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Transient Wave Propagation in a Functionally Graded
Slab and Multilayered Medium Subjected to Dynamic

Loadings
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Abstract: In this article, the transient response in a functionally graded material
(FGM) slab is analyzed by Laplace transform technique. The numerical Laplace
inversion (Durbin’s formula) is used to calculate the dynamic behavior of the FGM
slab. The slab is subjected an uniform loading at the upper surface, and the lower
surface are assumed to be traction-free or fixed conditions. The analytical solu-
tions are presented in the transform domain and the numerical Laplace inversion is
performed to obtain the transient response in time domain. To take the accuracy
and computational efficiency in consideration, Durbin’s method is suitable for cal-
culating the long-time response. In addition, the FGM slab is approximated as a
multilayered medium with homogeneous material in each layer, and the transient
responses of FGM formulation and multilayered solution are discussed in detail.
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1 Introduction

In the recent decade, functionally graded materials (FGMs) have drawn consider-
able attention in engine combustion chamber or nuclear fusion reaction container to
reduce the stress concentration or debonding at the interface. An FGM is a partic-
ulate composite with continuously changing its thermal and mechanical properties
in order to raise the bonding strength in the discrete composite made from different
phases of material constituents. For example, in metal-ceramic composite, ceram-
ics can suffer high-temperature environment, but it mismatches with the metal sup-
plying high-toughness. Therefore, FGM has been widely used in the junction and
can significantly eliminate thermal residual stresses caused at the interface.

1 Corresponding author. Tel.: +886-2-23659996; fax:+ 886-2-23631755. E-mail address:
ccma@ntu.edu.tw (C. C. Ma)

2 Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan 10617,
R.O.C.



38 Copyright © 2012 Tech Science Press CMC, vol.31, no.1, pp.37-64, 2012

Most researchers analyzed the composition of FGM with three types, power-law,
polynomial, and exponential functions, which are widely used due to the reason
that these functions provide convenient process of theoretical investigation. In the
literature for FGM with power-law function, Jabbari et al. (2002) provided an ana-
lytical solution for steady-state thermal stresses in a hollow thick cylinder made of
power-law FGM. Jin and Paulino (2001) presented asymptotic analysis of a power-
law FGM strip containing an edge crack under transient thermal loading condition.
The second type of FGM for polynomial function were studied by Chiu and Erdo-
gan (1999), Abu-Alshaikh and Köklüce (2006). Chiu and Erdogan (1999) assumed
that the stiffness and density of the FGM slab vary continuously with arbitrary
polynomial function, and stress wave with a rectangular pressure pulse in nickel-
zirconia, and aluminum-silicon media with either free-free or fixed-free boundary
conditions was analyzed in detail. Abu-Alshaikh and Köklüce (2006) employed the
method of characteristics to solve multilayered-FGM medium varying with polyno-
mial function, the stress response was obtained and compared with results obtained
in the literature (Han & Liu, 2002; Han, Liu, & Lam, 2000; Chiu & Erdogan, 1999;
Santare, Thamburaj, & Gazoans, 2003). For the third type of FGM, i.e., expo-
nential functions, it was widely used by many authors. Erdogan and Wu (1995)
investigated the thermal stress problem of FGM with an exponential-form for an
embedded or a surface crack. Jin and Batra (1996) analyzed thermal stresses and
the stress intensity factor in an edge-cracked strip of an FGM subjected to sud-
den cooling at the crack surface. They assumed that the shear modulus decreased
hyperbolically from the surface and the thermal conductivity varied exponentially.

The results of fracture mechanics for FGM materials were presented by Delale
and Erdogan (1983), Erdogan and Wu (1996), Cai and Bao (1998), and Jin and
Paulino (2001). For static problems, Ma and Lee (2009a, 2009b) and Lee and Ma
(2010) derived analytical full-field solutions for two-dimensional problem of bi-
materials and layered half-plane for functionally graded magnetoelectroelastic ma-
terials. FGMs were widely used in many fields in the last 10 years, especially in
the mechanical problem of composites in order to avoid the delamination. There-
fore, the dynamic problem for wave propagation plays an important role not only
in FGM but also in traditionally multilayered media. For one-dimensional wave
propagation problem, plane wave propagation in the direction normal to the lay-
ered medium, Sun et al. (1968) presented continuum theory instead of “effective
modulus theory” to determine dispersion relation. Black et al. (1960) provided a
characteristics method for wave propagation in two-layered medium. Lundergan
and Drumheller (1971) numerically simulated the response in a layered material
system with varying thickness, and their results were in excellent agreement with
experiments. Harmonic waves in composites with isotropic layers were also stud-
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ied by Stern et al. (1971), Hegemier and Nayfeh (1973). Transient plane waves
propagating in a periodically layered elastic medium were examined by Ting and
Mukunoki (1979, 1980), and Tang and Ting (1985). Chen et al. (2004) developed
an analytical solution based on Floquet’s theory to the problem of plate impact in
layered heterogeneous material systems, and the comparison between analytical
results and experiment data was presented. Liu et al. (1999) investigated One-
dimensional elastic waves in an FGM plate excited by plane pressure wavelet, and
the material of the FGM plate was assumed to be varying linearly in the thick-
ness direction. Han and Liu (2002) used Fourier transform technique to derive
One-dimensional SH-wave propagation in an FGM plate, in which the material
properties were assumed as a quadratic function in the thickness direction.

