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The Influence of Third Order Elastic Constants on
Axisymmetric Wave Propagation Velocity in the

Two-Layered Pre-Stressed Hollow Cylinder

S.D. Akbarov1,2

Abstract: By the use of the Murnaghan potential the influence of third order
elastic constants on axisymmetric longitudinal wave propagation velocity in a pre-
stressed two-layered circular hollow cylinder is investigated. This investigation is
carried out within the scope of the piecewise homogeneous body model by utilizing
the first version of the small initial deformation theory of the Three-dimensional
Linearized Theory of Elastic Waves in Initially Stressed Bodies. Numerical results
are obtained and analyzed for the cases where the material of the outer hollow
cylinder material is aluminum, but the material of the inner cylinder is steel (Case
1) and tungsten (Case 2). These results are obtained not only for the case where
the initial uniaxial stress is a stretching one, but also for the case where the initial
uniaxial stress is a compressing one. According to these results, it is established
that the third order elastic constants of the selected materials influence not only
quantitatively, but also qualitatively the axisymmetric wave propagation velocity
in the initially stressed two-layered hollow cylinder. It is also established that the
mentioned influence in Case 2 is more significant than that in Case 1.

Keywords: initial stress, axisymmetric wave propagation velocity, third order
elastic constants, two-layered hollow cylinder, dispersion

1 Introduction

The study of wave propagation and its dispersion in initially stressed elastic bodies
is of interest in a number of physical and mechanical areas, such as geophysics,
electrical devices, earthquake engineering, composite materials, ultrasonic non-
destructive stress analysis of solids and others. Therefore a large number of in-
vestigations have been made in this field. Note that almost all these investigations
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were made by utilizing the so called Three-dimensional Linearized Theory of Elas-
tic Waves in Initially Stressed Bodies (TLTEWISB). The relations and equations
of the TLTEWISB are obtained from the exact relations and equations of the non-
linear theory of elastodynamics by linearization with respect to small dynamical
perturbations. The general questions of the TLTEWISB have been elaborated in
many investigations such as in works by Biot (1965), Truestell (1961), Eringen and
Suhubi (1975), Guz (2004) and others. It should be noted that there are some ver-
sions of the TDLTEWISB which were developed in the monograph by Guz (2004).
These versions of the TLTEWISB are distinguished from each other with respect
to the magnitude of the initial strains. The version of the TLTEWISB developed
for high-elastic materials, according to which the initial strains in the bodies are
determined within the scope of the non-linear theory of elasticity without any re-
strictions on the magnitude of the initial strains, is called the large (or finite) initial
deformation version. The version of the TLTEWISB, according to which an ini-
tial stress-strain state in bodies is determined within the scope of the geometrically
non-linear theory of elasticity and under which changes to the elementary areas
and volumes as a result of the initial deformation are not taken into account, is
called the first version of the small initial deformation theory of the TDLTEWISB.
The second version of the small initial deformation theory of the TDLTEWISB is
the version, according to which an initial stress-strain state in bodies is determined
within the scope of the classical linear theory of elasticity.

Now we review briefly the investigations related to wave propagation in pre-stressed
circular cylinders. Note that the first attempt in this field was made in a paper by
Green (1961) in which torsional wave propagation in an initially stretched circular
solid cylinder was studied. An attempt to investigate axisymmetric wave propaga-
tion in an initially twisted circular cylinder was done in a study by Demiray and
Suhubi (1970). It was established that the initial twisting of the circular cylinder
causes the coupled wave propagation field to occur between the axisymmetric tor-
sional and longitudinal waves. In other words, it was established that in the initially
twisted circular cylinder the axisymmetric torsional and longitudinal waves cannot
be propagated separately. However, in the paper by Demiray and Suhubi (1970),
as an example of numerical results, only the approximate analytical expression for
perturbation of the torsional oscillation frequency caused by the initial twisting is
given.

Longitudinal wave propagation in initially stretched circular cylinders was a subject
of many investigations in papers such as Belward (1976), Guz et al (1975) and
Kushnir (1979). However, in these investigations the object of the research, as in
the foregoing investigations, was a homogeneous circular cylinder. Note that the
studies in works by Green (1961), Demiray and Suhubi (1970) and Belward (1976)
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were made within the scope of the finite initial deformation version, but the works
by Guz et al (1975) and Kushnir (1979) were within the scope of the first version
of the small initial deformation theory of the TLTEWISB.

Until ten years ago there hadn’t been any investigations on wave propagation in
pre-stressed compound cylinders. These investigations were started with a work
by Akbarov and Guz (2004) in which axisymmetric wave dispersion in a pre-
stressed bi-material compound solid cylinder is studied. The investigations were
made within the scope of the piecewise homogeneous body model by utilizing the
first version of the small initial deformation theory of the TLTEWISB. It is as-
sumed that the elasticity relations of the cylinders’ materials are given through the
Murnaghan potential described in a monograph by Murnaghan (1951). Below we
will again turn to the work by Akbarov and Guz (2004), but now we consider a
brief review of the investigations which are further developments of this work. The
first such development was made in a paper by Akbarov and Guliev (2009) for
the bi-material compound solid circular cylinder fabricated from high elastic ma-
terials and the corresponding investigations were carried out by utilizing the large
(or finite) initial deformation version of the TLTEWISB. The materials of the con-
stituents were assumed to be compressible and their elasticity relations were given
by the harmonic-type potential. With the same assumptions, the influence of the
finite initial strains on the axisymmetric wave dispersion in a circular cylinder, em-
bedded in a compressible elastic medium, was studied in a work by Akbarov and
Guliev (2010). Moreover, in a paper by Akbarov et al (2010) the problem con-
sidered in works by Akbarov and Guliev (2009, 2010) was developed for the case
where the materials of the components of the system were incompressible and their
stress-strain relations were given through the Treloar potential. Numerical results,
regarding the influence of the initial strains in the cylinder and embedded body
on the wave dispersion, were presented and discussed. Note that in the foregoing
papers related to the compound cylinders, it was assumed that complete contact
conditions were satisfied for the interface surface between the constituents. How-
ever, in papers by Akbarov and Ipek (2010, 2012) this condition was refuted and,
within the scope of the assumptions accepted in the paper by Akbarov and Guliev
(2009), the influence of the imperfectness of the mentioned interface conditions on
the dispersion of the axisymmetric longitudinal waves in the bi-material compound
cylinder was studied.

A paper by Akbarov et al (2011a) within the scope of the second version of the
small initial deformation theory of the TDLTEWISB investigated the dispersion
relations of axisymmetric wave propagation in an initially twisted bi-material com-
pound cylinder. It was assumed that the constituents of the compound cylinder were
isotropic and homogeneous and, in particular, it was established that as a result of
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the existence of the initial twisting, at least in one constituent of the considered
compound cylinder, the axisymmetric longitudinal and torsional waves could not
be propagated separately, i.e. new axisymmetric waves, which differ from the ax-
isymmetric torsional and longitudinal waves, must appear.

In papers by Ozturk and Akbarov (2008, 2009a, 2009b), within the scope of the
second version of the small initial deformation theory of the TDLTEWISB, the
axisymmetric torsional wave propagation in the initially uni-axially stretched bi-
material compound cylinder was investigated. The elasticity relations for the com-
ponents of the compound cylinder were obtained from the Murnaghan potential.
It should be noted that in all the foregoing investigations related to the torsional
wave propagation in the pre-stressed bi-layered compound cylinder it was assumed
that complete contact conditions were satisfied with respect to the contact surface
between the inner and outer cylinders. In a paper by Kepceler (2010) the problems
considered in the papers by Ozturk and Akbarov (2008, 2009a, 2009b) were ex-
amined for the case where the specified contact conditions were imperfect and the
numerical results on the effects of this imperfection on the influence of the initial
stresses on the wave propagation velocity are presented and discussed. In a paper
by Cilli and Ozturk (2010), the torsional wave propagation in a pre-stretched mul-
tilayered solid cylinder was studied within the scope of the assumptions used in
papers by Ozturk and Akbarov (2008, 2009a, 2009b).

Finally, in a paper by Akbarov et al (2011b) by utilizing the finite initial defor-
mation version of the TLTEWISB within the scope of the piecewise homogeneous
body model, torsional wave dispersion in a pre-strained three-layered (sandwich)
hollow cylinder was studied. The mechanical relations of the materials of the cylin-
ders are described through their harmonic potential.

This completes the review of the related investigations, from which it follows that
the investigations related to axisymmetric longitudinal wave propagation in pre-
stressed bi-material compound cylinders were made within the scope of the follow-
ing assumptions:

1. a bi-material compound cylinder is a solid compound;

2. these investigations (except the paper by Akbarov and Guz (2004)) were
made by utilizing the finite initial deformation version of the TLTEWISB;

3. under these investigations the elasticity relations of the materials of the con-
stituents are described by the harmonic potential (for compressible materials)
or by the Treloar potential (for the incompressible materials).

Therefore, according to the last assumption, the results obtained in these papers can
be applied mainly to the cylinders made from polymer type materials. However



The Influence of Third Order Elastic Constants 33

these results cannot be applied to the compound cylinders made from metals such
as aluminum, steel, tungsten etc. This situation can be explained by experimental
data detailed in the monograph by Guz (2004) and in other references listed therein,
according to which, the absolute values of the influence of the initial stretching and
the initial compressing stresses on the wave propagation velocity in the pre-stressed
bodies fabricated from the foregoing metals differ from each other in the quanti-
tative sense. Consequently, in a theoretical sense such experimental results can be
described only by employing the strain energy function (potential) containing not
only the first and the second algebraic invariants of Green’s strain tensor (which are
contained by the aforementioned harmonic potential), but also the third order alge-
braic invariant of Green’s strain tensor. The Murnaghan potential can be taken as
an example of such a potential. Note that the coefficients of the terms which enter
the expression of this potential contain the third order powers of the components
of Green’s strain tensor which are called the third order elastic constants. Note that
these third order elastic constants enter into the linearized elasticity relations of the
TLTEWISB and through these constants the aforementioned effect on the differ-
ence between the absolute values of the influence of the initial stretching and the
initial compressing stresses on the wave propagation velocity in the pre-stressed
bodies is described and estimated. Therefore, theoretical investigations on the in-
fluence of the third order elastic constants on the longitudinal wave propagation
in the compound cylinders have a great significance not only in the sense of the
fundamental investigations but also in the sense of their application. The first at-
tempt in this field was made in the paper by Akbarov and Guz (2004) in which the
subject of the investigation was a bi-material compound solid cylinder. Moreover,
in the paper by Akbarov and Guz (2004), numerical results were obtained for the
case where the initial stresses were stretching ones and the main attention was not
focused on the influence of the third order elastic constants on the axisymmetric
wave propagation velocity.

