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A New Iterative Regularization Method for Solving the
Dynamic Load Identification Problem

Linjun Wang1,2, Xu Han3, Youxiang Xie4

Abstract: In this paper, a new iterative regularization method (ITR) is presented
to solve the reconstruction of multi-source dynamic loads acting on the structure of
simple supported plate. Based on a quadratical convergence method, this method
is used to compute the the approximate inverse of square matrix. The theoretical
proofs and numerical test show that the proposed method is very effective. Finally,
the present method is applied to the identification of the multi-source dynamic loads
on a surface of simply supported plate. Numerical simulations of two examples
demonstrate the effectiveness and robustness of the present method.
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1 Introduction

It has been well recognized that the loads have important impacts on the dynamic
performances of practical engineering structure, and the accurate load is very im-
portant for the design and dynamical analysis of engineering structure system.
Also, to accurately evaluate the damage extent and the residual life of the struc-
ture, the first task of an efficient and reliable structural health monitoring system is
to detect and identify the loads which act on the structure system. After knowing
these loads, we maybe assess the damage of structure by the fatigue, strength, and
reliability of structures. But in fact, it is impossible or difficult to directly mea-
sure the external loads in most cases of practical applications. Thus it could be
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beneficial to indirectly reconstruct the expected loads using the response data of
structure. So it is very necessary to develop some inverse analysis techniques for
load identification by the measured response which are easily obtained.

It has received much attention to developing the inverse techniques for the identify-
ing the force histories in developing the structural health monitoring systems [1-7].
Recently, Wang et al. presented a procedure to identify the modal loads by the
structural response [8]. Sato et al. [9] and Onozaki and Sekine [10-12] proposed
the identification methods exploiting acceleration responses at points on composite
laminated plates. Various methods were developed to solve the inverse problems
associated with indirect force measurement [13-16]. Chan et al. [17] first formed
the equations of motion under a set of independent moving forces by modelling the
bridge, and then identified the loads acting on the beam. Law et al. [18] modeled
the moving forces acting on a simply supported Euler beam as the step functions
in a small time interval and exploited the modal superposition principle to identify
the loads on the structure in time domain. Unfortunately, these inverse problems
mentioned above are complex and inherently ill-posed. Regularization methods
usually control well a level of numerical accuracy to these inverse problems. For
these above-mentioned studies, much attention was paid to the complicated tech-
nical problems in mathematics, especially in the ill-posedness and regularization
methods. In this article, a new iterative regularization method is proposed to solve
the dynamic load identification problem of simply supported plate.

This paper is organized as follows. In Section 2 we establish a new iterative reg-
ularization method and prove its regular property. In Section 3 we demonstrate
the effectiveness of the proposed method using a numerical test, and then apply
this method to identify the multi-source dynamic loads acting on simply supported
plate in Section 4 and we give a conclusion in Section 5.

2 A new regularization method for the approximate inverse of square matrix

It is well-known that there exist large scale of continuous ill-posed problems such as
Fredholm integral equations of the first kind, and their discretization will generate
the discrete ill-posed problems of the following form

Ax = y, (2.1)

where A is an ill-conditioned matrix.

The right data y is usually contaminated by the measurement errors and noise, i. e.
,

y = ỹ+ e, (2.2)
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where the noise-free vector ỹ is unavailable and e represents the perturbations and
measurement errors. Our aim is to compute a good approximation of the solution
of the noise-free linear system (2.1) even in the presence of noisy data y.

Let V0 be an initial approximation to the inverse of A. In the following part, we will
get a sequence {Vq} to approximate its inverse, and correspondingly construct a
new regularization method for approximating the inverse of a square matrix of the
following form:

Vq+1 = Vq[α2(AVq)2−3α(AVq)+3I]. (2.3)

Then we immediately have the following results:

Theorem 2.1. If ‖E0‖= ‖I−αAV0‖< 1, then the iterative formula (2.3) is con-
vergent and Vq converges cubically to the inverse of A.
Proof. Let Eq = I−αAVq, which together with (2.3), we have

Eq+1 = I−αAVq+1
= I−αAVq[3−3αAVq +α2(AVq)2]
= I−3αAVq +3α2(AVq)2−α3(AVq)3

= (I−αAVq)3

= E3
q

(2.4)

Noticing that
‖E0‖= ‖I−αAV0‖< 1,

then we have
‖Eq‖ ≤ ‖Eq−1‖3 ≤ ·· ·‖E0‖3q → 0.

It is obviously easy to check that

lim
q→∞

(I−αAVq) = 0,

i. e.,

lim
q→∞

Vq =
1
α

A−1.

