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An Enhanced Formulation of the Maximum Entropy
Method for Structural Optimization
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Abstract: A numerical optimization method was proposed time ago by Temple-
man based on the maximum entropy principle. That approach combined the Kuhn-
Tucker condition and the information theory postulates to create a probabilistic for-
mulation of the optimality criteria techniques. Such approach has been enhanced
in this research organizing the mathematical process in a single optimization loop
and linearizing the constraints. It turns out that such procedure transforms the op-
timization process in a sequence of systems of linear equations which is a very
efficient way of obtaining the optimum solution of the problem. Some examples
of structural optimization, namely, a planar truss, a spatial truss and a composite
stiffened panel, are presented to demonstrate the capabilities of the methodology.

Keywords: numerical optimization, maximum entropy method, structural de-
sign.

1 Introduction

It is commonly accepted that the seminal contribution to the field of structural op-
timization in its modern form was made by Lucien Schmit (1960). Nevertheless,
an initial period, and that interval lasted more than two decades, was marked by the
dispute between two methodological lines regarding to the concept of the optimum
structural design.

One of these lines was based upon the mentioned Schmit’s work that formulated
the problem as the optimization of a function F(X) subject to a set of constraints
g j(X) ( j=1,...,n), which depended on a vector of design variables X, and could be
written as

opt F(X) (1a)

1 Structural Mechanics Group, School of Civil Engineering, University of La Coruǹa.
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subject to

g j(X)≤ 0 (1b)

Constraints could be related to any kind of structural response and the problem
defined by Eq.1 could be solved by any optimization algorithm already existing
[Kirsh (1981); Vanderplaats (2009); Hernández (1990); Haftka and Gurdal (1996)].

The other line of reasoning was based on the assumption that engineers, due to
their experience, could know in advance what makes optimum a given design, in
other words what would be the solution of the problem defined by Eq.1. Because of
that, they were coined as optimality criteria methods [Berke and Venkayya (1974)]
and amongst them the more popular were the simultaneous failure modes [Shanley
(1952)] and the fully stressed design [Gellatly and Berke (1971)]. Other methods
were created to deal with displacement constraints [Venkayya (1971)] or buckling
[Khot (1984)]. Some of the drawbacks of these approaches were solved by using
more scientific basis [Khot, Berke and Venkayya (1979)] and some researchers
made many improvements to these methodologies [Rozvany (1989)].

It is worthy to mention that another approach, entitled as the dual method, was in-
strumental in the controversy between the mathematical programming methods and
the optimality criteria techniques. It showed that the latter approach corresponded
exactly to a linear approximation of the actual mathematical programming prob-
lem. This circumstance was extensively discussed and led the debate to an end
[Fleury (1979)].

A more sophisticated technique used the principle or formulism of the maximum
entropy [Jaynes (1957)] to solve the optimization problem. The main idea in this
procedure was to find out the subset of active constraints at the optimum without
biasing the process, in other words, without introducing any subjective judgment
and hence by using only the information about constraints behaviour provided in
the previous steps of the optimization process. This technique was proposed by
Templeman (1987) and some other alternatives or modifications of the original
method have been presented afterwards.

For instance, Xingsi (1992) presented an aggregate method for solving nonlinear
minimax optimization problems, which converted a minimax problem to an uncon-
strained minimization on a differentiable aggregate function. Chen and Temple-
man (1995) showed further theoretical analysis and developments of entropy-based
methods for mathematical programming and also some new methods for mini-
max and constrained nonlinear programming problems are discussed. Das et al.
(1999) presented an information-theoretic algorithm for solving constrained non-
linear programming problems based upon the principle of minimum cross-entropy
and surrogate mathematical programming.
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2 Probabilistic identification of the active constraints using the maximum
entropy principle

2.1 Procedure with double optimization loop

The approach set up by Templeman (1987) used the Kuhn-Tucker (1951) condition
to identify the active constraints at the optimum design. As it is well known, that
condition states that, if a point is an optimum of a constrained problem, the gradient
of the objective function and the gradients of the subset of ma active constraints are
related by the following expression:
ma

∑
j=1

λ j∇g j =−∇F λ j ≥ 0 ( j = 1, ...,ma) (2)

The former expression can be written in a more general way as
mp

∑
k=1

λk∇gk +
ma

∑
n=1

λ j∇g j =−∇F (3a)

being

λk = 0 (k = 1, ...,mp) λ j ≥ 0 ( j = 1, ...,ma) (3b)

where mp is the subset of passive constraints, which is complementary of ma.