Taking the foregoing discussions into account in the present paper by the use of
the Murnaghan potential, the influence of the third order elastic constants on the
axisymmetric wave propagation velocity in the pre-stressed two-layered circular
hollow cylinder is investigated. This investigation is carried out within the scope of
the piecewise homogeneous body model by utilizing the first version of the small
initial deformation theory of the TLTEWISB. Numerical results are obtained and
analyzed for the case where the initial uniaxial stress is a stretching one as well as
for the case where the initial uniaxial stress is a compressing one. These results
are obtained for the specifically-selected materials, such as steel, aluminum and
tungsten.
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2 Formulation of the problem

We consider the two-layered hollow circular cylinder shown in Fig. 1 and assume
that in the natural state the radius of the connecting surface of the inner and outer
cylinders is R and the thickness of the inner and outer cylinders is h(1)and h(2), re-
spectively. In the natural state we determine the position of the points of the cylin-
ders by the Lagrange coordinates in the cylindrical system of coordinates Orθz.
The values related to the inner and outer hollow cylinders will be denoted by the
upper indices (1) and (2), respectively. Furthermore, we denote the values related
to the initial state by an additional upper index 0. Assume that the cylinders have
an infinite length in the direction of the Oz axis.

 

 
Figure 1: The geometry of the two-layered hollow cylinder

We propose that the cylinders (before the compounding) be stretched separately
along the Oz axis and that in each of them the homogeneous axisymmetric initial
stress state appears. However, the results which will be discussed below, can also
relate to the case where the cylinders are stretched after the compounding. In this
case, as a result of the difference in Poisson’s coefficients of the cylinders’ mate-
rials, the inhomogeneous initial stresses acting on the areas which are parallel to
the Oz axis arise. But the values of these inhomogeneous stresses are much smaller
than the values of the homogeneous initial stresses acting on the areas which are
perpendicular to the Oz axis and therefore the inhomogeneous initial stresses can
be neglected for consideration. With the initial state of the cylinders we associate
the Lagrange cylindrical system of coordinates O′r′θ ′z′. Thus, according to the
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above, the initial state in the cylinders can be written as follows:

u(k),0
r = (λ (k)

1 −1)r, u(k),0
z = (λ (k)

3 −1)z, u(k),0
θ

= 0, k = 1,2, (1)

where λ
(k)
1 and λ

(k)
3 are constants.

Based on the above, let us investigate the axisymmetric wave propagation in the
O′z′ axis direction in the compound cylinder. We make this investigation by the use
of coordinates r′ and z′ in the framework of the first version of the small initial de-
formation theory of the TLTEWISB. According to this theory, it is assumed that the
values δ

(k)
m = 1−λ

(k)
m and shears are smaller than unity and thus can be neglected

under the linearization procedure. How this theory is constructed was analyzed by
Guz (2004) in detail.

It follows from (1) that

h′(1) = λ
(1)
1 h(1), h′(2) = λ

(2)
1 h(2), R′ = λ

(1)
1 R,

r′ = λ
(1)
1 r for R−h(1) ≤ r ≤ R, r′ = λ

(2)
1 r for R≤ r ≤ R+h(2). (2)

Below, the values related to the system of coordinates associated with the initial
state, i.e. with O′r′θ ′z′ are denoted by the upper prime.

Thus, based on Guz (2004), we write the basic relations of the TLTEWISB for the
axisymmetrical case.

The equation of motion:

∂

∂ r′
T ′(k)r′r′ +

∂

∂ z′
T ′(k)r′z′ +

1
r′

(T ′(k)r′r′−T ′(k)
θ ′θ ′) = ρ

′(k) ∂ 2

∂ t2 u′(k)r′ ,

∂

∂ r′
T ′(k)z′r′ +

1
r′

T ′(k)z′r′ +
∂

∂ z′
T ′(k)z′z′ = ρ

′(k) ∂ 2

∂ t2 u′(k)z′ , (3)

The mechanical relations:

T ′(k)r′r′ = ω
′(k)
1111

∂u′(k)r′

∂ r′
+ω

′(k)
1122

u′(k)r′

r′
+ω

′(k)
1133

∂u′(k)z′

∂ z′
,

T ′(k)
θ ′θ ′ = ω

′(k)
2211

∂u′(k)r′

∂ r′
+ω

′(k)
2222

u′(k)r′

r′
+ω

′(k)
2233

∂u′(k)z′

∂ z′
,

T ′(k)r′z′ = ω
′(k)
1313

∂u′(k)r′

∂ z′
+ω

′(k)
1331

∂u′(k)z′

∂ r′
,

T ′(k)z′r′ = ω
′(k)
3113

∂u′(k)r′

∂ z′
+ω

′(k)
3131

∂u′(k)z′

∂ r′
,
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T ′(k)z′z′ = ω
′(k)
3311

∂u′(k)r′

∂ r′
+ω

′(k)
3322

u′(k)r′

r′
+ω

′(k)
3333

∂u′(k)z′

∂ z′
. (4)

In (3) and (4) through T ′(k)r′r′ , . . . , T ′(k)z′z′ perturbation of the components of the Kirch-

hoff stress tensor are denoted; the notation u′(k)r′ andu′(k)z′ shows the perturbation of

the components of the displacement vector. The constants ω ′
(k)
1111, . . . , ω ′

(k)
3333 and

ρ ′(k) in (3) and (4) are determined through the mechanical constants of the cylin-
ders’ materials and through the initial stress state. Note that for the considered
initial stress state, expression of these constants is given through those in the sys-
tem of coordinates Orθz (we denote them by ω

(k)
1111, . . . , ω

(k)
3333) with the following

formulae:

ω
′(k)
1111 = (λ (k)

1 )2
ω

(k)
1111, ω

′(k)
1331 = (λ (k)

1 )2
ω

(k)
1331, ω

′(k)
3333 = (λ (k)

3 )2
ω

(k)
3333,

ω
′(k)
3113 = (λ (k)

3 )2
ω

(k)
3113, ρ

′(k) =
ρ(k)

λ
(k)
1 λ

(k)
2 λ

(k)
3

,ω ′
(k)
3113 = (λ (k)

3 )2
ω

(k)
3113,

ω
′(k)
1133 = λ

(k)
1 λ

(k)
3 ω

(k)
1133, ω

′(k)
1313 = λ

(k)
1 λ

(k)
3 ω

(k)
1313. (5)

As has been noted above, in the present investigation we assume that the elasticity
relations of the cylinders’ materials are given by the Murnaghan (1951) potential.
This potential is given as follows:

Φ =
1
2

λA2
1 + µA2 +

a
3

A3
1 +bA1A2 +

c
3

A3. (6)

In (6), λ and µ are Lamé’s constants, a, b and c are the third order elastic constants;
and A1, A2 and A3 are the first, second and third algebraic invariants of Green’s
strain tensor respectively. For the case under consideration the expressions of these
invariants are the following:

A1 = εrr + εθθ + εzz,

A2 = ε
2
rr +2ε

2
rz + ε

2
θθ + ε

2
zz,

A3 = ε
3
rr + ε

3
θθ + ε

3
zz +3ε

2
rz(εrr + εzz). (7)

In (7), εrr, εθθ , εzz and εrz are the components of Green’s strain tensor and these
components are determined through the components of the displacement vector by
the following formulae:

εrr =
∂ur

∂ r
+

1
2

(
∂ur

∂ r

)2

+
1
2

(
∂uz

∂ r

)2

,
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εθθ =
ur

r
+

1
2

u2
r

r2 ,

εrz =
1
2

(
∂uz

∂ r
+

∂ur

∂ z
+

∂ur

∂ r
∂ur

∂ z
+

∂uz

∂ r
∂uz

∂ z

)
,

εzz =
∂uz

∂ z
+

1
2

(
∂uz

∂ z

)2

+
1
2

(
∂ur

∂ r

)2

. (8)

In this case the components σrr,. . . , σzz of the symmetric stress tensor are deter-
mined as follows:

σrr =
∂

∂εrr
Φ, σθθ =

∂

∂εθθ

Φ, σzz =
∂

∂εzz
Φ, σrz =

1
2
(

∂

∂εrz
+

∂

∂εzr
)Φ. (9)

Note that the expressions (5)-(9) are written in the arbitrary system of cylindrical
coordinates without any restriction related to the association of this system with the
natural or initial state of the considered compound cylinders.

