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An Enhanced Dipole Model Based Micro-Macro
Description for Constitutive Behavior of MRFs

Chunwei Zhao1,2, Xianghe Peng1,2,3, Jin Huang4 and Ning Hu1,5,6

Abstract: The validity of the two conventional micro-macro descriptions for MRFs,
based respectively on the exact dipole model and the simplified dipole model, is
examined with the results obtained with the commercially available finite element
(FE) code ANSYS. It is found that although the simplified dipole model can match
better the result by FE computation, there is still a marked difference. An en-
hanced dipole model is then suggested, which takes into account the contribution
of the magnetized particles to magnetic field. Making use of a statistical approach
and neglecting the interaction between particle chains, a micro-macro approach is
developed for the evaluation of the yield shear stress of MRFs. It can take into
account the effects of all the main influencing factors, and can well replicate the
main characteristics of the constitutive behavior of MRFs. The method and the re-
sults presented are significant for the analysis and optimization of the mechanical
properties of MRFs, and for the design of high-performance MRFs.

Keywords: Magnetorheological fluids; finite element simulation; enhanced dipole
model; micro-macro constitutive description

1 Introduction

Magnetorheological fluids (MRFs) are a kind of functional fluids consisting of fer-
romagnetic particles with micron size suspended in a nonmagnetic carrier fluid.
It exhibits as a Newtonian fluid without applying a magnetic field. It could be
changed rapidly to a solid-like material once a proper magnetic field is applied, and
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it could be recovered with the removal of the magnetic field. The mechanical prop-
erty of an MRF could be tuned in a large range with the change of the intensity of
the applied magnetic field. Because of these amazing characteristics, MRFs have
been receiving increasing attention in the past decades, and have been extensively
applied for different purposes, such as vibration control, shock absorbers, buffing
attachment, braking devices, etc [Yang et al. (2011); Caterino et al. (2011); Lee et
al. (2004); Karakoc et al. (2008) ].

Great efforts have been made in modeling the constitutive behavior of MRFs. Tang
(2000) evaluated the static yield stress with two and three dimensional laminar
structure model with the Maxwell stress tensor, which is related to anisotropic
magnetization, but it is difficult to be applied in the analysis for practical problems.
Rosensweig (1995) developed a mean-field continuum model to analyze the static
yield stress without considering demagnetization. Jolly et al. (1996) obtained an
expression of yield shear stress with the principle of energy conservation. Ginder
and Davis (1994) calculated the interaction force in a single chain with a nonlinear
finite element method. Later, Ginder (1998) presented a simple model and obtained
a set of explicit expressions of the yield stress at different magnetic fields. Bossis
and Lemaire (1991) proposed a dipolar sphere model to predict the static yield
shear stress of MRFs, however, it may overestimate the yield shear stress due to
neglecting the nonlinear magnetization. Based on static magnetics, Si et al. (2007)
proposed a micromechanics model for the constitutive behavior of MRFs, which
takes into account the effects of intensity of applied magnetic field, particle size
and particle volume fraction. Peng and Li (2007) formulated a micro–macro con-
stitutive model to predict the static yield stress based on the conventional dipole
model and a statistical approach, which can take into account the effects of each of
the main influencing factors. Yi et al. (2010) investigated the same problem with
an exact dipole model without making use of the approximation that the size of the
dipolar particles is far smaller than the distance between particles. Although both
the two models [Peng and Li (2007); Yi et al. (2010)] can take into account the
main effect of each individual influencing factor on the overall behavior of MRFs,
the yield shear stresses evaluated with the two models exhibit distinct difference.
It raises a question: how to evaluate the error when applying a magnetic dipole
model in the analysis of MRFs, where the size of the dipolar particles may not be
far smaller than the distance between particles. On the other hand, in the conven-
tional magnetic dipole model based analysis, a dipolar particle is usually assumed
to be magnetized by the applied magnetic field, and the additional magnetization of
the dipole induced by the surrounding magnetic dipoles is often neglected, which
may also bring about considerable error as the distance between particles is com-
parable with the size of the particles.
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In order to solve the above problems, in this article, we simulate the magnetization
state and the magnetic force of the particles in a single chain under a static magnetic
field with the finite element (FE) code ANSYS, where the additional magnetization
resulting from the surrounding magnetic dipoles is taken into account. The results
are then used as the benchmark to evaluate the results obtained with the conven-
tional magnetic dipole models. An enhanced dipole model is suggested with the
consideration of the additional contribution of the magnetized particles to the mag-
netic field. By virtue of this model, the resistance of a single chain consisting of
magnetized particles against shear deformation is obtained. Then a micro-macro
description for the yield shear stress of MRFs is formulated by making use of a sta-
tistical approach. The typical characteristics of MRFs and the effects of the main
influencing factors on the overall constitutive behavior are analyzed. The compar-
ison between the analytical and experimental results demonstrates the validity of
the proposed model.