Consequently, at the optimum design for each constraint g(X) and component λ

the following condition will happen

λg(X) = 0 (4)

Because of:

- the constraint is active and g(X) = 0

- the constraint is passive and λ = 0

Thus, Templeman substituted the formulation of Eq. 1 for the following

opt F(X) (5a)

subject to
m

∑
j=1

λ j∇g j (X) =0 (5b)

The unknowns of the new formulation were the X and λλλ vectors.

The procedure worked by fixing the values of λ j and optimizing the design vari-
ables X and then updating the λλλ vector keeping constant the values of X obtained
previously. Both steps were repeated until convergence was achieved.
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2.1.1 Phase 1: Optimization of design variables X

The problem formulation is:

opt F(X) (6a)

subject to

m

∑
j=1

λ jg j (X) =0 (6b)

λ j ≥ 0 (6c)

Values of λ j are interpreted as the possibility for the corresponding constraints to
be active at the optimum. This is coherent with the fact, that when a constraint
g j(X) is passive, its associated λ j is zero. Initially all components of λλλ vector have
the same value equal, namely

λ1m =
1
m

(7)

After that, any optimization algorithm allows to obtain the optimum values of the
design variables X∗1. As some constraints could have become active this is incon-
sistent with the values of λ j previously selected, so the next step is to update the λλλ

vector.

2.1.2 Phase 2: Updating of λλλ vector

The principle of maximum entropy is used to update λλλ vector in an unbiased mode.
This leads to formulate that the next set of λ j would be those that maximize the
following optimization problem

max =−
m

∑
j=1

λ2 j lnλ2 j (8a)

subject to

m

∑
j=1

λ2 j = 1 (8b)

m

∑
j=1

λ2 jg j (X∗1) = εk (8c)

Constraint Eq.8.b is used to normalize values of λ j, while Eq.8.c recalls the fact that
as the components of λλλ and g j (X) do not belong to the same iteration, the whole
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set of products do not cancel out, on the contrary a decreasing error εk appears.
Because of that, a usual expression is εk = e−k.

Solution of Eq.8 provides the new values of λλλ and afterwards Phase 1 and Phase 2
can be repeated until convergence.

2.2 Procedure with a single optimization loop

The problem defined by Eq.8 is an optimization problem with equality constraints
that can be solved by using the Lagrange multipliers method as follows:

L =−
m

∑
j=1

λ2 j lnλ2 j +(1+δ )

(
m

∑
j=1

λ2 j−1

)
+ µ

(
m

∑
j=1

λ2 jg j (X)− εk

)
(9)

Imposing the conditions of a stationary point

∂L

∂xi
= 0

∂L

∂δ
= 0

∂L

∂ µ
= 0 (10)

Solving the system of equations, the values of λ j may be written as

λ j =
eµg j

m
∑
j=1

eµg j

(11)

And the multiplier µ is the solution of the equation

m

∑
j=1

g j (X)eµg j

m
∑

k=1
eµgk

= εk (12)

Having in closed form the expression of the elements of λλλ vector, the problem
defined by Eq.2 can be reformulated as

opt F(X) (13a)

subject to

m

∑
j=1

g jeµg j

m
∑

k=1
eµgk

= 0 (13b)

The value of µ should be obtained in Eq.12, but that is a difficult step, so the usual
procedure is to solve Eq.13 several times for different values of µ until convergence
is achieved [Templeman (1987)].
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3 New procedure for solving the single loop optimization problem

Problem defined by Eq.13 may be solved by any non linear optimization algorithm,
but its computational implementation has shown that numerical instabilities often
occur. For instance, Templeman (1993) related that the procedure worked quite
efficiently at the beginning but then it slowed up as the value of µ became larger
after a few iterations.