For the considered case, the relations between the perturbation of the Kirchhoff
stress tensor and perturbation of the components of the ordinary symmetric tensor
of stresses can be written as follows:

T ′(k)r′r′ = λ
(k)
1 σ

′(k)
r′r′ ,

T ′(k)
θ ′θ ′ = λ

(k)
1 σ

′(k)
θ ′θ ′ ,

T ′(k)r′z′ = σ
′(k)
r′z′ +σ

(k),0
zz

∂u′(k)r′

∂ z′
,

T ′(k)z′r′ = σ
′(k)
z′r′ ,

T ′(k)z′z′ = λ
(k)
3 σ

′(k)
z′z′ +σ

(k),0
zz

∂u′(k)z′

∂ z′
. (10)

By linearization of the equation (9) and taking (5), (10) and (1) into account we
obtain the following expressions for the constants ω

(k)
1111, . . . , ω

(k)
3333 in (5):

ω
(k)
1111 = ω

(k)
2222 = λ

(k)
1

2A(k)
11 , ω

(k)
3333 = (λ (k)

3 )2A(k)
33 +σ

(k),0
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ω
(k)
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(k)
2233 = λ

(k)
1 λ

(k)
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(k)
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1 )2A(k)
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ω
(k)
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(k)
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(k)
1

2
µ

(k)
13 +σ

(k),0
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(k)
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(k)
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3 )2
µ
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(k)
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1 )2
µ

(k)
12 , ω

(k)
1313 = ω

(k)
2323 = λ

(k)
1 λ

(k)
3 µ

(k)
13 ,
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ω
(k)
1213 = (λ (k)

1 )2
µ

(k)
12 , (11)

where

(λ (k)
1 )2 = 1− λ (k)

3K(k)
0 µ(k)

σ
(k),0
zz , (λ (k)

3 )2 = 1+
2
(
λ (k) + µ(k)

)
3K(k)

0 µ(k)
σ

(k),0
zz ,

A(k)
11 =

(λ (k)+2µ
(k))

[
1+

σ
(k),0
zz(

λ (k) +2µ(k)
)

3K(k)
0

(
2a(k)− λ (k)−µ(k)

µ(k) 2b(k)− λ (k)
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)]
,
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(k))

[
1+

σ
(k),0
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)
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,

µ
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(k)

[
1+
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(k),0
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3K(k)
0 µ(k)

(
b(k) +

1
4

λ (k) +2µ(k)

µ(k) c(k)
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,
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13 = λ

(k)

[
1+

σ
(k),0
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3K(k)
0 λ (k)

(
2a(k) +
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µ(k) b(k)
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,
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12 = λ
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[
1+

σ
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(
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,

µ
(k)
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[
1+

σ
(k),0
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3K(k)
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(
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2µ(k) c(k)

)]
. (12)

Thus, the wave propagation in the considered compound cylinder will be investi-
gated by the use of the equations (3)-(5), (11) and (12). In this case we will assume
that the following contact and boundary conditions are satisfied:

T ′(1)
r′r′

∣∣∣
r′=R′

= T ′(2)
r′r′

∣∣∣
r′=R′

, T ′(1)
r′z′

∣∣∣
r′=R′

= T ′(2)
r′z′

∣∣∣
r′=R′

, u′(1)
r′

∣∣∣
r′=R′

= u′(2)
r′

∣∣∣
r′=R′

,

u′(1)
z′

∣∣∣
r′=R′

= u′(2)
z′

∣∣∣
r′=R′

, T ′(2)
r′r′

∣∣∣
r′=R′+h′(2)

= 0, T ′(2)
r′z′

∣∣∣
r′=R′+h′(2)

= 0.

T ′(1)
r′r′

∣∣∣
r′=R′−h′(1)

= 0, T ′(1)
r′z′

∣∣∣
r′=R′−h′(1)

= 0. (13)

This completes formulation of the problem and consideration of the governing field
equations.
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3 Solution procedure and obtaining the dispersion equation

Substituting (4) in (3), we obtain the following equation of motion in displacement
terms:
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1
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′(k) ∂ 2u′(k)z′

∂ t2 . (14)

According to Guz (2004), we use the following representation for the displace-
ments:

u′(k)r′ =− ∂ 2

∂ r′∂ z′
X(k),

u′(k)z′ =
1

ω ′
(k)
1133 +ω ′
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X(k), (15)

where X(k) satisfies the following equation:[(
∆
′
1 +ξ

′(k)
2
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1111ω ′
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]
X(k) = 0. (16)

In (15) and (16) the following notation is used:

∆
′
1 =

d2

dr′2
+

1
r′

d
dr′

, (ξ ′(k)2,3)
2 = d(k)±

[
d(k)2−ω
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3333ω

′(k)
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(
ω
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1111ω

′(k)
1331
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] 1

2

,
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d(k) =
(

2ω
′(k)
1111ω
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ω
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′(k)
3333 +ω
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.

(17)

We represent the function X(m) = X(m) (r′,z′, t) as

X(m) = X(m)
1 (r′)cos

(
kz′−ωt

)
, m = 1,2. (18)

Substituting (18) in (16) and doing some manipulations we obtain the following
equation for X(m)

1 (r′):(
∆
′
1 +ζ

′(m)
2

2
)(
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′
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3

2
)
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1 (r′) = 0. (19)

The constants ζ ′
(k)
2,3 are determined from the following equation:
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ω
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3113

)
= 0 , (20)

where c = ω/k, i.e. c is the phase velocity of the propagating wave. We determine
the following expression for X(m)

1 (r′) from equations (19) and (20):

X(m)
(1) (r′) = B(m)

2 E(m)
0 (kr′ζ ′(m)

2 )+B(m)
3 E(m)

0 (kr′ζ ′(m)
3 )+

D(m)
2 F(m)

0 (kr′ζ ′(m)
2 )+D(m)

3 F(m)
0 (kr′ζ ′(m)

3 ), (21)

where
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m kr′

)
=
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m kr′
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, (22)

F(n)
0
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′(n)
m kr′

)
=

Y0
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m kr′
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K0
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(

ζ ′(n)
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)
2 < 0

, (23)

In (22) and (23) J0(x) and Y0(x) are Bessel functions of the first and second kind of
the zeroth order; I0(x) and K0(x) are Bessel functions of a purely imaginary argu-
ment in the zeroth order and Macdonald function in the zeroth order, respectively.
Note that the expressions for the functions E(n)

0 (x) and F(n)
0 (x) for the other cases
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which are not considered in (22) and (23), (i.e. for the cases where ζ ′
(n)
2 = 0 or

ζ ′
(n)
3 = 0), can easily be determined according to the well-known procedure. As

these cases do not appear in our investigations, the corresponding expressions for
E(m)

0 (x)and F(m)
0 (x) are not given here.

Thus, using the expressions (18), (20)-(23), (15), (4) and (5) we obtain the follow-
ing dispersion equation from (13):

det
∥∥αi j

∥∥= 0, i, j = 1,2,3,4,5,6,7,8, (24)

where

αi j =

αi j

(
kR′,

c

c(1)
2

,
µ(1)

µ(2) ,
h′(1)

R′
,
h′(2)

R′
,

a(1)

µ(1) ,
b(1)

µ(1) ,
c(1)

µ(1) ,
σ

0(1)
zz

µ(1) ,
a(2)

µ(2) ,
b(2)

µ(2) ,
c(2)

µ(2) ,
σ

0(2)
zz

µ(2)

)
,

(25)

where c(1)
2 =

√
µ(1)/ρ(1). The explicit expressions of αi j (i = 1,2, ...,8, j =

1,2, ...,8) are given in the Appendix through the equations (A1) and (A2). Thus the
dispersion equation for the considered wave propagation problem has been derived
in the form (24), (25), (A1) and (A2).

4 Numerical results and discussions

The numerical results are obtained for steel (St), tungsten (Tg) and aluminum (Al).
Note that the material of the internal hollow cylinder is selected as steel (St) or
tungsten (Tg), but the material of the external hollow cylinder is selected as alu-
minum (Al). All mechanical characteristics of these materials and their notation,
which will be used below, are given in Table 1. The values of the velocity of wave
dilatation and bar velocity for these materials are given in Table 2. Note that the
data given in Table 1 are selected according to Guz (2004) and Guz and Makhort
(2000).

We assume that σ
(1),0
zz /µ(1) = σ

(2),0
zz /µ(2) and introduce the notation:

η =
σ

(1),0
zz

µ(1) =
σ

(2),0
zz

µ(2) , n = 1,2. (26)

for estimation of the initial stresses in the constituents.

We analyze the numerical results related to the first (fundamental) mode only and
assume that the material of the outer cylinder is aluminum (Al), but with respect to
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the material of the inner hollow cylinder we consider the following two cases: Case
1. The material of the inner hollow cylinder is steel (St); Case 2. The material of
the inner hollow cylinder is tungsten (Tg).

For testing of the algorithm and PC programs, first, we consider the case where
η = 0, i.e. the case where the initial stresses in the constituents of the cylinder are
absent and analyze the dispersion curves given in Fig. 2 which are constructed for
Case 1 for h(2)/R = 0.1 under various values of h(1)/R. According to mechani-
cal considerations, an increase in the values of h(1)/R must cause to approach the
dispersion curves corresponding to the ones obtained for the solid compound cylin-
der. This consideration is confirmed by the graphs given in Fig. 2. Moreover, the
dispersion curves given in Fig. 2 agree in the quantitative sense with the disper-
sion curves obtained for the hollow cylinder and detailed in a monograph by Rose
(2004) and other references listed therein.

 

 Figure 2: Dispersion curves constructed in Case 1 for various values of h(1)/R
under h(2)/R = 0.1.

Thus the foregoing results can be taken as validation of the employed algorithm
and programs which are used for the numerical solution to the dispersion equation
(24). Note that this algorithm is based on the well-known “bisection method”. In
this case, for fixed values of the problem parameters for each value of kR, the roots
of the equation (24) with respect to c, are found.

Now we turn to consideration of the numerical results related to the influence of the
initial stresses of the cylinder under consideration on the wave propagation velocity.
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  a   b

    c 

 Figure 3: The graphs of the dependence between the parameter ψ (27) and kR
constructed in Case 1 under h(1)/R = h(2)/R = 0.1(a), 0.3 (b) and 0.5 (c). Solid
(dashed) lines correspond to the case where the influence of the third order elastic
constants is taken (is not taken) into account.