2 Verification of conventional dipole models with FE simulation

2.1 Brief introduction to conventional dipole models

In an MRF, the ferromagnetic particles which are initially distributed randomly in
the carrier liquid will be magnetized and become magnetic dipoles if a magnetic
field is applied. These dipolar particles may be aligned in the direction of the
external magnetic field to form a chainlike microstructure because of the interaction
between particles. The evolution of the microstructure under applied magnetic and
mechanical fields endows MRFs with unique properties.

 

Figure 1: Chainlike microstructure of MRF under magnetic field [Popplewell et al.
(1996)]

Popplewell et al. (1996) and Jolly et al. (1996) observed the microstructure mor-
phology of MRFs under an external magnetic field (Figure 1), it can be seen that
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the particles are aligned in the direction of the external magnetic field. The chain-
like microstructure can hinder the free flow of an MRF and even make an MRF
become a material with yield shear stress. Starting from such kind of chainlike mi-
crostructure and its deformation pattern during shear deformation (Figure 2), which
is similar to the happening mechanism of shear banding in granular materials [Hu
and Molinari (2004)], assuming the particles are spheres with identical diameter,
and making use of a simplified magnetic dipole model, Peng (2007) obtained the
resistance of a single chain against shear deformation as follows

Tsd =
4Aµ0

3k4
πR6χ2H2

(2R+2t+δ )4

(
5cos2

θ −1
)

cos4
θ sinθ , (1)

where R is the radius of a particle, t is the thickness of the non-magnetic coating,
δ is the spacing between the neighboring particles and θ is the angle between the
inclined chain and the applied magnetic field, H is the intensity of applied magnetic
field, µ0=4π× 10−7 H/m is the permeability in free space, χ is the susceptibility,
and A is related to the number of the particles in a single chain, n, with A|n=2 = 1
and A|n=15 = 1.082 ≈ A|n→∞

. In the simplified dipole model, it is assumed that
the particle size is far smaller than the distance between particles. Considering that
this assumption may not be true in the chainlike microstructure in MRFs, Yi et
al. (2010) suggested an exact dipole model without making use of the assumption,
with which the corresponding resistance was obtained as

Ted =
n−1

∑
k=1

2
3

Ekµ0πR5
χ

2H2 cos4
θ sinθ (2)

where

Ek =
1

∑
i=0

k (2R+2t +δ )
[
k (2R+2t +δ )+(−1)iR

]{
[k (2R+2t +δ )]2 +R2 cos2 θ +(−1)i2kR(2R+2t +δ )cos2 θ

} 5
2
. (3)

2.2 FE Simulation

In the module of Multiphysics in FE code ANSYS, the Maxwell equations are
adopted for electromagnetic field analysis. The characteristics of the particles in
an MRF can be simulated and the magnetic force on a particle can be obtained by
integrating the Maxwell stress tensor over the surface elements of the particle. It
should be a more accurate method, especially for the case of nonlinear magnetizing
process, because it can take into account the effect of the distribution of magneti-
zation and realistic interaction between magnetized particles, and can tackle more
complex initial and boundary conditions.
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Figure 2: Shear deformation of a single chain

An electromagnetic field is governed by the following Maxwell equations

∇×H = J+
∂D
∂ t

, (4)

∇×E =−∂B
∂ t

, (5)

∇ ·B = 0, (6)