In this paper, the transient response of FGM with polynomial-form is analyzed by
Laplace transform technique, and the analytical solutions in the transform domain
are presented base on the result obtained by Chiu and Erdogan (1999). By using
numerical Laplace inversion from Durbin’s method (1974), an effective numeri-
cal approach is developed to construct the result of transient-wave propagation in
FGM. The analytical-numerical solution presented in this article is based on the
Durbin’s method for Laplace inversion which differs from the asymptotic approach
of Abel-Tauber theorem used by Chiu and Erdogan (1999). The Laplace inversion
method is composed of finite Fourier sine and cosine transforms. It is proved in
this study that the Durbin’s method is capable to perform the long time calculation
for transient response with excellent numerical efficiency and accuracy.

In addition, we also analyze a homogeneously multilayered medium to simulate an
FGM slab, and determine the transient response for uniformly dynamic loading.
Numerical results show that the dynamic behavior for multilayered medium could
catch the trend of the transient response for FGM if the FGM is simulated as mul-
tilayered homogeneous materials and the number of the layer is greater than ten.
The phenomenon of discontinuous caused by impedance-mismatch for multilay-
ered medium is discussed in detail in this study.
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Figure 1: Geometrical configurations and boundary conditions for FGM slabs.
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2 Formulation of the Functionally Graded Slab

One-dimensional transient wave propagation in an FGM slab has been derived by
Chiu and Erdogan (1999). We briefly follow the derivation made by Chiu and
Erdogan (1999) for the solutions in the Laplace transform domain. Consider an
initially undisturbed FGM slab as shown in Fig. 1 and the material properties of
the FGM slab are assumed to be vary continuously in thickness direction with the
following polynomial function

E ′ (x) = E ′0
(

a
x
l
+1
)m

, (1)

ρ (x) = ρ0

(
a

x
l
+1
)n

, (2)

where a, m, n are gradient constants of FGM slab, E ′, ρ , and l are elastic constant,
mass density, and the thickness, respectively. E ′0 and ρ0 are the elastic constant
and density at x = 0. For a one-dimensional plane-strain problem with vanishing
displacements in the y and z directions, the elastic constant E ′ can be expressed as
the function of Young’s modulus and Poisson’s ratio as

E ′(x) =
E(x)(1−ν(x))

(1+ν(x))(1−2ν(x))
, (3)

where E and ν are functions of x. The only non-vanishing displacement u in the x
direction and the normal stress σxx is given by

σxx = E ′
∂u
∂x

. (4)

The wave equation in an inhomogeneous medium can be written as

∂

∂x

(
E ′ (x)

∂u
∂x

)
= ρ (x)

∂ 2u
∂ t2 . (5)

The initial conditions for an initially undisturbed FGM slab are presented as

u(x,0) = 0,
∂

∂ t
u(x,0) = 0. (6)

We perform normalized quantities on Eq. (1), (2), (5), and (6)

∂

∂X

[
(aX +1)m ∂U

∂X

]
= (aX +1)n ∂ 2U

∂T 2 , (7)
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U (X ,0) = 0,
∂

∂T
U (X ,0) = 0, (8)

where the normalized quantities are

X =
x
l
, U =

u
l
, T =

c0t
l

, c0 =

√
E ′0
ρ0

. (9)

Eq. (7) is solved by applying Laplace transform over normalized time T with trans-
form parameter p, and the Laplace transform pairs are given by

Û (X , p) =
∫

∞

0
U (X ,T )e−pT dT , (10a)

U (X ,T ) =
1

2πi

∫ c+i∞

c−i∞
Û (X , p)epT d p. (10b)

The ordinary differential equation for Û is obtained from Eq. (7) and (8) as follows
(Chiu & Erdogan (1999)):

η
2 d2Û

dη2 +mη
dÛ
dη
− p2

a2 η
n−m+2Û = 0, (11)

where

η = (aX +1) . (12)

If m = n+2, Eq. (11) will become Euler equation, and the solution of the displace-
ment field in the transform domain can be expressed as

Û (X , p) = C1 (aX +1)s1 +C2 (aX +1)s2 , (13)

where

s1,s2 =−n+1
2
±

√(
n+1

2

)2

+
( p

a

)2
. (14)

However, if m 6= n + 2, the solution of the displacement field is represented in an
alternative form as

Û (X , p) = (aX +1)
1−m

2

[
C3 · I| 1−m

n−m+2 |

(∣∣∣∣ 2p
(n−m+2)a

∣∣∣∣(aX +1)
n−m+2

2

)
+C4 ·K| 1−m

n−m+2 |

(∣∣∣∣ 2p
(n−m+2)a

∣∣∣∣(aX +1)
n−m+2

2

)]
(15)
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where I and K are the modified Bessel functions of the first and second kind, re-
spectively. C1 ∼ C4 are undetermined coefficients and can be obtained from the
boundary conditions at x = 0 and x = l. For the case that the bottom surface (x = 0)
is traction free as shown in Fig. 1(a), the boundary conditions in transform domain
can be expressed as follows