For the quantitative estimation of this influence we introduce the parameter:

ψ =
103× (c|

η 6=0− c|
η=0)

c(1)
2

(27)

where c(1)
2 is the dilatational wave velocity in the inner cylinder material, and in-

vestigate the dependencies between the parameter ψ and kR obtained for various
values of η , h(2)/R and h(1)/R in the aforementioned Cases 1 and 2. Graphs of
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 a   b

   c 

 
Figure 4: The graphs of the dependence between the parameter ψ (27) and kR
constructed in Case 2 under h(1)/R = h(2)/R = 0.1(a), 0.3 (b) and 0.5 (c). Solid
(dashed) lines correspond to the case where the influence of the third order elastic
constants is taken (is not taken) into account.

these dependencies are given in Figs. 3 (for Case 1) and 4 (for Case 2) for the
values of h(2)/R =h(1)/R = 0.1 (Figs. 3a and 4a), 0.3 (Figs. 3b and 4b) and 0.5
(Figs. 3c and 4c). Note that the graphs illustrated in Figs. 3 and 4 are constructed
for various values of the initial stretching and compressing stresses, i.e. for various
values of the parameter η(26) under η > 0 and under η < 0. Moreover, note that
the results given in Figs. 3 and 4 are obtained in both cases where the influence
of the third order elastic constants on the wave propagation velocity is taken into
account (the graphs related to this case are drawn by the solid lines) and not taken
into account (the graphs related to this case are drawn by the dashed lines).
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According to the graphs given in Figs. 3 and 4, we can make the following con-
clusions for the case where the influence of the third order elastic constants on the
wave propagation velocity in the pre-stressed two-layered hollow cylinder is not
taken into account:

• an initial stretching (compressing) of the cylinder causes an increase (a de-
crease) in the wave propagation velocity, in other words

ψ > 0 i f η > 0

ψ < 0 i f η < 0
; (28)

• low wave number limit values of ψ as kR→ 0 are its absolute maximum;

• the graphs of the dependence between ψ and kR constructed under η > 0 (i.e.
under the initial stretching of the cylinder) are symmetric to those constructed
under η < 0 (i.e. under the initial compressing of the cylinder), in other
words,

ψ(η) =−ψ(−η); (29)

• for high wave number limit values of ψ as kR→∞, we can write the follow-
ing relation:

ψ →min
{∣∣∣∣c(1)

R

∣∣∣
η 6=0
− c(1)

R

∣∣∣
η=0

∣∣∣∣/c(1)
2 ;

∣∣∣∣c(2)
R

∣∣∣
η 6=0
− c(2)

R

∣∣∣
η=0

∣∣∣∣/c(1)
2 ;∣∣∣cS|η 6=0− cS|η=0

∣∣∣/c(1)
2

}
as kR→ ∞ (30)

where c(m)
R is the Rayleigh wave velocity in the m– th material and cS is the

Stoneley wave velocity for a selected pair of materials.

Also, according to the graphs given in Figs. 3 and 4, we can make the following
conclusions for the case where the influence of the third order elastic constants on
the wave propagation velocity in the pre-stressed two-layered hollow cylinder is
taken into account:

• in Case 1, the character of the influence of the initial stresses on the wave
propagation velocity depends on the values of kR, i.e. there exists such a
value of kR (denoted by (kR)∗) with respect to which the following relation
occurs:

ψ ≥ 0 i f η < 0

ψ ≤ 0 i f η > 0
under 0 < kR≤ (kR)∗
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and

ψ < 0 i f η < 0

ψ > 0 i f η > 0
under kR > (kR)∗. (31)

The equality in the relation (31) occurs in the case where kR = (kR)∗. This
means that in the case where kR = (kR)∗ the existence of the initial stresses
in the cylinder under consideration does not influence the wave propagation
velocity. Moreover, the relation (31) means that in the case where 0 < kR≤
(kR)∗ (kR > (kR)∗) initial stretching stresses cause a decrease (an increase),
but initial compressing stresses cause an increase (a decrease) in the wave
propagation velocity;

• the foregoing conclusion and the relation (31) also take place in Case 2 for
the relatively small values of |η | and of h(2)/R (= h(1)/R ), but for the mod-
erately greater values of |η | and of h(2)/R (= h(1)/R ) the relation (31) is
violated, for instance, in the case where h(2)/R = h(1)/R = 0.5, the relation:

ψ < 0 i f η > 0

ψ > 0 i f η < 0
(32)

takes place for each value of kR instead of the relation (31);

• in Case 1 (in Case 2) the influence of the third order elastic constants causes a
decrease (an increase) in the absolute values of the parameter ψ with respect
to the corresponding values of ψ obtained in the case where the influence of
the third order elastic constants is not taken into account;

• the magnitude of the aforementioned influence on the absolute values of the
parameter ψ in Case 2 is more significant than that in Case 1;

• in the case where the third order elastic constants are taken into account the
relation (29) is violated and the relation (33)

ψ(η) 6=−ψ(−η) (33)

occurs instead of the relation (29);

• the relation (30) which relates to the high wave number limit values of the pa-
rameter ψ also takes place for the case where the third order elastic constants
are taken into account.
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  a   b 

 Figure 5: The influence of the ratio h(1)/R(= h(2)/R)on the dependence between
the parameter ψ (27) and kR: (a) Case 1, (b) Case 2. Solid (dashed) lines corre-
spond to the case where the influence of the third order elastic constants is taken (is
not taken) into account.

Now we consider how the values of h(2)/R(= h(1)/R) affect the influence of the
initial stresses on the wave propagation velocity. For this purpose we consider the
graphs given in Fig. 5 which also illustrate the dependence between the parameter
ψ (27) and kR in Case 1 (Fig. 5a) and in Case 2 (Fig. 5b) under |η | = 0.008 for
various values of h(2)/R(= h(1)/R). It follows from Fig. 5 (especially from Fig.
5b) that, in the case where h(1)/R = h(2)/R there exists such a value of kR, denoted
by (kR)′, according to which, we can write the following relation:

|ψ| increases with decreasing h(1)/R(= h(2)/R) if kR < (kR)′,

|ψ| decreases with decreasing h(1)/R(= h(2)/R) if kR > (kR)′. (34)

Consequently, an increase in the values of h(1)/R(= h(2)/R)causes a decrease in
the low wave number limit value of |ψ| as kR→ 0. Note that the relation (34) is
observed distinctly in Case 2 (Fig. 5b) when taking the influence of the third or-
der elastic constants into account. We attempt to explain the relation (34) with
the data given in Table 1, according to which, the absolute values of the third
order elastic constants of the tungsten, which is the inner cylinder material, are
significantly greater than those of the aluminum, which is the outer cylinder ma-
terial. As the influence of the third order elastic constants of each constituent of
the two-layered hollow cylinder on the low wave number limit values of |ψ| de-
pends significantly on its volumetric fraction in the cylinder under consideration
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and as the dominant part of this influence is caused by the tungsten, the values
of |ψ| as kR→ 0 therefore decrease with increasing h(1)/R(= h(2)/R). This is
because the volumetric fraction of the inner cylinder material (tungsten), which
is equal to 0.5(1− 0.5h(1)/R), decreases, but the volumetric fraction of the outer
cylinder material (aluminum), which is equal to 0.5(1+0.5h(2)/R), increases with
h(1)/R(= h(2)/R).

 a   b 

  c 

 
Figure 6: Comparison of the graphs of the dependence between the parameter ψ

(27) and kR constructed in Case 2 for the inner hollow cylinder, solid compound
cylinder and hollow compound cylinder under h(1)/R = h(2)/R = 0.1(a), 0.3 (b)
and 0.5 (c). Solid (dashed) lines correspond to the case where the influence of the
third order elastic constants is taken (is not taken) into account.

For an explanation of the contribution of the inner hollow cylinder on the values of
the parameter ψ we consider the graphs given in Fig. 6 which are constructed for
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Case 2 when taking the influence of the third order elastic constants into account in
the case where |η |= 0.008. In this figure the graphs of the dependence between the
parameter ψ and kR constructed for the compound two-layered hollow cylinder;
the corresponding compound solid cylinder; and the single hollow cylinder are
given for the cases where h(1)/R = h(2)/R = 0.1 (Fig. 6a), h(1)/R = h(2)/R = 0.3
(Fig. 6b) and h(1)/R = h(2)/R = 0.5 (Fig. 6c). It follows from these results that
the difference between the low wave number limit values of ψ obtained for the
compound two-layered hollow cylinder and for the single inner hollow cylinder
increases with h(1)/R(= h(2)/R). Moreover, introducing the notation ψ∗c.h.c., ψ∗c.s.c.
and ψ∗s.h.c. for the low wave number limit values of the parameter ψ related to
the compound hollow cylinder, the compound solid cylinder and the single inner
hollow cylinder respectively, we can write the following relation:

ψ
∗
c.h.c < ψ

∗
c.s.c < ψ

∗
s.h.c. (35)

Note that the relation (35) agrees with well-known mechanical considerations.

5 Conclusions

Thus, in the present paper, by the use of the Murnaghan potential, the influence of
the third order elastic constants on the axisymmetric wave propagation velocity in
the pre-stressed two-layered circular hollow cylinder has been investigated. This
investigation has been carried out within the scope of the piecewise homogeneous
body model by utilizing the first version of the small initial deformation theory of
the TLTEWISB. Numerical results have been obtained and analyzed for the cases
where the material of the outer hollow cylinder material is aluminum, but the mate-
rial of the inner cylinder material is steel (Case 1) and tungsten (Case2). According
to these results, it has been established that the third order elastic constants of the
selected materials influence not only quantitatively, but also qualitatively, the ax-
isymmetric wave propagation velocity in the initially stressed two-layered hollow
cylinder. The details of these results have been described in the previous section.

The obtained numerical results can be used for non-destructive determination of
residual stresses in the bi-material elastic systems fabricated from the type of ma-
terials considered above.