Therefore, taking in account that it is an optimization problem with equality con-
straints, a Lagrangian function can be created

L = F + γ

m

∑
j=1

eµg j

m
∑

k=1
eµgk

g j (14)

and the conditions for the stationary point can be imposed

∂L

∂xi
=

∂F
∂xi

+ γ
∂

∂xi

 m

∑
j=1

eµg j

m
∑

k=1
eµgk

g j

= 0 (i = 1, ...,n) (15a)

∂L

∂γ
=

m

∑
j=1

eµg j

m
∑

k=1
eµgk

g j = 0 (15b)

Carrying out some calculations

1
γ

∂F
∂xi

=−
m

∑
j=1

(1+ µg j)
∂g j

∂xi

eµg j

m
∑

k=1
eµgk

=−
m

∑
j=1

(1+ µg j)
∂g j

∂xi
λ j (i = 1, ...,n)

(16a)

m

∑
j=1

g jλ j = 0 (16b)

Linearizing the constraints

g j (X)≈ g j (X0)+
n

∑
l=1

∂g j

∂xl
∆xl ( j = 1, ...,m) (17)

It turns out that

1
γ

∂F
∂xi

=−
m

∑
j=1

[
1+ µ

(
g j +

n

∑
l=1

∂g j

∂xl
∆xl

)]
∂g j

∂xi
λ j (i = 1, ...,n) (18a)
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m

∑
j=1

(
g j +

n

∑
l=1

∂g j

∂xl
∆xl

)
λ j = 0 (18b)

The previous expression can be written in a more condensed form as

λλλ
T = |λ1, ...,λm| gT = |g1, ...,gm| ∆XT = |∆x1, ...,∆xn| (19a)

∇G =


∂g1
∂x1

. . . ∂gm
∂x1

...
...

∂g1
∂xn

· · · ∂gm
∂xn

= |∇g1,∇g2, ..,∇gm| (19b)

FT =
∣∣∣∣ ∂F
∂x1

, ...,
∂F
∂xn

∣∣∣∣ G =

g1 0 0

0
. . . 0

0 0 gm

 Λ =

λ1 0 0

0
. . . 0

0 0 λm

 (19c)

So the problem can be presented as

µ∇G ·λλλ ·∇GT ·∆X =−1
γ

∇F− (∇G+ µ∇G ·G)λλλ (20a)

gT
λλλ +∆XT ·∇G ·λλλ = 0 (20b)

Eq.20.a represents a system of linear equations with the same size as the number
of design variables. Given an initial design X0, a new point X can be found out by
solving the system and obtaining ∆X and thus

X = X0 +∆X (21)

Solving independently the system of equations for ∇Fand for the remaining leads
to

∆X =−1
γ

∆XF −∆Xλ (22)

substituting in Eq.20.b

gT
λλλ −

(
1
γ

∆XT
F +∆XT

λ

)
∇Gλ = 0 (23)

After some calculations

γ =
∆XT

F∇Gλ

gTλλλ −∆XT
λ

∇Gλ
(24)

Back substituting the expression of γ in Eq.22 and going to Eq.21, the new design
point X is obtained.

In summary the steps of the procedure are:
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1. Define the initial value of µ

2. Define the initial design X0

3. Evaluate constraints g j, sensitivities ∂g j
∂xi

and multipliers λ j = eµg j
m
∑

k=1
eµgk

4. Arrange vectors and matrices λλλ ,λλλ ,g,G,∇G,∇F

5. Solve the system of linear equations to obtain ∆X

6. X=X0 +∆X

7. If each component of ∆X is not small enough, go to 3). Else, check conver-
gence of X with the one obtained in the former iteration. If convergence is
not achieved modify µ and go to 3).