E ′
d

dX
Û (0, p) = 0, at X = 0, (16)

E ′
d

dX
Û (1, p) = σ0 f̂ (p) , at X = 1, (17)

where the constant σ0 is the magnitude of the dynamic loading, and the traction
function f̂ describes its profile in the transform domain. The coefficients C1 ∼C4
in Eqs. (13) and (15) can be obtained from Eqs. (16) and (17). The stress fields in
the transform domain can be expressed as (Chiu & Erdogan (1999))

σ̂xx

σ0
= f̂ (p)

(
aX +1
a+1

) n+1
2
{

e−δ ·[ln(a+1)−ln(aX+1)]− e−δ ·[ln(a+1)+ln(aX+1)]

1− e−2δ ·ln(a+1)

}
for m = n + 2 (18)

σ̂xx

σ0
= f̂ (p)

(
aX +1
a+1

)m+n
4
[

W1xe(zo−zx)−W2xe−(zo−zx)

W1le(zo−zl)−W2le−(zo−zl)

]
for m 6= n+2, (19)

where

δ =

√(
n+1

2

)2

+
( p

a

)2
, (20a)

zx =
∣∣∣∣ 2p
(n−m+2)a

∣∣∣∣(aX +1)
n−m+2

2 , (20b)

zl =
∣∣∣∣ 2p
(n−m+2)a

∣∣∣∣(a+1)
n−m+2

2 , (20c)

zo =
∣∣∣∣ 2p
(n−m+2)a

∣∣∣∣ , (20d)
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and the functions W1x, W2x, W1l , and W2l are given as follows

W1x =[√
2πzo

ezo
Iν−1 (zo)+

√
2πzo

ezo
Iν+1 (zo)

][√
2zx

π
ezxKν−1 (zx)+

√
2zx

π
ezxKν+1 (zx)

]

+
2
zo

(
m−1

n−m+2

)(√
2πzo

ezo
Iν−1 (zo)

)
·

[√
2zx

π
ezxKν−1 (zx)+

√
2zx

π
ezxKν+1 (zx)

]

− 2
zo

(
m−1

n−m+2

)
(aX +1)

m−n−2
2 ·

(√
2zx

π
ezxKν (zx)

)

·
[√

2πzo

ezo
Iν−1 (zo)+

√
2πzo

ezo
Iν+1 (zo)

]
− 4

z2
o

(
m−1

n−m+2

)2

(aX +1)
m−n−2

2

(√
2πzo

ezo
Iν (zo)

)(√
2zx

π
ezxKν (zx)

)
,

(21a)

W2x =[√
2πzx

ezx
Iν−1 (zx)+

√
2πzx

ezx
Iν+1 (zx)

][√
2zo

π
ezoKν−1 (zo)+

√
2zo

π
ezoKν+1 (zo)

]

+
2
zo

(
m−1

n−m+2

)(√
2πzx

ezx
Iν−1 (zx)

)
·

[√
2zo

π
ezoKν−1 (zo)+

√
2zo

π
ezoKν+1 (zo)

]

− 2
zo

(
m−1

n−m+2

)
(aX +1)

m−n−2
2 ·

(√
2zo

π
ezoKν (zo)

)

·
[√

2πzx

ezx
Iν−1 (zx)+

√
2πzx

ezx
Iν+1 (zx)

]
− 4

z2
o

(
m−1

n−m+2

)2

(aX +1)
m−n−2

2

(√
2πzx

ezx
Iν (zx)

)(√
2zo

π
ezoKν (zo)

)
,

(21b)
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W1l =[√
2πzo

ezo
Iν−1 (zo)+

√
2πzo

ezo
Iν+1 (zo)

][√
2zl

π
ezl Kν−1 (zl)+

√
2zl

π
ezl Kν+1 (zl)

]

+
2
zo

(
m−1

n−m+2

)(√
2πzo

ezo
Iν−1 (zo)

)
·

[√
2zl

π
ezl Kν−1 (zl)+

√
2zl

π
ezl Kν+1 (zl)

]

− 2
zo

(
m−1

n−m+2

)
(a+1)

m−n−2
2 ·

(√
2zl

π
ezl Kν (zl)

)

·
[√

2πzo

ezo
Iν−1 (zo)+

√
2πzo

ezo
Iν+1 (zo)

]
− 4

z2
o

(
m−1

n−m+2

)2

(a+1)
m−n−2

2

(√
2πzo

ezo
Iν (zo)

)(√
2zl

π
ezl Kν (zl)

)
,

(21c)

W2l =[√
2πzl

ezl
Iν−1 (zl)+

√
2πzl

ezl
Iν+1 (zl)

][√
2zo

π
ezoKν−1 (zo)+

√
2zo

π
ezoKν+1 (zo)

]

+
2
zo

(
m−1

n−m+2

)(√
2πzl

ezl
Iν−1 (zl)

)
·

[√
2zo

π
ezoKν−1 (zo)+

√
2zo

π
ezoKν+1 (zo)

]

− 2
zo

(
m−1

n−m+2

)
(a+1)

m−n−2
2 ·

(√
2zo

π
ezoKν (zo)

)

·
[√

2πzl

ezl
Iν−1 (zl)+

√
2πzl

ezl
Iν+1 (zl)

]
− 4

z2
o

(
m−1

n−m+2

)2

(a+1)
m−n−2

2

(√
2πzl

ezl
Iν (zl)

)(√
2zo

π
ezoKν (zo)

)
.