Appendix

We write the explicit expressions of αi j (i = 1,2, ...,8, j = 1,2, ...,8) which enter
the dispersion equation (24). To simply these expressions we introduce the follow-
ing notation:

δ
(m)
2 = ζ

′(m)
2 kR′λ (m)

1 , δ
(m)
3 = ζ

′(m)
3 kR′λ (m)

1 , m = 1,2,
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Using the notation (A1) we get
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The Influence of Third Order Elastic Constants 53

α31 =


ω ′

(1)
1111

2λ
(1)
3

(−(ζ ′(1)
2 )2(I2(δ

(1)
2 )+ I0(δ

(1)
2 ))− ω ′

(1)
1122

λ
(1)
3

(ζ ′(1)
2 )2

δ
(1)
2

I1(δ
(1)
2 )+ ω ′

(1)
1133

λ
(1)
1

(β (1)
1 ×

ω ′
(1)
1111

2λ
(1)
3

(−(ζ ′(1)
2 )2(J2(δ

(1)
2 )− J0(δ

(1)
2 ))+ ω ′

(1)
1122

λ
(1)
3

(ζ ′(1)
2 )2

δ
(1)
2

J1(δ
(1)
2 )+ ω ′

(1)
1133

λ
(1)
1

(β (1)
1 ×

( (ζ (1)
2 )2

2 (I2(δ
(1)
2 )+ I0(δ

(1)
2 ))+ (ζ (1)

2 )2

δ
(1)
2

I1(δ
(1)
2 )−β

(1)
2 I0(δ

(1)
2 )) i f (ζ (1)

2 )2 < 0

( (ζ (1)
2 )2

2 (J2(δ
(1)
2 )− J0(δ

(1)
2 ))− (ζ (1)

2 )2

δ
(1)
2

J1(δ
(1)
2 )−β

(1)
2 J0(δ

(1)
2 )) i f (ζ (1)

2 )2 > 0

α32 =


ω ′

(1)
1111

2λ
(1)
3

(−(ζ ′(1)
2 )2(K2(δ

(1)
2 )+K0(δ

(1)
2 ))+ ω ′

(1)
1122

λ
(1)
3

(ζ ′(1)
2 )2

δ
(1)
2

K1(δ
(1)
2 )+ ω ′

(1)
1133

λ
(1)
1

(β (1)
1 ×

ω ′
(1)
1111

2λ
(1)
3

(−(ζ ′(1)
2 )2(Y2(δ

(1)
2 )−Y0(δ

(1)
2 ))+ ω ′

(1)
1122

λ
(1)
3

(ζ ′(1)
2 )2

δ
(1)
2

Y1(δ
(1)
2 )+ ω ′

(1)
1133

λ
(1)
1

(β (1)
1 ×

( (ζ (1)
2 )2

2 (K2(δ
(1)
2 )+K0(δ

(1)
2 ))− (ζ (1)

2 )2

δ
(1)
2

K1(δ
(1)
2 )−β

(1)
2 K0(δ

(1)
2 )) i f (ζ (1)

2 )2 < 0

( (ζ (1)
2 )2

2 (Y2(δ
(1)
2 )−Y0(δ

(1)
2 ))− (ζ (1)

2 )2

δ
(1)
2

Y1(δ
(1)
2 )−β

(1)
2 Y0(δ

(1)
2 )) i f (ζ (1)

2 )2 > 0

α33 =


ω ′

(1)
1111

2λ
(1)
3

(−(ζ ′(1)
3 )2(I2(δ

(1)
3 )+ I0(δ

(1)
3 ))− ω ′

(1)
1122

λ
(1)
3

(ζ ′(1)
3 )2

δ
(1)
3

I1(δ
(1)
3 )+ ω ′

(1)
1133

λ
(1)
1

(β (1)
1 ×

ω ′
(1)
1111

2λ
(1)
3

(−(ζ ′(1)
3 )2(J2(δ

(1)
3 )− J0(δ

(1)
3 ))+ ω ′

(1)
1122

λ
(1)
3

(ζ ′(1)
3 )2

δ
(1)
3

J1(δ
(1)
3 )+ ω ′

(1)
1133

λ
(1)
1

(β (1)
1 ×

( (ζ (1)
3 )2

2 (I2(δ
(1)
3 )+ I0(δ

(1)
3 ))+ (ζ (1)

3 )2

δ
(1)
3

I1(δ
(1)
3 )−β

(1)
2 I0(δ

(1)
3 )) i f (ζ (1)

3 )2 < 0

( (ζ (1)
3 )2

2 (J2(δ
(1)
3 )− J0(δ

(1)
3 ))− (ζ (1)

3 )2

δ
(1)
3

J1(δ
(1)
3 )−β

(1)
2 J0(δ

(1)
3 )) i f (ζ (1)

3 )2 > 0

α34 =


ω ′

(1)
1111

2λ
(1)
3

(−(ζ ′(1)
3 )2(K2(δ

(1)
3 )+K0(δ

(1)
3 ))+ ω ′

(1)
1122

λ
(1)
3

(ζ ′(1)
3 )2

δ
(1)
3

K1(δ
(1)
3 )+ ω ′

(1)
1133

λ
(1)
1

(β (1)
1 ×

ω ′
(1)
1111

2λ
(1)
3

(−(ζ ′(1)
3 )2(Y2(δ

(1)
3 )−Y0(δ

(1)
3 ))+ ω ′

(1)
1122

λ
(1)
3

(ζ ′(1)
3 )2

δ
(1)
3

Y1(δ
(1)
3 )+ ω ′

(1)
1133

λ
(1)
1

(β (1)
1 ×

( (ζ (1)
3 )2

2 (K2(δ
(1)
3 )+K0(δ

(1)
3 ))− (ζ (1)

3 )2

δ
(1)
3

K1(δ
(1)
3 )−β

(1)
2 K0(δ

(1)
3 )) i f (ζ (1)

3 )2 < 0

( (ζ (1)
3 )2

2 (Y2(δ
(1)
3 )−Y0(δ

(1)
3 ))− (ζ (1)

3 )2

δ
(1)
3

Y1(δ
(1)
3 )−β

(1)
2 Y0(δ

(1)
3 )) i f (ζ (1)

3 )2 > 0

α35 =−


ω ′

(2)
1111

2λ
(2)
3

(−(ζ ′(2)
2 )2(I2(δ

(2)
2 )+ I0(δ

(2)
2 ))− ω ′

(2)
1122

λ
(2)
3

(ζ ′(2)
2 )2

δ
(2)
2

I1(δ
(2)
2 )+ ω ′

(2)
1133

λ
(1)
1

(β (2)
1 ×

ω ′
(2)
1111

2λ
(2)
3

(−(ζ ′(2)
2 )2(J2(δ

(2)
2 )− J0(δ

(2)
2 ))+ ω ′

(2)
1122

λ
(2)
3

(ζ ′(2)
2 )2

δ
(2)
2

J1(δ
(2)
2 )+ ω ′

(2)
1133

λ
(1)
1

(β (2)
1 ×

( (ζ (2)
2 )2

2 (I2(δ
(2)
2 )+ I0(δ

(2)
2 ))+ (ζ (2)

2 )2

δ
(2)
2

I1(δ
(2)
2 )−β

(2)
2 I0(δ

(2)
2 )) i f (ζ (1)

2 )2 < 0

( (ζ (2)
2 )2

2 (J2(δ
(2)
2 )− J0(δ

(2)
2 ))− (ζ (2)

2 )2

δ
(2)
2

J1(δ
(2)
2 )−β

(2)
2 J0(δ

(2)
2 )) i f (ζ (1)

2 )2 > 0



54 Copyright © 2012 Tech Science Press CMC, vol.32, no.1, pp.29-60, 2012

α36 =−


ω ′

(2)
1111

2λ
(2)
3

(−(ζ ′(2)
2 )2(K2(δ

(2)
2 )+K0(δ

(2)
2 ))+ ω ′

(2)
1122

λ
(1)
3

(ζ ′(2)
2 )2

δ
(2)
2

K1(δ
(2)
2 )+ ω ′

(2)
1133

λ
(2)
1

(β (2)
1 ×

ω ′
(2)
1111

2λ
(2)
3

(−(ζ ′(2)
2 )2(Y2(δ

(2)
2 )−Y0(δ

(2)
2 ))+ ω ′

(2)
1122

λ
(2)
3

(ζ ′(2)
2 )2

δ
(2)
2

Y1(δ
(2)
2 )+ ω ′

(2)
1133

λ
(2)
1

(β (2)
1 ×

( (ζ (2)
2 )2

2 (K2(δ
(2)
2 )+K0(δ

(2)
2 ))− (ζ (2)

2 )2

δ
(2)
2

K1(δ
(2)
2 )−β

(2)
2 K0(δ

(2)
2 )) i f (ζ (1)

2 )2 < 0

( (ζ (2)
2 )2

2 (Y2(δ
(2)
2 )−Y0(δ

(2)
2 ))− (ζ (2)

2 )2

δ
(2)
2

Y1(δ
(2)
2 )−β

(2)
2 Y0(δ

(2)
2 )) i f (ζ (1)

2 )2 > 0

α37 =−


ω ′

(2)
1111

2λ
(2)
3

(−(ζ ′(2)
3 )2(I2(δ

(2)
3 )+ I0(δ

(2)
3 ))− ω ′

(2)
1122

λ
(2)
3

(ζ ′(2)
3 )2

δ
(2)
3

I1(δ
(2)
3 )+ ω ′

(2)
1133

λ
(2)
1

(β (2)
1 ×

ω ′
(2)
1111

2λ
(2)
3

(−(ζ ′(2)
3 )2(J2(δ

(2)
3 )− J0(δ

(2)
3 ))+ ω ′

(2)
1122

λ
(2)
3

(ζ ′(2)
3 )2

δ
(2)
3

J1(δ
(2)
3 )+ ω ′

(2)
1133

λ
(2)
1

(β (2)
1 ×

( (ζ (2)
3 )2

2 (I2(δ
(2)
3 )+ I0(δ

(2)
3 ))+ (ζ (2)

3 )2

δ
(2)
3

I1(δ
(2)
3 )−β

(2)
2 I0(δ

(2)
3 )) i f (ζ (1)