Setting
eq = A−1−αVq,

we can obtain
Aeq = I−αAVq = Eq,

Exploiting the formula (2.4), we can obtain

(Aeq)3 = E3
q = Eq+1.
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According to the equality
Aeq+1 = Eq+1,

we can obtain
eq+1 = eq(Aeq)2

Therefore
‖eq+1‖ ≤ ‖eq(Aeq)2‖ ≤ ‖A‖2‖eq‖3.

Then we complete the proof of valid iteration scheme (2.3) which is convergent and
at least cubically converges to the inverse of a square matrix.

We summarize the algorithm as follows:
Algorithm (Iterative method).
Step 1: input (An×n,y,A), and choose α such that ‖E0‖= ‖I−αA2‖< 1.
Step 2:

V1 = V0[3I−3αAV0 +α
2(AV0)2],q = 1;

Step 3: while (‖Vq−Vq−1‖ � ε) do

Vq+1 = Vq[3I−3αAVq +α
2(AVq)2],q = q+1;

Step 4: Obtain the approximate solution

x = αVqb.

3 Benchmark test

To demonstrate the effectiveness of the proposed method, we consider the first kind
of Fredholm integral equation as follows:∫ 1

0
etsx(s)ds =

et+2−1
t +2

, t ∈ [0,1]. (3.1)

It is easy to check that the true solution of Eq.(3.1) is x(s) = e2s. In general terms,
we usually consider the perturbed equation∫ 1

0
etsx(s)ds = yδ (t), t ∈ [0,1]. (3.2)

Discretizing Eq. (3.2), we can obtain

1
N

N

∑
j=1

etis j x(s j) = yδ
i , i, j = 1,2, · · · ,N, (3.3)
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where

ti =
i−1

N
,s j =

j−1
N

,yδ
i = y(ti)+θiδ ,

θi is a random number and satisfies |θi| ≤ 1.

To analyze the performance of the present method, we choose the noisy level
δ = 0.0001,N = 34,α = 0.5. Applying PC-MATLAB environment, we obtain the
following results.
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Figure 1: Numerical results of equation (3.1)

Figure 1 indicates that the present method and Tikhonov regularization method are
stable and effective in identifying the true solution of the first kind of Fredholm
integral equation (3.1). In fact, more informative results on the performances of
these methods are shown in Table 1. It can be shown that the maximal deviation
and average deviation of the present method are 0.6334%,0.2979%, respectively,
obviously smaller than Tikhonov regularization method. It means that the present
method is more precise and effective than Tikhonov regularization method, and the
numerically optimal convergence rate of the regularized solution roughly coincides
with the theoretical analysis.
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Table 1: Identification errors of two regularization methods
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4 Application

To illustrate the present methodology for use in determining the unknown time-
dependent multi-source dynamic loads acting on simply supported plate, we need
to know the following knowledge for a linear elastic structure.

Here we consider the multi-source dynamic load identification problem for a linear
and time-invariant dynamic system. The response at an arbitrary receiving point in
a structure can be expressed as a convolution integral of the forcing time-history
and the corresponding Green’s kernel in time domain :

y(t) =
∫ t

0
G(t− τ)p(τ)dτ, (4.1)

where y(t) is the response which can be displacement, velocity, acceleration, strain,
etc. G(t) is the corresponding Green’s function, which is the kernel of impulse
response. p(t) is the desired unknown dynamic load acting on the structure.

By discretizing this convolution integral, the whole concerned time period is sep-
arated into equally spaced intervals, and the equation (4.1) is transformed into the
following system of algebraic equation:

Y (t) = G(t)P(t), (4.2)
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or equivalently,
y1
y2
...

ym

=


g1
g2 g1
...

...
. . .

gm gm−1 · · · g1




p1
p2
...

pm

4t,

where yi,gi, and pi are response, Green’s function matrix and input force at time
t = i4t, respectively. 4t is the discrete time interval. Since the structure without
applied force is static before force is applied, y0 and g0 are equal to zero. All the
elements in the upper triangular part of G are zeros and are not shown. The special
form of the Green’s function matrix reflects the characteristic of the convolution
integral.

To recover the time history P(t), the knowledge of y(t) and G(t) are required. In
fact, the response at a receiving point and the numerical Green’s function of a struc-
ture can be obtained by finite element method. However, the problem of identifying
the dynamic load P(t) by y(t) and G(t) is usually ill-posed, and cannot be solved
by inverse matrix method. In the following, our method will be suggested to solve
this problem.

A practical engineering problem is to determine vertical forces acting on simply
supported plate, which is shown in Figure 2. The material properties of the plate
are are as: ρ = 7.8×10−9kg/m3,E = 2.0×105MPa,ν = 0.3.

