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Development of 3D Trefftz Voronoi Cells with Ellipsoidal
Voids &/or Elastic/Rigid Inclusions for Micromechanical

Modeling of Heterogeneous Materials

Leiting Dong1 and Satya N. Atluri1

Abstract: In this paper, as an extension to the authors’s work in [Dong and Atluri
(2011a,b, 2012a,b,c)], three-dimensional Trefftz Voronoi Cells (TVCs) with ellip-
soidal voids/inclusions are developed for micromechanical modeling of heteroge-
neous materials. Several types of TVCs are developed, depending on the types of
heterogeneity in each Voronoi Cell(VC). Each TVC can include alternatively an
ellipsoidal void, an ellipsoidal elastic inclusion, or an ellipsoidal rigid inclusion. In
all of these cases, an inter-VC compatible displacement field is assumed at each
surface of the polyhedral VC, with Barycentric coordinates as nodal shape func-
tions. The Trefftz trial displacement fields in each VC are expressed in terms of
the Papkovich-Neuber solution. Ellipsoidal harmonics are used as the Papkovich-
Neuber potentials to derive the Trefftz trial displacement fields. Characteristic
lengths are used for each VC to scale the Trefftz trial functions, in order to avoid
solving systems of ill-conditioned equations. Two approaches for developing VC
stiffness matrices are used. The differences between these two approaches are that,
the compatibility between the independently assumed fields in the interior of the
VC with those at the outer- as well as the inner-boundary, are enforced alternatively,
by Lagrange multipliers in multi-field boundary variational principles, or by collo-
cation at a finite number of preselected points. These VCs are named as TVC-BVP
and TVC-C respectively. Several three-dimensional computational micromechan-
ics problems are solved using these TVCs. Computational results demonstrate that
both TVC-BVP and TVC-C can efficiently predict the overall properties of com-
posite/porous materials. They can also accurately capture the stress concentration
around ellipsoidal voids/inclusions, which can be used in future to study the dam-
age of materials, in combination of tools of modeling micro-crack initiation and
propagation. Therefore, we consider that the 3D TVCs developed in this study are
very suitable for ground-breaking micromechanical study of heterogeneous mate-
rials.
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1 Introduction

In recent decades, increasing advancement of science, technology, and the wide ap-
plication of heterogeneous materials, have been experienced in mechanical, aerospace
and military industries. For example, metal/alloys with precipitates/pores, and
metal/polymer/ceramic composite materials with fiber/whisker/particulate reinforce-
ments are of particular interest. Development of efficient and accurate tools to
model the micromechanical and macromechanical behavior of heterogeneous ma-
terials is of fundamental importance.

There are several widely-used analytical tools to predict the overall properties of
heterogeneous materials. For example, [Hashin and Shtrikman (1963)] developed
variational principles to estimate the upper and lower bounds of the elasticity or
compliance tensor. [Hill (1965)] developed a self-consistent approach to estimate
the homogenized material properties. For a useful reference, one can refer to the
book [Nemat-Nasser and Hori (1999)]. Analytical methods have their unique val-
ues in the study of micromechanics. However, because most of these methods
follow the work of [Eshelby (1957)], namely the elastic field of an ellipsoidal in-
clusion in an infinite media, it is expected that these methods can only accurately
model heterogeneous materials with simple geometries and low volume fractions
of inclusions.

The need for predicting the overall properties of a material with complex geometry,
distribution, and arbitrary volume fraction of inclusions, promoted the development
of computational tools for micromechanics. A popular way of doing this is to use
finite elements to model a Representative Volume Element (RVE). By concept, a
RVE is a microscopic material volume, which is statistically representative of the
infinitesimal material neighborhood of the macroscopic material point of interest.
By modeling simple loading cases of the RVE, the microscopic stress field and
strain field in the RVE can be computed by the finite element method. And the
homogenized material properties are calculated by relating the macroscopic (av-
erage) stress tensor to the macroscopic (average) strain tensor. Some useful refer-
ences can be found in [Christman, Needleman and Suresh (1989), Bao, Hutchinson,
McMeeking(1991)]. Finite element method and asymptotic homogenization the-
ory were also combined to perform multi-scale modeling of structures composed
of heterogeneous materials in [Guedes and Kikuchi (1990)].

However, it is well known that, primal finite elements, which involve displacement-
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type of nodal shape functions, are highly inefficient for modeling stress concentra-
tion problems. Accurate computation of the fields around a single inclusion or void
may need thousands of elements. Moreover, meshing of a RVE which contains a
large number of inclusions/voids, can be human-labor intensive. For the expensive
burden of computation as well as meshing, the above-mentioned computational
models mostly use a Unit Cell as the RVE, assuming the microstructure of mate-
rial is strictly periodic. This obviously cannot account for the complex shape and
distribution of materials of different phases.