3 )2 < 0

( (ζ (2)
3 )2

2 (J2(δ
(2)
3 )− J0(δ

(2)
3 ))− (ζ (2)

3 )2

δ
(2)
3

J1(δ
(2)
3 )−β

(2)
2 J0(δ

(2)
3 )) i f (ζ (1)

3 )2 > 0

α38 =−


ω ′

(2)
1111

2λ
(2)
3

(−(ζ ′(2)
3 )2(K2(δ

(2)
3 )+K0(δ

(2)
3 ))+ ω ′

(2)
1122

λ
(2)
3

(ζ ′(2)
3 )2

δ
(2)
3

K1(δ
(2)
3 )+ ω ′

(2)
1133

λ
(2)
1

(β (2)
1 ×

ω ′
(2)
1111

2λ
(2)
3

(−(ζ ′(2)
3 )2(Y2(δ

(2)
3 )−Y0(δ

(2)
3 ))+ ω ′

(2)
1122

λ
(2)
3

(ζ ′(2)
3 )2

δ
(2)
3

Y1(δ
(2)
3 )+ ω ′

(2)
1133

λ
(2)
1

(β (2)
1 ×

( (ζ (2)
3 )2

2 (K2(δ
(2)
3 )+K0(δ

(2)
3 ))− (ζ (2)

3 )2

δ
(2)
3

K1(δ
(2)
3 )−β

(2)
2 K0(δ

(2)
3 )) i f (ζ (1)

3 )2 < 0

( (ζ (2)
3 )2

2 (Y2(δ
(2)
3 )−Y0(δ

(2)
3 ))− (ζ (2)

3 )2

δ
(2)
3

Y1(δ
(2)
3 )−β

(2)
2 Y0(δ

(2)
3 )) i f (ζ (1)

3 )2 > 0

α41 =


ω ′

(1)
1313

λ
(1)
1

ζ ′
(1)
2 I1(δ

(1)
2 )+ ω ′

(1)
1331

λ
(1)
3

(β (1)
1 ((ζ ′(1)

2 )3(3I1(δ
(1)
2 )+ I3(δ

(1)
2 ))/4−

−ω ′
(1)
1313

λ
(1)
1

ζ ′
(1)
2 J1(δ

(1)
2 )+ ω ′

(1)
1331

λ
(1)
3

(β (1)
1 ((ζ ′(1)

2 )3(3J1(δ
(1)
2 )− J3(δ

(1)
2 ))/4+

(ζ ′(1)
2 )3

(δ (1)
2 )2

I1(δ
(1)
2 )+ (ζ ′(1)

2 )3

2δ
(1)
2

(I2(δ
(1)
2 )+ I0(δ

(1)
2 ))−β

(1)
2 ζ ′

(1)
2 I1(δ

(1)
2 )) i f (ζ (1)

2 )2 < 0

(ζ ′(1)
2 )3

(δ (1)
2 )2

J1(δ
(1)
2 )+ (ζ ′(1)

2 )3

2δ
(1)
2

(J2(δ
(1)
2 )− J0(δ

(1)
2 ))+β

(1)
2 ζ ′

(1)
2 J1(δ

(1)
2 )) i f (ζ (1)

2 )2 > 0

α42 =


−ω ′

(1)
1313

λ
(1)
1

ζ ′
(1)
2 K1(δ

(1)
2 )+ ω ′

(1)
1331

λ
(1)
3

(β (1)
1 ((ζ ′(1)

2 )3(−3K1(δ
(1)
2 )−K3(δ

(1)
2 ))/4+

−ω ′
(1)
1313

λ
(1)
1

ζ ′
(1)
2 Y1(δ

(1)
2 )+ ω ′

(1)
1331

λ
(1)
3

(β (1)
1 ((ζ ′(1)

2 )3(3Y1(δ
(1)
2 )−Y3(δ

(1)
2 ))/4+

(ζ ′(1)
2 )3

(δ (1)
2 )2

K1(δ
(1)
2 )+ (ζ ′(1)

2 )3

2δ
(1)
2

(K2(δ
(1)
2 )+K0(δ

(1)
2 ))+β

(1)
2 ζ ′

(1)
2 K1(δ

(1)
2 )) i f (ζ (1)

2 )2 < 0

(ζ ′(1)
2 )3

(δ (1)
2 )2

Y1(δ
(1)
2 )+ (ζ ′(1)

2 )3

2δ
(1)
2

(Y2(δ
(1)
2 )−Y0(δ

(1)
2 ))+β

(1)
2 ζ ′

(1)
2 Y1(δ

(1)
2 )) i f (ζ (1)

2 )2 > 0



The Influence of Third Order Elastic Constants 55

α43 =


ω ′

(1)
1313

λ
(1)
1

ζ ′
(1)
3 I1(δ

(1)
3 )+ ω ′

(1)
1331

λ
(1)
3

(β (1)
1 ((ζ ′(1)

3 )3(3I1(δ
(1)
3 )+ I3(δ

(1)
3 ))/4−

−ω ′
(1)
1313

λ
(1)
1

ζ ′
(1)
3 J1(δ

(1)
3 )+ ω ′

(1)
1331

λ
(1)
3

(β (1)
1 ((ζ ′(1)

3 )3(3J1(δ
(1)
3 )− J3(δ

(1)
3 ))/4+

(ζ ′(1)
3 )3

(δ (1)
3 )2

I1(δ
(1)
3 )+ (ζ ′(1)

3 )3

2δ
(1)
3

(I2(δ
(1)
3 )+ I0(δ

(1)
3 ))−β

(1)
2 ζ ′

(1)
3 I1(δ

(1)
3 ))

(ζ ′(1)
3 )3

(δ (1)
3 )2

J1(δ
(1)
3 )+ (ζ ′(1)

3 )3

2δ
(1)
3

(J2(δ
(1)
3 )− J0(δ

(1)
3 ))+β

(1)
2 ζ ′

(1)
3 J1(δ

(1)
3 ))

i f (ζ (1)
3 )2 < 0

i f (ζ (1)
3 )2 > 0

,

α44 =


−ω ′

(1)
1313

λ
(1)
1

ζ ′
(1)
3 K1(δ

(1)
3 )+ ω ′

(1)
1331

λ
(1)
3

(β (1)
1 ((ζ ′(1)

3 )3(−3K1(δ
(1)
3 )−K3(δ

(1)
3 ))/4+

−ω ′
(1)
1313

λ
(1)
1

ζ ′
(1)
3 Y1(δ

(1)
3 )+ ω ′

(1)
1331

λ
(1)
3

(β (1)
1 ((ζ ′(1)

3 )3(3Y1(δ
(1)
3 )−Y3(δ

(1)
3 ))/4+

(ζ ′(1)
3 )3

(δ (1)
3 )2

K1(δ
(1)
3 )+ (ζ ′(1)

3 )3

2δ
(1)
3

(K2(δ
(1)
3 )+K0(δ

(1)
3 ))+β

(1)
2 ζ ′

(1)
3 K1(δ

(1)
3 ))

(ζ ′(1)
3 )3

(δ (1)
3 )2

Y1(δ
(1)
3 )+ (ζ ′(1)

3 )3

2δ
(1)
3

(Y2(δ
(1)
3 )−Y0(δ

(1)
3 ))+β

(1)
2 ζ ′

(1)
3 Y1(δ

(1)
3 ))

i f (ζ (1)
3 )2 < 0

i f (ζ (1)
3 )2 > 0

,

α45 =−


ω ′

(2)
1313

λ
(2)
1

ζ ′
(2)
2 I1(δ

2)
2 )+ ω ′

(2)
1331

λ
(1)
3

(β (2)
1 ((ζ ′(2)

2 )3(3I1(δ
(2)
2 )+ I3(δ

(2)
2 ))/4−

−ω ′
(2)
1313

λ
(2)
1

ζ ′
(2)
2 J1(δ

(2)
2 )+ ω ′

(2)
1331

λ
(2)
3

(β (2)
1 ((ζ ′(2)

2 )3(3J1(δ
(2)
2 )− J3(δ

(2)
2 ))/4+

(ζ ′(2)
2 )3

(δ (2)
2 )2

I1(δ
(2)
2 )+ (ζ ′(2)

2 )3

2δ
(2)
2

(I2(δ
(2)
2 )+ I0(δ

(2)
2 ))−β

(2)
2 ζ ′

(2)
2 I1(δ

(2)
2 ))

(ζ ′(2)
2 )3

(δ (2)
2 )2

J1(δ
(2)
2 )+ (ζ ′(2)

2 )3

2δ
(2)
2

(J2(δ
(2)
2 )− J0(δ

(2)
2 ))+β

(2)
2 ζ ′

(2)
2 J1(δ

(2)
2 ))

i f (ζ (1)
2 )2 < 0

i f (ζ (1)
2 )2 > 0

,

α46 =−


−ω ′

(2)
1313

λ
(2)
1

ζ ′
(2)
2 K1(δ

(2)
2 )+ ω ′

(2)
1331

λ
(2)
3

(β (2)
1 ((ζ ′(2)

2 )3(−3K1(δ
(2)
2 )−K3(δ

(2)
2 ))/4+

−ω ′
(2)
1313

λ
(2)
1

ζ ′
(2)
2 Y1(δ

(2)
2 )+ ω ′

(2)
1331

λ
(2)
3

(β (2)
1 ((ζ ′(2)

2 )3(3Y1(δ
(2)
2 )−Y3(δ

(2)
2 ))/4+

(ζ ′(2)
2 )3

(δ (2)
2 )2

K1(δ
(2)
2 )+ (ζ ′(2)

2 )3

2δ
(2)
2

(K2(δ
(2)
2 )+K0(δ

(2)
2 ))+β

(2)
2 ζ ′

(2)
2 K1(δ

(2)
2 ))

(ζ ′(2)
2 )3

(δ (2)
2 )2

Y1(δ
(2)
2 )+ (ζ ′(2)