8. If convergence is achieved, then X is the optimum design.

The method presented can be interpreted from several perspectives:

1. From the point of view of λλλ , it is a probabilistic approach of the optimality
criteria methods.

2. From the point of view of ∆X it is a gradient based design algorithm.

3. From the point of view of ∇G it is a sequence of linear problems.

4. For linear problems, it is a new algorithm that can be an alternative to simplex
algorithm.

5. From the global point of view, the optimization problem is converted into the
task of solving several systems of linear equations.

The criterion for defining the initial value of µ and the rule for modifying it at
each iteration deserves further research. In this work the value of µk at the k-esime
iteration was chosen as µk= kµ1, being µ1 the initial value.

4 Application examples

The previously described procedure has been applied to two well known examples
in the optimization literature and a stiffened composite panel.
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4.1 Ten bar planar truss

It is a planar truss presented in Fig. 1 with two vertical loads of value Q=1 kN and
ten design variables corresponding to the cross sectional areas of the bars [Berke
(1974)]. The elastic modulus of the material is E=210 GPa and the material density
is ρ = 7.85 t/m3. The optimization problem is to minimize the structure mass and
only stress constraints are imposed to the design

minF(X) =
25

∑
i=1

ρxili (25a)

subject to

−250MPa≤ σi ≤ 250MPa (i = 1, ...,10) (25b)

xi ≥ 0.1 cm2 (i = 1, ...,10) (25c)

Evolution of the objective problem, stress in each element and values of the design
variables appear in Figs. 2 to 4. The numerical values of the results are shown in
Tab. 1 and they are consistent with those reported in the literature.

 
Figure 1: Ten-bar truss structure. Dimensions in metres

4.2 Twenty five bar space truss

This space truss is composed by twenty five elements whose cross sectional areas
are the design variables [Thoft-Christensen and Baker (1982)]. Geometry appears
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Figure 2: Evolution of objective function
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Table 1: Cross sectional area (cm2) and stress values (MPa) of each bar at the
optimum design

Bar 1 2 3 4 5 6 7 8 9 10
Area 7.93 0.1 8.07 3.92 0.1 0.1 5.75 5.51 5.52 0.1
σ 250 157.6 -249.9 -250 -5.4 157.6 250 -250 250 -222.8
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Figure 4: Evolution of design variables

in Figs. 5 to 7 and the external loads are constituted by two isolated forces of
P1=127.74 kN applied on nodes 1 and 2 and two forces of value P2=125.72 kN on
nodes 3 and 5 (Fig. 5). The numerical values of the force components are shown
in Tab 2.

Elastic modulus of the material is E=70.6 GPa. Objective function is the volume of
material and only stress constraints and the lower limit of the design variables are
considered. Problem formulation turns out to be

minF(X) =
25

∑
i=1

xili (26a)
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subject to

−276MPa≤ σi ≤ 276MPa (i = 1, ...,25) (26b)

xi ≥ 0.1 cm2 (i = 1, ...,25) (26c)

The total number of design variables is thirteen due to the symmetry of the geome-
try and loads.

 
Figure 5: Geometry of space truss. Node identification

Table 2: Force components (kN)

Node FX FY FZ

1 -88.9 88.9 -22.6
2 88.9 -88.9 -22.6
3 -88.9 88.9 0.0
5 88.9 -88.9 0.0
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Similarly to the previous example, the objective function, stress in each element and
values of the design variables appear in Figs. 8 to 10. These results are presented
numerically in Tab. 3.

 
Figure 6: Dimensions of twenty five bar space truss (top view)

Table 3: Cross sectional area (cm2) and stress values (MPa) of each bar at the
optimum design

Bar 1 2 3 6 7 10 12 14 15 18 19 22 23
Area 0.58 0.44 5.04 0.10 4.67 0.58 0.10 2.27 0.59 0.10 0.10 0.10 2.33
σ 27.6 -27.6 27.6 8.2 -27.6 27.6 12.7 27.6 -27.6 3.1 -9.6 5.2 -27.6

4.3 Stiffened composite panel

In this example, a curved panel designed with composite skin and aluminum stiff-
eners is optimized. In Fig. 11 the geometry, dimensions of the panel and shape
of the vertical and horizontal stiffeners are presented. The elastic properties of the
materials are shown in Tab 4.