∇ ·D = ρ, (7)

where H denotes magnetic field intensity, J current density, E electric field inten-
sity, B magnetic flux density, D electric flux density, and ρ is magnetic charge
density. For an applied static magnetic field, J=0 and D=0, the Maxwell equations
can be rewritten as

∇×H = 0, (8)

∇ ·B = 0. (9)

The constitutive relation for the electromagnetic materials is

B = µ0 (H+M) = µ0 (1+ χ)H (10)
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where M = χH is the intensity of magnetization, χ is the susceptibility, µ0 is the
permeability in free space. The Maxwell stress tensor can be expressed as [Yan
(2006)]

Si j ≡ ε0

(
EiE j−

1
2

δi jE2
)

+
1
µ0

(
BiB j−

1
2

δi jB2
)

(11)

where δ i j is the Kronecker symbol.

For 3-D application, the Maxwell forces can be obtained in the following surface
integral

{Fmx}=
1
µ0

∮
s

[S]{n}ds =
1
µ0

∮
s

 B2
x− 1

2 |B|
2 BxBy BxBz

BxBy B2
y− 1

2 |B|
2 ByBz

BxBz ByBz B2
z − 1

2 |B|
2

{n}ds (12)

where s is the surfaces of the ferromagnetic regions and n is the unit outward normal
vector of the surface.
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Figure 3: Variation of specific magnetization against magnetic field intensity of
particle material [Bombard (2005)]

2.3 Comparison

In order to calculate the forces of a single chain in MRFs, we established a particles-
air system. A particle chain is located at the center of the air, and a uniform upward
magnetic field is applied in the air. In the following, a 3D magnetic scalar potential
and the magnetic scalar potential method are used to analyze the magnetic field.
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The parameters used are listed in Table 1, where δ is the gap between particles,
which can be regarded as the thickness of the oil-film, and t is the thickness of
non-ferromagnetic coating. The variation of specific magnetization against mag-
netic field intensity of the particle material [Bombard (2005)] is shown in Figure
3. The density of the particle material is about 7.8×103 kg/m3, the intensity of the
magnetic field H≈633kA/m, and the susceptibility χ=1.96.

Table 1: Model parameters (µm)

x y z R δ t
300 300 60 6 1.2 0.4

 

 

(a) Vectorgraph of magnetic field intensity (A/m)   (b) Vectorgraph of magnetic induction (T) 
 

Figure 4: Vectorgraphs of magnetic field intensity and magnetic induction in/near
a single particle

The magnetization of a particle or a particle chain is simulated with the FE code
ANSYS. The computed vectorgraphs of the intensities of the magnetic field and
the magnetic induction of a single particle are shown in Figures 4(a) and 4(b), re-
spectively. It can be seen that, the intensity of the magnetic field is almost uniform
inside the particle, but far smaller than the intensity of the applied magnetic field.
However, although the intensity of the magnetic induction is also almost uniform
inside the particle, it is larger than that in the surrounding air. The maximum in-
tensity of the magnetic field outside of the particle is much larger than that of the
applied magnetic field, which would be attributed to the disturbance of the mag-
netized particle, i.e., the induced magnetic field inside the magnetized particle is
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opposite to the applied magnetic field. Since the magnetic susceptibility of the par-
ticle is larger than that of the air, the magnetic induction inside the particle is larger
than that outside the particle. The intensity of the magnetic field surrounding the
particle decreases rapidly with the increase of the distance and tends to that of the
applied magnetic field.

Figures 5(a) and 5(b) show the computed distributions of the magnetic field inten-
sity and the induced Maxwell stress when a single chain of five particles is placed
in the applied static magnetic field, which is inclined with 20

◦
from the direction of

applied magnetic field. It can be seen that, because of the interaction of magnetized
particles, the intensity of the magnetic field in each of the particles increases signif-
icantly compared with that of a single particle, with the maximum value appearing
at the minimum spacing between two particles. The Maxwell stress is related to
the magnetic field intensity, which is the superposition of the applied magnetic
field intensity and the additional magnetic field caused by the magnetized particles.
The maximum value of the Maxwell stress appears at the maximum value of the
magnetic field intensity. If the particles from top to bottom are numbered sequen-
tially with P1 to P5, the interaction force between neighboring particles is shown
in Figure 6, in which it can be seen that P2-3 and P3-4 are a little larger, due to the
involvement of the magnetic interaction between particles 1 and 3, and between 5
and 3, respectively.