(21d)

For the case that the bottom surface (x = 0) is fixed as indicated in Fig. 1(b), we
have

Û (0, p) = 0, at X = 0, (22a)
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E ′
d

dX
Û (1, p) = σ0 f̂ (p) , at X = 1. (22b)

The stress fields in the transform domain for this case can be expressed as (Chiu &
Erdogan (1999))

σ̂xx

σ0
=

f̂ (p)
(

aX +1
a+1

) n+1
2
{

[−(n+1)+2δ ] (aX +1)δ − [−(n+1)−2δ ] (aX +1)−δ

[−(n+1)+2δ ] (a+1)δ − [−(n+1)−2δ ] (a+1)−δ

}
for m = n + 2, (23)

σ̂xx

σ0
= f̂ (p)

(
aX +1
a+1

)m+n
4
[

W3xe(zo−zx) +W4xe−(zo−zx)

W3le(zo−zl) +W4le−(zo−zl)

]
for m 6= n+2, (24)

where δ , zx, zo, and zl are defined in Eq. (20). The functions W3x, W4x, W3l , and W4l
are given as follows

W3x =
(√

2πzo

ezo
Iν (zo)

)[√
2zx

π
ezxKν−1 (zx)+

√
2zx

π
ezxKν+1 (zx)

]

− 2
zo

(
m−1

n−m+2

)
(aX +1)

m−n−2
2 ·

(√
2πzo

ezo
Iν (zo)

)(√
2zx

π
ezxKν (zx)

),

(25a)

W4x =

(√
2zo

π
ezoKν (zo)

)[√
2zx

ezx
Iν−1 (zx)+

√
2πzx

ezx
Iν+1 (zx)

]

− 2
zo

(
m−1

n−m+2

)
(aX +1)

m−n−2
2 ·

(√
2πzx

ezx
Iν (zo)

)(√
2zo

π
ezoKν (zo)

),

(25b)

W3l =
(√

2πzo

ezo
Iν (zo)

)[√
2zl

π
ezl Kν−1 (zl)+

√
2zl

π
ezl Kν+1 (zl)

]

− 2
zo

(
m−1

n−m+2

)
(a+1)

m−n−2
2 ·

(√
2πzo

ezo
Iν (zo)

)(√
2zl

π
ezl Kν (zl)

),

(25c)
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W4l =

(√
2zo

π
ezoKν (zo)

)[√
2πzl

ezl
Iν−1 (zl)+

√
2πzl

ezl
Iν+1 (zl)

]

− 2
zo

(
m−1

n−m+2

)
(a+1)

m−n−2
2 ·

(√
2πzl

ezl
Iν (zl)

)(√
2zo

π
ezoKν (zo)

).

(25d)

We should note that the analytical solutions presented in Eqs. (18), (19), (23), and
(24) are all in the Laplace transform domain.

x = 

1

1

n

k
k

h
−

=
−x = 

1

n

k
k

h
=

−x = 

1h−

( )1 2h h− +

1nh −

nh

1h

2h

0

x

x = 
x = 

 

Figure 2: Configuration and coordinate system of an n-layered medium.

3 The FGM Slab is Simulated by Multilayered Homogeneous Medium

In this section, the FGM slab is simulated as a stratified medium consist of n layers
as shown in Fig. 2. Each layer is assumed to be elastic, homogeneous, isotropic,
and perfectly bonded along the interfaces. The stratified medium is subjected to
uniform loadings applied on the top surface at t = 0. The quantities related to ith
layer are suffixed by a superscript (i), and n stratified layers contains n + 2 media
including upper and lower half-space. In other words, (0) implies the upper half-
space and (n+1) implies the lower half-space.

We will consider plane wave propagation in the x direction in which the only non-
vanishing component of the displacement is in the x direction, and the 1-D longitu-
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dinal wave equation can be expressed as follows:

∂ 2u
∂x2 = S2

L
∂ 2u
∂ t2 , (26)

where u(x, t) is the longitudinal displacement and SL is the slowness of the longi-
tudinal wave given by

SL =
1

CL
=
√

ρ

(λ +2µ)
=

√
ρ (1+ν)(1−2ν)

E (1−ν)
,

in which CL, ρ , λ , µ,E and ν are the longitudinal wave velocity, mass density,
Lamé constant, shear modulus, Young’s modulus and Poisson’s ratio, respectively.
The boundary conditions on the top and bottom layers of the multilayered medium
can be written as

