the crack is at (2.5,
10). A single SVC is used to solve this problem. The boundary discretization of
the SVC has 20 nodes at the outer boundary and 24 nodes at the matrix-inclusion
interface, and 21 nodes for the crack. This example has been studied by [Huang,
Liang and Yen (1995), Williams, Phan,Tippur, Kaplan and Gray (2007)]. In Tab.
1, we compare the presently computed normalized stress intensity factor, to the
analytical solution:

F =
K

σ
√

πav
(48)
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Table 1: The stress intensity factors of the micro-crack near an inclusion

A single SVC Analytical
F1A 0.833 0.834
F2A -0.062 -0.062
F1B 0.916 0.915
F2B -0.052 -0.052

 

Figure 22: Crack / inclusion interaction in an infinite plate

In the next example, we model the fatigue growth of a crack passing an inclusion.
The geometry of this problem is shown in Fig. 23. A 4×4 plate is considered. A
circular inclusion with radius 0.25 is placed in the center. An edge crack with initial
length 1.5 is considered. The material properties of the matrix are Em = 1,vm = 0.3.
The material properties of the inclusion are Ec = 3,vc = 0.3. A plane stress con-
dition is considered. A uniform tension is applied to the upper and lower edges of
the plate. A single SVC is used to solve this problem. The boundary discretization
of the SVC has 60 nodes at the outer boundary, 40 nodes at the matrix-inclusion
interface, and 51 nodes for the crack. After fatigue growth, the crack is deflected by
the inclusion, and then continues to grow into a mode 1 dominated crack, as shown
in Fig. 24 and Fig. 25.

In a companion example, the same geometry shown in Fig. 23 is considered. How-
ever, this time a hole is considered instead of an inclusion. The material properties
are E = 1,v = 0.3. Unlike the shielding effect of stiffer inclusion, the crack in this
example eventually grows into the hole and stops, as can be seen in Fig. 26 and
Fig. 27.
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 Figure 23: Initial crack near the inclusion or hole

 Figure 24: Final shape of the microcrack, after growing in fatigue, and after being
deflected by the inclusion
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 Figure 25: Close-up view of the final shape of the micro-crack, growing in fatigue,
after being deflected by the inclusion

 Figure 26: Final shape of the micro-crack, after fatigue: Crack grows into the void
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 Figure 27: Close-up view of the microcrack, after growing under fatigue, after
growing into the void

 Figure 28: A slightly eccentric micro crack neartwo inclusions or two voids
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 Figure 29: The final shape of the micro-crack, after growing under fatigue, and
after passing through the two inclusions

 Figure 30: Close-up view of the micro- crack, after growing under fatigue, and
after passing through the two inclusions
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 Figure 31: Final shape of the microcrack, after growing under fatigue, and after
growing into one of the two holes

 Figure 32: Close-up view of the micro- crack, growing under fatigue, and after
growing into one of the two holes
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In the next example, we model the growth of a crack near two inclusions or two
holes. The geometry of this problem is shown in Fig. 28. A 4×4 plate is consid-
ered. Two circular inclusions or holes with radius 0.25 are placed symmetrically in
the upper and lower part of the plate. The distance between the two inclusionsis 0.2.
An edge crack with initial length 1.5 is considered. The crack is slightly closer to
the lower hole or inclusion. The distance between the initial crack and the mid-line
of the plane is 0.02. The material properties of the matrix are Em = 1,vm = 0.3. The
material properties of the inclusion are Ec = 3,vc = 0.3. A plane stress condition is
considered. A uniform tension is applied to the upper and lower edges of the plate.
A single SVC is used to solve this problem. The boundary discretization of the
SVC has 60 nodes at the outer boundary, 40 nodes for each circular inclusion/hole,
and 51 nodes for the crack.

After fatigue growth, the final crack shapes are shown in Fig. 29to Fig. 32. As can
be seen clearly, the two stiffer inclusions push the crack back closer to the mid-line,
and the crack successfully passes through the two inclusions. On the other hand,
although the crack is only slightly eccentric, it grows into the nearer hole and stops.

After these benchmark examples of interactions of microcracks with inclusions and
voids, we consider an example of microcrack growth in Al/SiC material. The RVE
of Al/SiC, with 10% SiC is used, which is the same as the RVE in Fig. 14(a). Some
microcracks are randomly generated in the RVE. As shown in Fig. 33, two cases
are considered: (a), all microcracks are perpendicular to the loading direction; (b)
microcracks are randomly inclined. The fatigue growth of these microcracks is
considered, with a simple Paris Law: da/dN = 6.9× 10−12K3, with Newton and
mm as units. After fatigue growth of microcracks, the final crack shapes and the
principle stress/strain energy density of case (a) and case (b) are presented in Fig.
34-39. We see that, the fatigue growth of microcracksisclearly affected by the
micro-structure: some cracks growth much faster than others. On the other hand,
since the initial microcracks are very small, the inclination angle does not affect the
final crack shape a lot.

6 Conclusions

By rearranging the weakly-singular boundary integral equations developed by [Han
and Atluri(2003)], an SGBEM Voronoi Cell (SVC) is developed. The SVC, rep-
resenting a single grain of a material, can include arbitrarily-shaped voids, inclu-
sions (of a different material), and microcracks.The SVC has a stiffness matrix and
a load vector, which have similar physical meanings to the traditional displace-
ment FEM. The stiffness matrix is symmetric, positive-definite, and has the same
number of rigid-body modes. Different SVCs, each with different isotropic ma-
terial properties, can be directly coupled by the assembly procedure, and are used
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(a) 

 
(b) 

 Figure 33: An RVE of Al/SiC material with 10% SiC, with: (a) horizontal microc-
racks; (b) inclined microcracks
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 Figure 34: Final shapes of initially horizontal microcracks in Al/SiC material, after
fatigue growth

 Figure 35: The final crack-shapes of initially inclined microcracks in Al/SiC mate-
rial, after fatigue growth



SGBEM Voronoi Cells 149

 Figure 36: The distribution of maximum principal stress in an Al/SiC material with
initially horizontal microcracks, after fatigue growth

 Figure 37: Distribution of strain energy density in Al/SiC material with initially
horizontal microcracks, after fatigue growth
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 Figure 38: The distribution of maximum principal stress in an Al/SiC material with
initially inclined microcracks, after fatigue growth

 Figure 39: The distribution of strain energy density in an Al/SiC material with
initially inclined microcracks, aftertheir fatigue growth
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to directly and efficiently model the microstructure of heterogeneous composite
materials. Some examples are also presented, with microcracks interacting with
inclusions and holes. This provides some insight of a possible future study of the
micro-cracking and damage of heterogeneous material.

By introducing stochastic variations of the shapes of SVC, and stochastic variations
of the properties of the constituent materials, the realistic statistical bounds on the
overall properties of composite materials will be determined in future studies.
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