 

 
 
 
 
 
 

 
 
 
 

  
 (a) Vectorgraph of magnetic field intensity (A/m)   (b) Vectorgraph of Maxwell stress (N/m2)  

 

  

Figure 5: Vectorgraphs of magnetic field intensity and Maxwell stress in a single
chain

During a shearing process, a chain is stretched and inclined, and the contribution
of the chain to the resistance against the shearing deformation is the horizontal
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Figure 6: Interaction force between neighboring particles

component of the magnetic force, T . Making use of the deformed single chain
shown in Figure 2, given a set of θ , the corresponding T can be computed. The
relation between T and θ is computed and shown in Figure 7, the corresponding
results obtained with two kinds of dipole models are also shown for comparison.
Taking the FE result as a benchmark, it can be seen that the exact dipole model
(EDM) over-predicts the response, while the simplified dipole model (SDM) a little
under-predicts the response. This is because that in the dipole model a magnetized
particle is simplified as a magnetic dipole, which is an approximation that may
enhance the effect of the magnetization. In SDM the assumption that the particle
size is much smaller than the distance between particles may partly counteract the
enhancement, while in EDM no such assumption is employed so that the over-
prediction due to the enhancement of the dipole model could not be erased.

In order to describe the continuously metabolic process in MRFs under a static
magnetic field, we assume sufficient particle chains per unit area and the normal
distribution of θ (Figure 2), and obtain the macroscopic yield shear stress of an
MRF contributed by these chains, τ̄ , as the summation of the contributions of there
chains [Peng and Li (2007)]. The variations of τ̄ against γ can be obtained and
shown in Figure 8, where it can be seen that τ̄ increases with the increase of γ until
reaching to the maximum value. It can be seen that, compared with the result ob-
tained with EDM, the results obtained with SDM better match the results obtained
by the finite element method (FEM). However, remarkable difference between the
saturated yield shear stress by SDM and that by FEM can also be found, indicating
the necessity of the modification of the dipole model.
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3 Enhanced dipole model

According to the study by Furst (2000), under an external magnetic field, the par-
ticles will be magnetized and an additional magnetic field will be induced around
and superimposed on the applied magnetic field at the location of each particle.
Therefore, it should be noted that, the magnetic field at the location of a particle
should be the summation of the additional magnetic field induced by all the neigh-
boring dipoles and the applied magnetic field. In the conventional dipole models
[Peng and Li (2007); Yi et al. (2010)], the additional magnetization of a dipole
induced by the other magnetic dipoles is often neglected, which may lead to an
incorrect evaluation. Thus, an enhanced dipole model will be developed by taking
into account the effect of this additional magnetic field.

The magnetic moment of a conventional dipole of radius R can be expressed as
[Wan et al. (1994)]

m = V M =
4
3

πχR3H (13)

where V = 4/3πR3 is the volume of the particle, H is the magnetic field, M= χH is
the intensity of the magnetization and χ is the susceptibility.

The magnetic field intensity of a dipolar particle can be expressed as [Li (2006)]

H =
1

4π

[
3(m · r)r

r5 −m
r3

]
(14)

Substituting equation (13) into (14), the additional magnetic field intensity at Point



An Enhanced Dipole Model 229

i induced by Dipolar particle j can be expressed as

(i)
H
j

= χR3

[
(H · ri j)ri j

r5
i j

− H
3r3

i j

]
(15)

whereR is the radius of particle, and ri j is the vector from Particle ito Particle j.

The total magnetic field at Particle i can be expressed as

Hi = H0 + ∑
j 6=i

(i)
H
j

= H0 + χR3
∑
j 6=i

[
(H0 · ri j)ri j

r5
i j

− H0

3r3
i j

]
(16)

where H0 = Hk is the applied uniform magnetic field intensity, and k denotes the
direction of the applied magnetic field.

The intensity of the magnetic induction at Particle i , i.e., Bi , can be expressed as

Bi = µ0Hi (17)

where µ0=4π×10−7Hm−1 is the permeability in free space.