Figure 2: The finite element model of simply supported plate

The vertical concentrated load is applied to the outside surface, and the measured
response is the vertical displacement. Three straight members of simply supported
plate are fixed, and the others is free. We establish its finite element model as shown
in Figure 2. The arrow in Figure 2 denotes the action point of dynamic force.
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The concentrated loads are defined as follows:

F1(t) =
{

q1 sin(2πt
td

), 0≤ t ≤ 2td
0, t < 0 and t > 2td

F2(t) =


4q2t/td , 0≤ t ≤ td/4
2q2−4q2t/td , td/4 < t ≤ 3td/4
4q2t/td−4q2, 3td/4 < t ≤ td
0, t > td

where td is the time cycle of sine force, and qi(i = 1,2) is a constant amplitude
of the force. When td = 0.004s,q1 = 1000N, and q2 = 800N, the sine force and
triangle force are shown in Figures 3-4.
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Figure 3: The vertical concentrated sine load acting on the outside surface

Herein, the experimental data of response is simulated by the computed numerical
solution, and the corresponding vertical displacement response can be obtained by
finite element method, as shown in Figures 5 and 6. Furthermore, a noise is directly
added to the computer-generated response to simulate the noise-contaminated mea-
surement, and the noisy response is defined as follows:

Yerr = Ycal + lnoise · std(Ycal) · rand(−1,1),
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Figure 4: The vertical concentrated triangle load acting on the outside surface
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Figure 5: The corresponding vertical displacement response at one point
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Figure 6: The corresponding vertical displacement response at the other point

where Ycal is the computer-generated response; std(Ycal) is the standard deviation
of Ycal; rand(−1,1) denotes the random number between −1 and +1; lnoise is a
parameter which controls the level of the noise contamination.

In order to investigate the effect of measurement error on the accuracy of the es-
timated values, we consider the case of noise level namely 5%, and the present
method is adopted to determine the dynamic forces. By using a similar argument
in Section 3, so the optimal solution obtained by the present method will be com-
pared to those by Tikhonov regularization method. The comparison will be made
quantitatively by way of the relative estimation error:

F̃ =
∣∣FReal−FIdenti f ied

FReal

∣∣. (4.3)

To evaluate the effectiveness of two regularization methods mentioned above, five
time points are selected, and for each point the identified force will be compared
with the corresponding actual force.

The results of numerical simulations are as follows:

From Figures 7-8, it can be shown that the present method and Tikhonov regular-
ization methods can both stably and effectively identify the multi-source dynamic
loads by the measured noisy responses. Moreover, the more detailed results by
them at five time points are listed in Table 2. It can be found that at these five
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Figure 7: The identified sine force at noise level 5%

0 0.002 0.004 0.006 0.008 0.01
−800

−600

−400

−200

0

200

400

600

800

 t/s

 F
/N

Real TriangleF

Tikhonov TriangleF

ITR TriangleF

Figure 8: The identified triangle force at noise level 5%
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Table 2: The identified force at five time points at noise level 5%

 

 

 

 Tikhonov Present method 

 Time 

point 

Real 

force 

Identified 

force 

Error (%) 

 

Identified 

force 

Error (%) 

Sine 0.001 1000 983.06 1.69 1000.4 0.04 

Triangle 0.0006 480 520.06 5.01 475.03 0.62 

Sine 0.003 -1000 -978.18 2.18 -982.52 1.75 

Triangle 0.001 800 686.09 14.24 742.29 7.21 

Sine 0.0045 707.11 677.83 2.93 715.76 0.87 

Triangle 0.0016 320 317.93 0.26 296.33 2.96 

Sine 0.0063 -453.99 -471.43 1.74 -434.56 1.94 

Triangle 0.0033 -560 -573.3 1.66 -574.61 1.83 

Sine 0.0073 -891.01 -914.17 2.32 -870.57 2.04 

Triangle 0.0038 -160 -148.84 1.40 -146.18 1.73 

Error (%) Maximum Average Maximum Average 

Sine 10.91 1.95 3.99 1.56 

Triangle 14.24 2.08 8.65 1.01 

 

time points for noise level ±5%, most of the deviations of the identified loads by
the present method are smaller than Tikhonov regularization method, which dues
to better efficient identification. It can be also found that the most deviations by
Tikhonov regularization method and the present method concentrate in the range of
15%,9%, respectively. In addition, for the identification of sine force, the maximal
deviation and average deviation by the present method are 3.99%,1.56%, respec-
tively, obviously smaller than the later. Furthermore, we can find that the maximal
deviation and average deviation of the identification of triangle force by the present
method are 8.65%,1.01%, respectively, both smaller than Tikhonov regularization
method. In a word, the present algorithm achieves an excellent estimation, and also
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gives satisfactory results when recovering the loading time function.