σ
(1)
xx (0, t) = σ0 · f (t), (27)

σ
(n)
xx

(
−

n

∑
k=1

hk, t

)
= 0, (28)

where f (t) is the traction function. The displacement and traction continuity condi-
tions at the interface between two adjacent layers, i.e., ith layer and (i+1)th layer,
are expressed as follows,

u(i)

(
−

i

∑
k=1

hk, t

)
= u(i+1)

(
−

i

∑
k=1

hk, t

)
for i = 1,2,3, ...,n−1, (29)

σ
(i)
xx

(
−

i

∑
k=1

hk, t

)
= σ

(i+1)
xx

(
−

i

∑
k=1

hk, t

)
for i = 1,2,3, ...,n−1, (30)

where the superscripts i in parentheses indicate the field quantities in the ith layer.
For instance, ·(i) and ·(i+1) denote the displacement or stress fields in the ith layer
and the (i+1)th layer, respectively. The boundary value problem and continuity
conditions described above are solved by applying Laplace transform over time t
with transform parameter p. The transform pair of the Laplace transform for a
function u(x, t) are given by

û(x; p) =
∫

∞

0
u(x, t) e−ptdt, (31a)

u(x, t) =
1

2πi

∫ c+i∞

c−i∞
û(x; p) eptd p. (31b)
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Apply the Laplace transform on Eq. (26), the solution of displacement field can be
presented as

û(x; p) = u−(p)e+pSLx +u+(p)e−pSLx, (32)

and stress field follows Hooke’s law,

σ̂xx (x; p) = ρCL pu−(p)e+pSLx−ρCL pu+(p)e−pSLx. (33)

Hence, we can rewrite these field quantities in transform domain as the displacement-
traction matrix,[

û(x; p)
σ̂xx (x; p)

]
=
[

M11(x; p) M12(x; p)
M21(x; p) M22(x; p)

][
u−(p)
u+(p)

]
, (34)

where

M11(x; p) = e+pSLx, (35)

M12(x; p) = e−pSLx, (36)

M21(x; p) = ρCL pe+pSLx, (37)

M22(x; p) =−ρCL pe−pSLx, (38)

are phase-related receiver elements. In order to avoid complicated mathematical
expressions, boundary and interface continuity conditions can be represented as
follows:

0 0 M(1)
21 (0) M(1)

22 (0) 0

M(1)
11 (−h1) M(1)

12 (−h1) −M(2)
11 (−h1)−M(2)

12 (−h1) 0

M(1)
21 (−h1) M(1)

22 (−h1) −M(2)
21 (−h1)−M(2)

22 (−h1)
...

...
...

. . . . . . . . .
...

...
. . . . . . . . .

0 ··· M(n−1)
11

(
−

n−1
∑

k=1
hk

)
M(n−1)

12

(
−

n−1
∑

k=1
hk

)
−M(n)

11

(
−

n−1
∑

k=1
hk

)
0 ··· M(n−1)

21

(
−

n−1
∑

k=1
hk

)
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(
−
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hk
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−M(n)

21

(
−

n−1
∑

k=1
hk

)
0 ··· ··· ··· ···
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··· ··· 0
··· ··· 0
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0 0

−M(n)
22
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hk

)
0 0

0 −M(n)
21

(
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n
∑

k=1
hk

)
−M(n)
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(
−

n
∑

k=1
hk

)


·



u(1)
−

u(1)
+

u(2)
−

u(2)
+
...
...

u(n)
−

u(n)
+


=



σ0 f̂ (p)
0
0
...
...
...
0
0


(39)

In compact notation, the previous equation is written as

Mc = t̂, (40)

where

c =
(

u(1)
− u(1)

+ u(2)
− u(2)

+ · · · u(n)
− u(n)

+

)T
, (41)

and

t̂ =
(
σ0 f̂ (p) 0 · · · · · · 0

)T
, (42)

and the coefficient matrix M is a 2n× 2n matrix. Subsequently, Eq. (40) can be
solved directly by

c = M−1t̂. (43)

Once the global field vector c is obtained, the response functions in each layer
can be determined. Furthermore, we can relate the response vector b to the global
field vector c with a phase-related receiver matrix Rcv by arranging the response
functions in each layer into this response vector

b(x; p) = Rcv(x; p) · c, (44)
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where the phase-related receiver matrix is given by

Rcv(x; p) =

M(1)
11 (x; p) M(1)

12 (x; p)
M(1)

21 (x; p) M(1)
22 (x; p)

M(2)
11 (x; p) M(2)

12 (x; p)
M(2)

21 (x; p) M(2)
22 (x; p)

. . .

M(n)
11 (x; p) M(n)

12 (x; p)
M(n)

21 (x; p) M(n)
22 (x; p)


.

(45)

It is noted that b is the response vector, which represents the solutions of displace-
ment and normal stress in each layer of the multilayered medium in the transform
domain. With the transformed solution at hand, the inverse transform should be per-
formed to obtain the transient solution in time domain. We use numerical inversion
from the well-known Durbin’s method, which is a combination of finite Fourier
sine and cosine transforms, and will be briefly described in the next section.