Assuming all particles are of spheres of the same size, the potential of a magnetic
dipoles-system can be expressed as

U =−1
2 ∑

i
mi ·Bi =−2

3
πµ0χR3

∑
i

Hi ·Hi (18)

Then the magnetic force on Particle j can be derived as

F j =−
( j)
∇ U = ∑

i 6= j

4µ0πH2χ2R6

3r5
i j{[(

1−5cos2
θi
)
− χR3

3r3
i j

(
1+4cos2

θi
)]

ri j +2ri j cosθi

[
1+

χR3

6r3
i j

]
k

}
(19)

Making use of Eq. (19) the contribution of the chain inclined with θ i from H0
(Figure 2) to the resistance against shear deformation of an MRF can be obtained
as

Ti =
n−1

∑
j=1

4µ0πH2χ2R6

3r4
j

[(
1−5cos2

θi
)
− χR3

3r3
j

(
1+4cos2

θi
)]

sinθi (20)

where n is the number of the particles in the chain.
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The macroscopic yield shear stress of an MRF can be obtained as

τ = τ0 + τ̄ (21)

where τ0 is the shear stress without applying a magnetic field. If the normal distri-
bution of θ i is assumed [Peng and Li (2007)] and the interaction between chains is
neglected, one has

τ̄ =
n−1

∑
j=1

µ0φH2χ2R3 (2R+δ )
r4

j

∫ π

2

− π

2

[(
1−5cos2

θ
)
− χR3

3r3
j

(
1+4cos2

θ
)]

sinθ

× 1√
2πσ

e−
(θ−µ)2

2σ2 dθ (22)

where φ is the particle volume fraction, δ is the gap between particles, µ and σ are
the mean and the standard error, respectively, which could be related to shear strain
and its rate [Peng and Li (2007)].

It can be seen that the effects of the magnetic field intensity, the radius of particle,
the distance between particles, strain and strain rate on the yield shear stress can be
considered in this model, which should be significant for the evaluation of the yield
shear stress and the design of high-performance MRFs.

4 Simulation and verification

The variations of T max against n of a single chain are shown in Figure 9, whereT max

is the maximum of T and n is the number of the particles in a single chain. It can
be seen that T max increases with the increase of n and almost reaches a saturated
value at n=5. It indicates that n=5 can meet the requirement of accuracy for the
single-chain structure. It can be seen that result obtained by the enhanced dipole
model (ENDM) is in good coincidence with that obtained by FEM, and is much
better than that given by SDM.

Base on the deformed configuration of a single chain (Figure 2), the variations of
T against θ can be obtained and shown in Figure 10. Compared with the results
obtained with SDM, the results obtained by ENDM can match those obtained by
FEM better.

The variation of τ̄ against γ of an MRF (φ =0.36) calculated with Eq. (23) is shown
in Figure 11, and the results corresponding to SDM and FEM are also given for
comparison. It can be seen that, compared with the result given by SDM, the result
given by ENDM can better replicate the result obtained by FEM, demonstrating
the validity for ENDM’s applications in the analysis of the mechanical properties
of MRFs.
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Figure 9: Variation of T max against n
of a single chain
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Figure 10: Variation of T against θ of a
single chain
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4.1 Effect of particle sizes

The variations of τ̄ against R(Figure 12) can be estimated with Eq. (22), where φ

= 0.4, χ=3.0, H=455kA/m, µ=0.2, σ=0.1. It can be seen that τ̄increases with the
increase of R, τ̄ tends to be independent of R as R is sufficiently large, which agrees
with the experimental observation by Lemaire et al. (1995).
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4.2 Effect of particle volume fraction

The variations of τ̄ against φ can be expressed as τ ≈ τ̄ = ϑφ , where

ϑ =
n−1

∑
j=1

µ0H2χ2R3 (2R+δ )
r4

j

∫ π

2

− π

2

[(
1−5cos2

θ
)
− χR3

3r3
j

(
1+4cos2

θ
)]

sinθ

× 1√
2πσ

e−
(θ−µ)2

2σ2 dθ (23)