2 )3

2δ
(2)
2

(Y2(δ
(2)
2 )−Y0(δ

(2)
2 ))+β

(2)
2 ζ ′

(2)
2 Y1(δ

(2)
2 ))

i f (ζ (1)
2 )2 < 0

i f (ζ (1)
2 )2 > 0

,

α47 =−


ω ′

(2)
1313

λ
(2)
1

ζ ′
(2)
3 I1(δ

(2)
3 )+ ω ′

(2)
1331

λ
(2)
3

(β (2)
1 ((ζ ′(2)

3 )3(3I1(δ
(2)
3 )+ I3(δ

(2)
3 ))/4−

−ω ′
(2)
1313

λ
(2)
1

ζ ′
(2)
3 J1(δ

(2)
3 )+ ω ′

(2)
1331

λ
(2)
3

(β (2)
1 ((ζ ′(2)

3 )3(3J1(δ
(2)
3 )− J3(δ

(2)
3 ))/4+

(ζ ′(2)
3 )3

(δ (2)
3 )2

I1(δ
(2)
3 )+ (ζ ′(2)

3 )3

2δ
(2)
3

(I2(δ
(2)
3 )+ I0(δ

(2)
3 ))−β

(2)
2 ζ ′

(2)
3 I1(δ

(2)
3 ))

(ζ ′(2)
3 )3

(δ (2)
3 )2

J1(δ
(2)
3 )+ (ζ ′(2)

3 )3

2δ
(2)
3

(J2(δ
(2)
3 )− J0(δ

(2)
3 ))+β

(2)
2 ζ ′

(2)
3 J1(δ

(2)
3 ))

i f (ζ (1)
3 )2 < 0

i f (ζ (1)
3 )2 > 0

,



56 Copyright © 2012 Tech Science Press CMC, vol.32, no.1, pp.29-60, 2012

α48 =−


−ω ′

(2)
1313

λ
(2)
1

ζ ′
(2)
3 K1(δ

(2)
3 )+ ω ′

(2)
1331

λ
(2)
3

(β (2)
1 ((ζ ′(2)

3 )3(−3K1(δ
(2)
3 )−K3(δ

(2)
3 ))/4+

−ω ′
(2)
1313

λ
(2)
1

ζ ′
(2)
3 Y1(δ

(2)
3 )+ ω ′

(2)
1331

λ
(2)
3

(β (2)
1 ((ζ ′(2)

3 )3(3Y1(δ
(2)
3 )−Y3(δ

(2)
3 ))/4+

(ζ ′(2)
3 )3

(δ (2)
3 )2

K1(δ
(2)
3 )+ (ζ ′(2)

3 )3

2δ
(2)
3

(K2(δ
(2)
3 )+K0(δ

(2)
3 ))+β

(2)
2 ζ ′

(2)
3 K1(δ

(2)
3 ))

(ζ ′(2)
3 )3

(δ (2)
3 )2

Y1(δ
(2)
3 )+ (ζ ′(2)

3 )3

2δ
(2)
3

(Y2(δ
(2)
3 )−Y0(δ

(2)
3 ))+β

(2)
2 ζ ′

(2)
3 Y1(δ

(2)
3 ))

i f (ζ (1)
3 )2 < 0

i f (ζ (1)
3 )2 > 0

,

α51 =

{
−ζ

(1)
2 I1(δ

(1)
2 )

ζ
(1)
2 J1(δ

(1)
2 )

,
i f (ζ (1)

2 )2 < 0
i f (ζ (1)

2 )2 > 0
, α52 =

{
ζ

(1)
2 K1(δ

(1)
2 )

ζ
(1)
2 J1(δ

(1)
2 )

,
i f (ζ (1)

2 )2 < 0
i f (ζ (1)

2 )2 > 0
,

α53 =

{
−ζ

(1)
3 I1(δ

(1)
3 )

ζ
(1)
3 J1(δ

(1)
3 )

,
i f (ζ (1)

3 )2 < 0
i f (ζ (1)

3 )2 > 0
, α54 =

{
ζ

(1)
3 K1(δ

(1)
3 )

ζ
(1)
3 J1(δ

(1)
3 )

,
i f (ζ (1)

3 )2 < 0
i f (ζ (1)

3 )2 > 0
,

α55 =−

{
−ζ

(2)
2 I1(δ

(2)
2 )

ζ
(2)
2 J1(δ

(2)
2 )

,
i f (ζ (1)

2 )2 < 0
i f (ζ (1)

2 )2 > 0
, α56 =

{
ζ

(2)
2 K1(δ

(2)
2 )

ζ
(2)
2 J1(δ

(2)
2 )

,
i f (ζ (1)

2 )2 < 0
i f (ζ (1)

2 )2 > 0
,

α57 =

{
−ζ

(2)
3 I1(δ

(2)
3 )

ζ
(2)
3 J1(δ

(2)
3 )

,
i f (ζ (1)

3 )2 < 0
i f (ζ (1)

3 )2 > 0
, α58 =

{
ζ

(2)
3 K1(δ

(2)
3 )

ζ
(2)
3 J1(δ

(2)
3 )

,
i f (ζ (1)

3 )2 < 0
i f (ζ (1)

3 )2 > 0
,

α61 =

{
(β (1)

1 (ζ (1)
2 )2−β

(1)
2 )I0(δ

(1)
2 )

(−β
(1)
1 (ζ (1)

2 )2−β
(1)
2 )J0(δ

(1)
2 )

,
i f (ζ (1)

2 )2 < 0
i f (ζ (1)

2 )2 > 0
,

α62 =

{
(β (1)

1 (ζ (1)
2 )2−β

(1)
2 )K0(δ

(1)
2 )

(−β
(1)
1 (ζ (1)

2 )2−β
(1)
2 )Y0(δ

(1)
2 )

,
i f (ζ (1)

2 )2 < 0
i f (ζ (1)

2 )2 > 0
,

α63 =

{
(β (1)

1 (ζ (1)
3 )2−β

(1)
2 )I0(δ

(1)
3 )

(−β
(1)
1 (ζ (1)

3 )2−β
(1)
2 )J0(δ

(1)
3 )

,
i f (ζ (1)

3 )2 < 0
i f (ζ (1)

3 )2 > 0

α64 =

{
(β (1)

1 (ζ (1)
3 )2−β

(1)
2 )K0(δ

(1)
3 )

(−β
(1)
1 (ζ (1)

3 )2−β
(1)
2 )Y0(δ

(1)
3 )

,
i f (ζ (1)

3 )2 < 0
i f (ζ (1)

3 )2 > 0
,

α65 =−

{
(β (2)

1 (ζ (2)
2 )2−β

(2)
2 )I0(δ

(2)
2 )

(−β
(2)
1 (ζ (2)

2 )2−β
(2)
2 )J0(δ

(2)
2 )

,
i f (ζ (1)

2 )2 < 0
i f (ζ (1)

2 )2 > 0
,

α66 =−

{
(β (2)

1 (ζ (2)
2 )2−β

(2)
2 )K0(δ

(2)
2 )

(−β
(2)
1 (ζ (2)

2 )2−β
(2)
2 )Y0(δ

(2)
2 )

,
i f (ζ (1)

2 )2 < 0
i f (ζ (1)

2 )2 > 0
,

α67 =−

{
(β (2)

1 (ζ (2)
3 )2−β

(2)
2 )I0(δ

(2)
3 )

(−β
(2)
1 (ζ (2)

3 )2−β
(2)
2 )J0(δ

(2)
3 )

,
i f (ζ (1)

3 )2 < 0
i f (ζ (1)

3 )2 > 0
,



The Influence of Third Order Elastic Constants 57

α68 =−

{
(β (2)

1 (ζ (2)
3 )2−β

(2)
2 )K0(δ

(2)
3 )

(−β
(2)
1 (ζ (2)

3 )2−β
(2)
2 )Y0(δ

(2)
3 )

,
i f (ζ (1)

3 )2 < 0
i f (ζ (1)

3 )2 > 0
,

α75 =


ω ′

(2)
1111

2λ
(2)
3

(−(ζ ′(2)
2 )2(I2(δ

(2)
2h )+ I0(δ

(2)
2h ))− ω ′

(2)
1122

λ
(2)
3

(ζ ′(2)
2 )2

δ
(2)
2h

I1(δ
(2)
2h )+ ω ′

(2)
1133

λ
(1)
1

(β (2)
1 ×

ω ′
(2)
1111

2λ
(2)
3

(−(ζ ′(2)
2 )2(J2(δ

(2)
2h )− J0(δ

(2)
2h ))+ ω ′

(2)
1122

λ
(2)
3

(ζ ′(2)
2 )2

δ
(2)
2h

J1(δ
(2)
2h )+ ω ′

(2)
1133

λ
(1)
1

(β (2)
1 ×

( (ζ (2)
2 )2

2 (I2(δ
(2)
2h )+ I0(δ

(2)
2h ))+ (ζ (2)

2 )2

δ
(1)
2h

I1(δ
(2)
2h )−β

(2)
2 I0(δ

(2)
2h ))

( (ζ (2)
2 )2

2 (J2(δ
(2)
2h )− J0(δ

(2)
2h ))− (ζ (2)

2 )2

δ
(2)
2h

J1(δ
(2)
2h )−β

(2)
2 J0(δ

(2)
2h ))

,
i f (ζ (1)

2 )2 < 0
i f (ζ (1)

2 )2 > 0
,

α76 =


ω ′

(2)
1111

2λ
(2)
3

(−(ζ ′(2)
2 )2(K2(δ

(2)
2h )+K0(δ

(2)
2h ))+ ω ′

(2)
1122

λ
(2)
3

(ζ ′(2)
2 )2

δ
(2)
2h

K1(δ
(2)
2h )+ ω ′

(2)
1133

λ
(2)
1

(β (2)
1 ×

ω ′
(2)
1111

2λ
(2)
3

(−(ζ ′(2)
2 )2(Y2(δ

(2)
2h )−Y0(δ

(2)
2h ))+ ω ′

(2)
1122

λ
(2)
3

(ζ ′(2)
2 )2

δ
(2)
2h

Y1(δ
(2)
2h )+ ω ′

(2)
1133

λ
(2)
1

(β (2)
1 ×

( (ζ (2)
2 )2

2 (K2(δ
(2)
2h )+K0(δ

(2)
2h ))− (ζ (2)