4 Numerical Laplace Inversion

Transient behavior in time domain could be obtained via the theoretical Laplace
transform or the numerical inversion of transformation (Durbin, 1974; Papoulis,
1957; Narayanan & Beskos, 1982). In this paper, the numerical inversion method
proposed by Durbin is used. This is a very accurate and efficient method for nu-
merically inverting Laplace-transformed functions and is a combination of both
finite Fourier sine and cosine transforms. In Durbin’s method, the inverse Laplace
transformation of a function f̂ (p) is expressed as the following form,

f (t) =
1

2πi

∫ c+i∞

c−i∞
f̂ (p) eptd p

=
2eαt

T ∗

{
−1

2
Re
[

f̂ (α)
]
+

N

∑
k=0

Re
[

f̂
(

α + i
2kπ

T ∗

)]
cos
(

2kπt
T ∗

)
−Im

[
f̂
(

α + i
2kπ

T ∗

)]
sin
(

2kπt
T ∗

)} . (46)

Note that the infinite series involved need only be summed up to a finite number of
N terms for convergence. The transform parameter p is composed of real part α

and imaginary part 2kπ

T ∗ ,
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p = α + ik 2π

T ∗ k=0, 1, 2, 3, . . . , N,

in which T ∗ is the time interval of interest, and equidistant points N is a finite
positive integer. It is suggested that one should select αT ∗ = 5 to 10 for good
calculation results.

We substitute the solutions in the transform domain for the functionally graded
slab (i.e., Eqs. (18), (19), (23), (24)) and the multilayered medium (Eq. (44)) into
Durbin’s formula, i.e. Eq. (46). The transient response in time domain can be
obtained. The computational result and comparison for two formulations will be
discussed in detail in the next section. It is noted that the Durbin’s method has high
accuracy for long time calculation and is capable to calculate transient responses
for complicated problems.

5 Numerical Results for the FGM Slab and the Multilayered Medium

In this section, the transient response in a single FGM slab is presented and is
verified with the calculation provided by Chiu and Erdogan (1999). The initial
pulse with a step function form is applied at the top surface x = l as shown in
Fig. 1, and the pressure pulse has the following form

σxx (l, t) = σ0 f (t) =−σ0 [H (t)−H (t− t0)] , (47a)

or expressed in the transform domain as

f̂ (p) =−
[

1
p
− e−pt0

p

]
, (47b)

where H (t) is the heaviside function and the pulse duration is t0 = 0.2µs.

We consider an FGM slab with thickness l = 5mm. The FGM material constants
(Ni/ZrO2 and Al/SiC) used for numerical calculations are listed in Table 1. Ni/ZrO2
indicates that an FGM slab consists of nickel and zirconia, and pure nickel is on

Table 1: Material constants of FGMs
Ni/ZrO2 ZrO2/Ni SiC/Al Al/SiC

E ′0 (GPa) 286.922 223.728 225.719 105.197
ρ0 (kg/m3) 8900 5331 3100 2710

c0 (m/s) 5678 6478 8533 6230
a 0.14096 −0.12354 −0.53395 1.14568
m −1.8866 −1.8866 1 1
n −3.8866 −3.8866 0.17611 0.17611
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Figure 3: The variation of elastic modulus, density, longitudinal wave velocity, and
mechanical impedance in Ni/ZrO2 FGM.

the bottom surface while the top surface is pure zirconia. For Al/SiC FGM, sim-
ilarly, Al and SiC are on the bottom surface and top surface, respectively. Fig. 3
shows the material compositions of Ni/ZrO2 FGM for elastic modulus, density,
longitudinal wave velocity, and mechanical impedance along the thickness. Fig. 4
shows these quantities for SiC/Al FGM. It is worthy to note that FGM formulations
(Eqs. (18), (19), (23), (24)) and multilayered solution (Eq. (44)) are all presented in
the transform domain in previous sections, hence, the numerical Laplace inversion
(Durbin’s formula) Eq. (46) is used to obtain the transient response in time domain.
The numerical results are shown in Figs. 5-15.

5.1 Transient responses of FGM for long-time computation

In Fig. 5, the long-time transient response of Ni/ZrO2 FGM is evaluated by Durbin’s
inversion method at the location x = l/2 for fixed boundary condition at x = 0 (i.e.,
Fig. 1(b)). Stress response is calculated up to 24µs, and the result is the same as
that presented in Chiu and Erdogan (1999) for 12µs. When the pressure pulse trav-
els in FGM and reflects between top and bottom surfaces many times, the step-form
pulse is distorted as a needle-like one. The pulse shape is distorted as time increase
and the transient response for FGM is completely different from the homogeneous
material.
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Figure 4: The variation of elastic modulus, density, longitudinal wave velocity, and
mechanical impedance in SiC/Al FGM.
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Figure 5: Long-time stress response in a Ni/ZrO2 FGM slab at x = l/2 for fixed
boundary condition at x = 0.
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5.2 An FGM slab is simulated by the multilayered medium