232 Copyright © 2012 Tech Science Press CMC, vol.32, no.3, pp.219-239, 2012

 
Figure 7: Dimensions of twenty five bar space truss (front view)
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Figure 8: Evolution of the objective function
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Figure 9: Evolution of the stress in the bars
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   a) Geometry and dimensions (mm)           b) Vertical stiffener             c) Horizontal stiffener 

 
Figure 11: Stiffened composite panel

Table 4: Material properties

Aluminium stringers
E (Mpa) Nu
72000 0.3

Composite-skin
E1 (Mpa) E2 (Mpa) Nu12 G12 (Mpa) G13 (Mpa) G23 (Mpa)
157000 8500 0.35 4200 4200 4200

A shear buckling analysis of the panel has been performed considering the load
specified in Fig. 12. A unit load has been applied so that the eigenvalue is directly
the critical buckling load. In addition, a static analysis has been performed to eval-
uate the affect of the internal pressure in the fuselage. In this case a maximum
pressure of value of 0.0621 MPa was considered, as presented in the data specified
in the paper by Rouse, Ambur, Bodine and Dopker (1997).

Boundary conditions are established along the edges of the panel. Firstly, all dis-
placements and rotations are constrained for one of the short edges. Secondly,
remaining edges are defined as follows: constraining the normal displacement with
respect to the plane defined by the four panel corners and constraining all rotations.

The design variables of the optimization problem are the thickness of the skin and
the thickness and the internal dimensions of the stiffeners. In overall a number of
11 design variables are considered.

The design constraints included in the optimization problem are the followings:
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Figure 12: Load cases on the panel. Shear forces (left) and pressure forces (right)

1. Buckling load λ ≥ λmin = 110.46

2. Slenderness’ constraints to prevent local buckling in stringer sections, ac-
cording to Eurocode 9 (2007) for aluminum structure:

Su
St
≤ 15.714;

SH
St
≤ 15.714

sin(π/3)
;

Fu
Ftu
≤ 3.571;

FH
Ftw

≤ 15.714

1. The displacement of the stiffeners is constrained to 5% of the maximum
panel displacement in buckling analysis. This constraint is defined to pre-
vent global panel buckling. This constraint guarantees that the buckling oc-
curs between two stiffeners.

2. Upper and lower value of the strain in the static analysis in which pressure
forces are applied: −0.003≤ ε ≤ 0.003

The objective function selected was the Mass Ratio (kg/m2), in other words the
total mass divided by the panel surface that was to be minimized.

To solve this problem, the procedure explained in this paper was implemented in
a Matlab code. In Tab. 5 appear the initial values of the design variables and the
final values at the optimum. In Fig. 13 the evolution of the objective function is
presented.

5 Conclusions

The following conclusions can be drawn from this work:
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Figure 13: Evolution of the objective function

Table 5: Initial and optimum values of the design variables (mm)

Variable Initial Optimum
FL 22 18.75
FU 17 13.03
FH 70 53.64
Ft1 2 1.53
Ftu 5 3.83
Ftw 5 3.83
SL 27 20.69
SU 25 29.14
SH 30 30.62
St 3 2.30
skt 2 1.99

1. A procedure based on a probabilistic approach of the optimality criteria has
been revisited and enhanced.

2. The new method can be understood as a sequence of linear problems.
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3. For linear problems, this work constitutes a version of the so called interior
point methods, which requires very few iterations and, therefore, it is an
alternative to the simplex method.

4. As the method needs the use of first order derivatives it can be also seen as a
new gradient based procedure.

5. The new algorithm transforms the optimization problem into the task of solv-
ing several times a system of linear equations. The number of unknowns in
this system is equal to the number of design variables and it is independent
of the number of constraints.

6. The algorithm requires a parameter µ which is problem dependent. In the ex-
amples presented an initial value of µxg250 was selected for the truss struc-
tures and µxg0.1 for the stiffened panel. Future research is needed to better
understand the dependency of this parameter on the optimization problem.

7. The formulation created has been applied to several structural optimization
problems and the accuracy of numerical results is very promising.
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