2 )2

δ
(2)
2h

K1(δ
(2)
2h )−β

(2)
2 K0(δ

(2)
2h ))

( (ζ (2)
2 )2

2 (Y2(δ
(2)
2h )−Y0(δ

(2)
2h ))− (ζ (2)

2 )2

δ
(2)
2h

Y1(δ
(2)
2h )−β

(2)
2 Y0(δ

(2)
2h ))

i f (ζ (1)
2 )2 < 0

i f (ζ (1)
2 )2 > 0

,

α77 =


ω ′

(2)
1111

2λ
(2)
3

(−(ζ ′(2)
3 )2(I2(δ

(2)
3h )+ I0(δ

(2)
3h ))− ω ′

(2)
1122

λ
(2)
3

(ζ ′(2)
3 )2

δ
(2)
3h

I1(δ
(2)
3h )+ ω ′

(2)
1133

λ
(2)
1

(β (2)
1 ×

ω ′
(2)
1111

2λ
(2)
3

(−(ζ ′(2)
3 )2(J2(δ

(2)
3h )− J0(δ

(2)
3h ))+ ω ′

(2)
1122

λ
(2)
3

(ζ ′(2)
3 )2

δ
(2)
3h

J1(δ
(2)
3h )+ ω ′

(2)
1133

λ
(2)
1

(β (2)
1 ×

( (ζ (2)
3 )2

2 (I2(δ
(2)
3h )+ I0(δ

(2)
3h ))+ (ζ (2)

3 )2

δ
(2)
3h

I1(δ
(2)
3h )−β

(2)
2 I0(δ

(2)
3h ))

( (ζ (2)
3 )2

2 (J2(δ
(2)
3h )− J0(δ

(2)
3h ))− (ζ (2)

3 )2

δ
(2)
3h

J1(δ
(2)
3h )−β

(2)
2 J0(δ

(2)
3h ))

i f (ζ (1)
3 )2 < 0

i f (ζ (1)
3 )2 > 0

,

α78 =


ω ′

(2)
1111

2λ
(2)
3

(−(ζ ′(2)
3 )2(K2(δ

(2)
3h )+K0(δ

(2)
3h ))+ ω ′

(2)
1122

λ
(2)
3

(ζ ′(2)
3 )2

δ
(2)
3h

K1(δ
(2)
3h )+ ω ′

(2)
1133

λ
(2)
1

(β (2)
1 ×

ω ′
(2)
1111

2λ
(2)
3

(−(ζ ′(2)
3 )2(Y2(δ

(2)
3h )−Y0(δ

(2)
3h ))+ ω ′

(2)
1122

λ
(2)
3

(ζ ′(2)
3 )2

δ
(2)
3h

Y1(δ
(2)
3h )+ ω ′

(2)
1133

λ
(2)
1

(β (2)
1 ×

( (ζ (2)
3 )2

2 (K2(δ
(2)
3h )+K0(δ

(2)
3h ))− (ζ (2)

3 )2

δ
(2)
3h

K1(δ
(2)
3h )−β

(2)
2 K0(δ

(2)
3h ))

( (ζ (2)
3 )2

2 (Y2(δ
(2)
3h )−Y0(δ

(2)
3h ))− (ζ (2)

3 )2

δ
(2)
3h

Y1(δ
(2)
3h )−β

(2)
2 Y0(δ

(2)
3h ))

i f (ζ (1)
3 )2 < 0

i f (ζ (1)
3 )2 > 0

,

α85 =


ω ′

(2)
1313

λ
(2)
1

ζ ′
(2)
2 I1(δ

(2)
2h )+ ω ′

(2)
1331

λ
(2)
3

(β (2)
1 ((ζ ′(2)

2 )3(3I1(δ
(2)
2h )+ I3(δ

(2)
2h ))/4−

−ω ′
(2)
1313

λ
(2)
1

ζ ′
(2)
2 J1(δ

(2)
2h )+ ω ′

(2)
1331

λ
(2)
3

(β (2)
1 ((ζ ′(2)

2 )3(3J1(δ
(2)
2h )− J3(δ

(2)
2h ))/4+



58 Copyright © 2012 Tech Science Press CMC, vol.32, no.1, pp.29-60, 2012


(ζ ′(2)

2 )3

(δ (2)
2h )2

I1(δ
(2)
2h )+ (ζ ′(2)

2 )3

2δ
(2)
2h

(I2(δ
(2)
2h )+ I0(δ

(2)
2h ))−β

(2)
2 ζ ′

(2)
2 I1(δ

(2)
2h ))

(ζ ′(2)
2 )3

(δ (2)
2h )2

J1(δ
(2)
2h )+ (ζ ′(2)

2 )3

2δ
(2)
2h

(J2(δ
(2)
2h )− J0(δ

(2)
2h ))+β

(2)
2 ζ ′

(2)
2 J1(δ

(2)
2h ))

i f (ζ (1)
2 )2 < 0

i f (ζ (1)
2 )2 > 0

,

α86 =


−ω ′

(2)
1313

λ
(2)
1

ζ ′
(2)
2 K1(δ

(2)
2h )+ ω ′

(2)
1331

λ
(2)
3

(β (2)
1 ((ζ ′(2)

2 )3(−3K1(δ
(2)
2h )−K3(δ

(2)
2h ))/4+

−ω ′
(2)
1313

λ
(2)
1

ζ ′
(2)
2 Y1(δ

(2)
2h )+ ω ′

(2)
1331

λ
(2)
3

(β (2)
1 ((ζ ′(2)

2 )3(3Y1(δ
2)
2h)−Y3(δ

(2)
2h ))/4+

(ζ ′(2)
2 )3

(δ (2)
2h )2

K1(δ
(2)
2h )+ (ζ ′(2)

2 )3

2δ
(2)
2h

(K2(δ
(2)
2h )+K0(δ

(2)
2h ))+β

(2)
2 ζ ′

(2)
2 K1(δ

(2)
2h ))

(ζ ′(2)
2 )3

(δ (2)
2h )2

Y1(δ
(2)
2h )+ (ζ ′(2)

2 )3

2δ
(2)
2h

(Y2(δ
(2)
2h )−Y0(δ

(2)
2h ))+β

(2)
2 ζ ′

(2)
2 Y1(δ

(2)
2h ))

i f (ζ (1)
2 )2 < 0

i f (ζ (1)
2 )2 > 0

,

α87 =


ω ′

(2)
1313

λ
(2)
1

ζ ′
(2)
3 I1(δ

(2)
3h )+ ω ′

(2)
1331

λ
(2)
3

(β (2)
1 ((ζ ′(2)

3 )3(3I1(δ
(2)
3h )+ I3(δ

(2)
3h ))/4−

−ω ′
(2)
1313

λ
(2)
1

ζ ′
(2)
3 J1(δ

(2)
3h )+ ω ′

(2)
1331

λ
(2)
3

(β (2)
1 ((ζ ′(2)

3 )3(3J1(δ
(2)
3h )− J3(δ

(2)
3h ))/4+

(ζ ′(2)
3 )3

(δ (2)
3h )2

I1(δ
(2)
3h )+ (ζ ′(2)

3 )3

2δ
(2)
3h

(I2(δ
(2)
3h )+ I0(δ

(2)
3h ))−β

(2)
2 ζ ′

(2)
3 I1(δ

(2)
3h ))

(ζ ′(2)
3 )3

(δ (2)
3h )2

J1(δ
(2)
3h )+ (ζ ′(2)

3 )3

2δ
(2)
3h

(J2(δ
(2)
3h )− J0(δ

(2)
3h ))+β

(2)
2 ζ ′

(2)
3 J1(δ

(2)
3h ))

i f (ζ (1)
3 )2 < 0

i f (ζ (1)
3 )2 > 0

,

α88 =


−ω ′

(2)
1313

λ
(2)
1

ζ ′
(2)
3 K1(δ

(2)
3h )+ ω ′

(2)
1331

λ
(2)
3

(β (2)
1 ((ζ ′(2)

3 )3(−3K1(δ
(2)
3h )−K3(δ

(2)
3h ))/4+

−ω ′
(2)
1313

λ
(2)
1

ζ ′
(2)
3 Y1(δ

(2)
3h )+ ω ′

(2)
1331

λ
(2)
3

(β (2)
1 ((ζ ′(2)

3 )3(3Y1(δ
(2)
3h )−Y3(δ

(2)
3h ))/4+

(ζ ′(2)
3 )3

(δ (2)
3h )2

K1(δ
(2)
3h )+ (ζ ′(2)

3 )3

2δ
(2)
3h

(K2(δ
(2)
3h )+K0(δ

(2)
3h ))+β

(2)
2 ζ ′

(2)
3 K1(δ

(2)
3h ))

(ζ ′(2)
3 )3

(δ (2)
3h )2

Y1(δ
(2)
3h )+ (ζ ′(2)

3 )3

2δ
(2)
3h

(Y2(δ
(2)
3h )−Y0(δ

(2)
3h ))+β

(2)
2 ζ ′

(2)
3 Y1(δ

(2)
3h ))

i f (ζ (1)
3 )2 < 0

i f (ζ (1)
3 )2 > 0

,

α71 = α72 = α73 = α74 = α81 = α82 = α83 = α84 = 0, (A2)

where Jn(x) and Yn(x) are Bessel functions of the first and second kind of the n− th
order; I0(x) and K0(x) are Bessel functions of a purely imaginary argument in the
n−th order and Macdonald function in the n−th order, respectively.
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