Next, we consider the case that an FGM slab is simulated as a multilayered medium
consist of n layers with homogeneous material in each layer. In Eq. (44), we take
10 homogeneous layers with the same thickness to simulate the FGM slab, the re-
sponse vector b is a 20×1 vector, the phase-related receiver matrix Rcv is a 20×20
matrix, and the global field vector c is a 20×1 vector. If we take 20 homogeneous
layers with the same thickness to simulate the FGM slab, related matrixes b, Rcv,
and c have the size 40×1, 40×40, and 40×1, respectively. Therefore, the matrix-
form formulation indicated in Eq. (44) can be worked out and the displacement
and stress fields in the transform domain can be determined subsequently. The
transient response can be obtained by numerical Laplace inversion (Eq. (46)). For
the Durbin’s method, computational condition αT = 7.5 and the summation terms
N=20000 are chosen in Eq. (46) for numerical calculation. The related material
constants for 10-layered and 20-layered media are listed in Tables 2-5.

We discuss the situation that m = n+2 first. For the case of Ni/ZrO2 FGM, Fig. 6
presents the transient response at location x = l/2 of FGM slab and 10-layered
medium for the boundary condition indicated in Fig. 1(a). The source wave arrives
at 0.4µs with magnitude −1.09, and the reflecting wave from the bottom surface
of FGM slab arrives at 1.25µs. After that, tensile and compressive stress waves
appear alternately and the original step function is distorted as time increases. In
the simulation of 10-layered medium, we can see that the influence of stress wave
coming from the boundary is larger than that coming from the interface. This phe-
nomenon is due to the fact that the difference of the material constants and the
impedance-mismatch of the homogeneous layer is not large. We can see that the
transient response for the 10-layered medium displays oscillations around the solu-
tion of FGM. However, these oscillations due to impedance-mismatch are growing
when more and more waves arrive at the receiver.

For the same case of Ni/ZrO2 FGM, the transient response at location x = l/2 of
FGM slab and 10-layered medium for the boundary condition indicated in Fig. 1(b)
is expressed in Fig. 7. The transient response for ZrO2/Ni FGM at location x = 0
for the boundary condition indicated in Fig. 1(b) is expressed in Fig. 8. Figures
7 and 8 show the fact that the step pulse in the fixed boundary is distorted more
seriously than in the free boundary. The numerical result for 10-layered medium is
similar to the FGM formulation except some oscillations appearing in the result of
FGM. The transient stress fields for the situation that m 6= n + 2 (i.e., SiC/Al and
Al/SiC) are shown in Figs. 9-11. These figures also indicate that the 10-layered
medium can be used to simulate the problem for FGM material.

Next, we compare the results obtained by 10-layered and 20-layered media from
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Table 2: The material constants of 10 homogeneous layers to simulate the Ni/ZrO2
FGM slab

No. E(GPa) ρ (kg/m3) CL (m/s) Impedance h (mm)
1 226.36 5461 6438 35158325 0.5
2 231.76 5733 6358 36451059 0.5
3 237.37 6022 6278 37808617 0.5
4 243.18 6330 6198 39235138 0.5
5 249.22 6658 6118 40735086 0.5
6 255.49 7008 6038 42313275 0.5
7 262.00 7381 5958 43974906 0.5
8 268.77 7779 5878 45725604 0.5
9 275.82 8205 5798 47571454 0.5

10 283.15 8660 5718 49519050 0.5

Table 3: The material constants of 20 homogeneous layers to simulate the Ni/ZrO2
FGM slab

No. E(GPa) ρ (kg/m3) CL (m/s) Impedance h (mm)
1 225.04 5395 6458 34844813 0.25
2 227.69 5527 6418 35475646 0.25
3 230.39 5663 6378 36121954 0.25
4 233.15 5804 6338 36784215 0.25
5 235.95 5948 6298 37462930 0.25
6 238.80 6097 6258 38158614 0.25
7 241.71 6251 6218 38871805 0.25
8 244.67 6410 6178 39603060 0.25
9 247.69 6574 6138 40352958 0.25

10 250.77 6744 6098 41122101 0.25
11 253.90 6918 6058 41911115 0.25
12 257.09 7099 6018 42720648 0.25
13 260.35 7285 5978 43551376 0.25
14 263.67 7478 5938 44404001 0.25
15 267.06 7677 5898 45279255 0.25
16 270.51 7883 5858 46177897 0.25
17 274.03 8096 5818 47100719 0.25
18 277.62 8316 5778 48048545 0.25
19 281.29 8544 5738 49022231 0.25
20 285.02 8779 5698 50022672 0.25
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Table 4: The material constants of 10 homogeneous layers to simulate the SiC/Al
FGM slab

No. E(GPa) ρ (kg/m3) CL (m/s) Impedance h (mm)
1 111.22 2737 6375 17446614 0.5
2 123.27 2787 6651 18534735 0.5
3 135.33 2833 6912 19579820 0.5
4 147.38 2876 7159 20587200 0.5
5 159.43 2916 7394 21561164 0.5
6 171.48 2954 7620 22505231 0.5
7 183.54 2989 7836 23422331 0.5
8 195.59 3023 8044 24314933 0.5
9 207.64 3055 8245 25185146 0.5