5 Conclusion

In this paper, a new iteration regularization method is proposed and considered as
an alternative to approximate the solutions of linear ill-posed problems or ill con-
ditioned matrix equations. The theoretical proofs and numerical experiments show
that our iterative method is very effective. Also, more importantly, it has been found
that these methods can be used to compute the inner inverse and their convergence
proofs are given by fundamental matrix tools. At the same time, it is validated by
numerical example test and suggested to identify the multi-source dynamic loads
acting on simply supported plate by the noisy responses. Numerical simulations
have shown that the proposed method is effective and accurate in solving the load
identification problems of the practical engineering.

Acknowledgement: This work is supported by the National Natural Science Foun-
dation of China (11202116), the Foundation of China Three Gorges University
(KJ2011B033) and Research Fund for National 973 Project of China (2010CB832705).

References

Chan THT, Law SS, Yung TH, Yuan XR. (1999): An interpretive method for
moving force identification. Journal of Sound and Vibration 219(3):503-524.

Choi K, Chang FK. (1996): Identification of impact force and location using dis-
tributed sensors. AIAA J 34(1):136-42.

Doyle JF. (1987): An experimental method for determining the location and time
of initiation of an unknown dispersing pulse. Exp. Mech. 27(3):229-33.

Hu N, Matsumoto S, Nishi R, Fukunaga H. (2007): Identification of impact
forces on composite structures using an inverse approach. Struct Eng Mech 27(4):409-
424.

Hwang, J.S., Kareem, A., Kim, W. (2009): Estimation of modal loads using struc-
tural response. J. Sound Vib. 326 (3-5),522-539.

Law SS, Chan THT, Zeng QH. (1997): Moving force identification: a time do-
main method. Journal of Sound and Vibration 201(1):1-22.

Liu G. R., W. B. Ma, X. Han. (2002): An inverse procedure for identification of
loads on composite laminates. Composites Part B: engineering. 33 425-432.

Liu G. R., X. Han. (2003): Computational inverse technique in nondestructive
evaluation, CRC Press, Florida.

Onozaki T, Sekine H. (2001): Method for identifying force locations and force



126 Copyright © 2012 Tech Science Press CMC, vol.31, no.2, pp.113-126, 2012

histories of point impacts on rectangular composite laminated plates without in-
formation on mechanical boundary conditions. J Jpn Soc Aeronaut Space Sci
49(568):141-149 [in Japanese].

Onozaki T, Sekine H. (2002): Experimental verification of identification of loca-
tion and force history of a point impact on rectangular composite laminated plates.
J Jpn Soc Aeronaut Space Sci 50(581):236-241 [in Japanese].

Onozaki T, Sekine H. (2002): Identification of locations and force histories of
point impacts on laminated composite curved panels. J Jpn Soc Aeronaut Space
Sci 50(586):444-450 [in Japanese].

Sato M, Onozaki T, Sekine H, Fukunaga H. (1998): Proposition of simple iden-
tification method for multiple impact forces on orthotropic laminated plates. Trans
Jpn Soc Mech Eng A 64(627):2677-2685 [in Japanese].

Shaw JK, Sirkis JS, Friebele EJ, Jones RT, Kersey AD. (1995): Model of trans-
verse plate impact dynamics for design of impact detection methodologies. AIAA J
33(7):1327-1334.

Tajima M, Matsumoto S, Fukunaga H. (2004): Impact force identification of
CFRP laminated plates using PZT piezoelectric sensors, 1st report: identification
method and numerical simulation, 2nd report: experimental verification. Trans Jpn
Soc Mech Eng A 70(699):1566¨C73,70(700):1747¨C54 [in Japanese].

Tracy M, Chang FK. (1998): Identifying impacts in composite plates with piezo-
electric strain sensors, part I: theory, part II: experiment. J. Intell. Mater. Syst.
Struct. 9(11):920-937.

Wang L. J., X. Han, J. Liu, X. Q. He, F. Huang. (2011): A new regularization
method and application to dynamic load identification problems, Inverse Problems
in Science and Engineering, 19 (6): 765-776.

Wang L. J. , X. Han, J. Liu, J. J. Chen. (2011): An improved iteration regulariza-
tion method and application to reconstruction of dynamic loads on a plate. Journal
of Computational and Applied Mathematics. 235 4083-4094.

Yen CS, Wu E. (1995): On the inverse problem of rectangular plates subjected
to elastic impact, part I: method development and numerical verification, part II:
experimental verification and further applications. J Appl Mech 62(3):692¨C8. 699-
705.