The variations of τ̄ against φ at B=3kGs is shown in Figure 13 whereϑ = 17.7kPa
is identified. It can be seen that in the range of the prescribed particle volume
fraction, the linear relationship between τ̄ and φ can reasonably describe the de-
pendence of τ̄ on φ . The tendency is basically in conformity with the experiment
result [Chang (2001)] if φ is relatively small. It can also be seen that the results
obtained by ENDM can reasonably replicate that obtained in experiment (EXP)
[Chang (2001)] as φ < 20%. According to the experimental study by Rong et al.
(2000), an MRF exhibits dominantly chainlike microstructure if φ is small; how-
ever, the microstructure of an MRF may turn to be pilelike if φ is large. On the
other hand, the interaction between particle chains may not be neglected when φ is
very large. These can account for the difference between the calculated result and
the experimental result.
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4.3 Effect of magnetic induction intensity

The variation of τ̄ against B at φ=0.26, R=8µm, δ=0.2µm, µ=0.22, σ=0.011 is
analyzed and compared with the experiments data [Liu et al. (2004)], as shown in
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Figure 14. Keeping in mind the equation B = µ0(1 + χ)H, and the variation of τ̄

against Bcan be expressed as

τ ≈ τ̄ =
n−1

∑
j=1

φB2χ2R3 (2R+δ )
µ0 (1+ χ)2 r4

j

∫ π

2

− π

2

[(
1−5cos2

θ
)
− χR3

3r3
j

(
1+4cos2

θ
)]

sinθ

× 1√
2πσ

e−
(θ−µ)2

2σ2 dθ (24)

The relationship χ = χ(H) can be identified experimentally [Liu et al. (2004)].
It can be seen that τ̄ increases with the increase of B and the yield shear stress
obtained by ENDM is in reasonable agreement with the experiments result [Liu et
al. (2004)].
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4.4 Effect of shearing rate

Assuming µ = ca +c2 (γ̇)[Peng and Li (2007)], where ca is a constant and c2 (γ̇) =
ct γ̇ . The variations of τ̄ against γ̇can be determined. For φ= 0.2, with the material
parameters determined with experimental result [Cheng et al. (2003)]: H=109kA/m,
σ =1.6, ca= 0.65 and ct=0.0011s, the variation of τ̄ againstγ̇of the MRF is calcu-
lated and shown in Figure 15. The comparison with the experiments result [Cheng
et al. (2003)] shows satisfactory agreement. It can be seen that at a small γ̇the
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critical shear stress increases rapidly with the increase of γ̇ , but the slope decreases
gradually. It tends to be close to the maximum value at a certain γ̇ , then it falls as γ̇

is sufficiently large. This tendency agrees with the experiments data [Cheng et al.
(2003)].

5 Conclusions

The magnetization of and the magnetic force on a ferromagnetic particle and a
chain consisting of several ferromagnetic particles in a static magnetic field are
computed respectively with the commercially available FE code ANSYS, with
which the validity of the application of the two conventional dipole models, i.e., the
exact dipole model and the simplified dipole model, in the analysis of the magneto-
mechanical property of MRFs is examined. It is found that although the simplified
dipole model can match the result by FE computation better, there is still a remark-
able difference.

For this reason, an enhanced dipole model is developed for the analysis of the
magnetization of and the magnetic force on ferromagnetic particles, which takes
into account the effect of the magnetized particles on a magnetic field. Making use
of a statistical approach and neglecting the interaction between particle chains, a
micro-macro approach is developed for the evaluation of the yield shear stress of
MRFs.

The significance of the developed approach lies in the following three aspects: (1)
It evaluates the error when a magnetized particle is simplified as a dipole and used
in the analysis for the mechanical property of MRFs; (2) It is shown that, among the
three dipole model, the enhanced dipole model can match the result obtained by FE
computations best; And (3) the developed approach can take into account individ-
ually the effects of all the main influencing factors on the mechanical property of
MRFs, and can well replicate the main characteristics of the constitutive behavior
of MRFs observed in experiments. Therefore, the method and the results presented
are significant for the analysis and optimization of the mechanical properties of
MRFs, and for the design of high-performance MRFs.
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