10 219.69 3085 8438 26034785 0.5

Table 5: The material constants of 20 homogeneous layers to simulate the SiC/Al
FGM slab

No. E(GPa) ρ (kg/m3) CL (m/s) Impedance h (mm)
1 108.21 2724 6303 17167107 0.25
2 114.24 2750 6446 17723019 0.25
3 120.26 2775 6584 18266975 0.25
4 126.29 2799 6718 18799811 0.25
5 132.31 2822 6848 19322272 0.25
6 138.34 2844 6975 19835017 0.25
7 144.37 2865 7098 20338640 0.25
8 150.39 2886 7219 20833674 0.25
9 156.42 2906 7337 21320602 0.25

10 162.44 2926 7452 21799860 0.25
11 168.47 2944 7564 22271848 0.25
12 174.50 2963 7675 22736931 0.25
13 180.52 2980 7783 23195442 0.25
14 186.55 2998 7889 23647690 0.25
15 192.58 3015 7993 24093959 0.25
16 198.60 3031 8095 24534510 0.25
17 204.63 3047 8195 24969588 0.25
18 210.65 3063 8294 25399419 0.25
19 216.68 3078 8391 25824214 0.25
20 222.71 3093 8486 26244169 0.25
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Figure 6: The stress responses in a Ni/ZrO2 FGM slab and 10-layered medium at
x = l/2 for free boundary condition at x = 0.
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Figure 7: The stress responses in a Ni/ZrO2 FGM slab and 10-layered medium at
x = l/2 for fixed boundary condition at x = 0.



58 Copyright © 2012 Tech Science Press CMC, vol.31, no.1, pp.37-64, 2012

0 2 4 6 8 10 12
−3

−2

−1

0

1

2

3

0
/

xx
σ

σ

t μ

10-layered solution
FGM solution

 

Figure 8: The stress responses in a ZrO2/Ni FGM slab and 10-layered medium at
x = 0 for fixed boundary condition at x = 0.
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Figure 9: The stress responses in a SiC/Al FGM slab and 10-layered medium at
x = l/2 for free boundary condition at x = 0.
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Figure 10: The stress responses in a SiC/Al FGM slab and 10-layered medium at
x = 0 for fixed boundary condition at x = 0.
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Figure 11: The stress responses in a Al/SiC FGM slab and 10-layered medium at
x = l/2 for free boundary condition at x = 0.
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Figure 12: The stress response in a 10-layered medium (Ni/ZrO2) at x = l/2 for
fixed boundary condition at x = 0.
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Figure 13: The stress response in a 20-layered medium (Ni/ZrO2) at x = l/2 for
fixed boundary condition at x = 0.
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Figure 14: The stress response in a 10-layered medium (SiC/Al) at x = 0 for fixed
boundary condition at x = 0.
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Figure 15: The stress response in a 20-layered medium (SiC/Al) at x = 0 for fixed
boundary condition at x = 0.
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Fig. 12 and Fig. 13. In Fig. 12, transient response of Ni/ZrO2 FGM simulated by
10-layered medium is calculated up to 12µs at location x = l/2 for the boundary
condition indicated in Fig. 1(b). If we use the 20-layered medium (related material
constants are listed in Table 3) to simulate Ni/ZrO2 FGM, the numerical result
expressed in Fig. 13 is much closer to the FGM formulation. For the case of SiC/Al
FGM, numerical results obtained by 10-layered and 20-layered media are shown in
Fig. 14 and Fig. 15. In Fig. 14, transient response of SiC/Al FGM simulated
by 10-layered medium is calculated up to 6µs at location x = 0 for the boundary
condition indicated in Fig. 1(b). The same SiC/Al FGM is further divided into
20 layers (related material constants are listed in Table 5) and the result is shown
in Fig. 15. We note that the amplitude of oscillation becomes smaller in Fig. 13
(Fig. 15) than that in Fig. 12 (Fig. 14), and this phenomenon indicates that more
layers will result less impedance-mismatch and more closer to the result of FGM.

6 Conclusions

In this article, the transient response in FGM slab is analyzed by Laplace transform
technique. The analytical solution is determined in the transform domain from the
boundary conditions. A numerical Laplace inversion method (Durbin’s formula)
instead of Abel-Tauber asymptotic theorem (Chiu & Erdogan (1999)) is used to
obtain the transient response in the time domain. From the consideration of ac-
curacy and numerical efficiency, Durbin’s formula is easy and capable to be used
to investigate the wave-propagation problem of FGM for long-time calculation. In
this study, we also use 10-layered and 20-layered homogeneous media to simulate
the FGM slab. These two approaches have similar results. Oscillation phenomenon
is found in multi-layered solutions which is due to the impedance-mismatch of the
layer. When the number of layer increase, the magnitude of the oscillation decrease.
It is concluded that the multi-layered formulation is capable to simulate the non-
homogeneous FGM if the number of the layer is large enough. This multilayered
formulation not only can be used for simulating the FGM with polynomial-form
but also is applicable for the power-law or exponential-form of FGM.
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