In order to reduce the burden of computation and meshing, [Ghosh and Mallett
(1994); Ghosh, Lee and Moorthy (1995)] proposed the idea of Voronoi Cell Finite
elements (VCFEMs). The RVE is meshed using Voronoi Diagram according to the
locations of inclusions/voids, and each Voronoi Cell with/without an inclusion/void
can be modeled using one singe finite element. Ghosh’s VCFEMs are all developed
based on the hybrid stress model of [Pian (1964)], using the modified principle of
complementary energy, and assuming inter-element compatible displacement fields
and a priori equilibrated stress fields. The a priori equilibrated stress fields are gen-
erated by using Airy’s stress functions in 2D or Maxwell’s stress functions in 3D.
However, the hybrid stress approach involves Lagrange multipliers, and involves
both domain and boundary integration for each and every element This makes the
VCFEMs developed by Ghosh and his coworkers computationally inefficient, and
also plagued by LBB conditions. The completeness of the stress fields generated
by polynomial Airy’s stress functions or Maxwell’s stress functions is also of ob-
vious questionability. Incomplete stress field assumptions lead to very poor results
of computed stress/strain fields. Attempts were made to improve the accuracy by
introducing additional stress fields. For example, in the 3D VCFEMs developed
by [Ghosh and Moorthy (2004)], the analytical stress field around an ellipsoidal in-
clusion embedded in an infinite media subjected to remote loads was added to the
stress field generated by the polynomial Maxwell’s stress functions. However, the
stress field is still not necessarily complete, even though some improvement was
made by introducing this additional stress field. For detailed discussion of com-
pleteness, see [Muskhelishvili (1954)] for 2D problems, and [Lurie (2005)] for 3D
problems.

In order to overcome the several aforementioned disadvantages, a different method
was developed recently by the authors—Treffz Voronoi Cells (TVCs)1, which are
efficient and accurate for micromechanical modeling of heterogeneous materials.
2D cases of TVCs with/without circular inclusions/voids were presented in [Dong
and Atluri(2011b); Dong and Atluri(2012a)]. 3D cases of TVCs with/without

1 Trefftz Voronoi Cells were original named T-Trefftz Voronoi Finite Elements by the authors in
[Dong and Atluri (2011b, 2012a,b)].
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spherical inclusions/voids were presented in [Dong and Atluri(2012b)].The main
difference of TVCs developed by the authors and the VCFEMs developed by Ghosh
and his coworkers is that: a complete Trefftz trial displacement field which satis-
fies both equilibrium and compatibility is assumed in TVCs, instead of only the
“a priori equilibrated” stress field used in [Ghosh, Lee and Moorthy (1995)]. For
example, the well-known 2D general solution of [Muskhelishvili (1954)] by the
techniques of complex variables and conformal mapping is used as the Trefftz trial
displacement field for 2D TVCs with circular/elliptical inclusions/voids. And the
Papkovich-Neuber general solution with spherical harmonics is used as the Tre-
fftz trial displacement field for 3D TVCs with spherical inclusions/voids. Because
both the Trefftz trial displacement fields satisfy the governing Naviers equations
a priori, only boundary integrals are needed in TVCs, instead of both the volume
and surface integrals needed in the hybrid-stress VCFEMs developed by Ghosh et
al. Therefore, TVCs developed by the authors are computationally more efficient.
TVCs can also model the stress concentration around voids/inclusions much more
accurately, because of the completeness of the Trefftz trial displacement fields, see
[Dong and Atluri (2012c)].

In this study, we extend 3D TVCs to solve 3D problems with ellipsoidal inclu-
sions/voids. 3D TVCs with an ellipsoidal void, with an ellipsoidal elastic inclusion,
or with an ellipsoidal rigid inclusion are developed respectively. The inter-VC dis-
placement field is assumed by using Barycentric coordinates as nodal shape func-
tions. The Trefftz trial displacement fields are assumed in the form of Papkovich-
Neuber solutions. Ellipsoidal harmonics are used as Papkovich-Neuber potentials.
Two approaches for developing stiffness matrices are used. The compatibility be-
tween the independently assumed fields at the outer- as well as the inner-boundary,
are enforced alternatively, by Lagrange multipliers in multi-field boundary varia-
tional principles, or by collocation at a finite number of preselected points. These
VCs are named as TVC-BVP and TVC-C respectively. Numerical experiments
show high-performance of the developed TVCs with ellipsoidal inclusions/voids.

The rest of this paper is organized as follows: in section 2, we use Barycentric co-
ordinates to develop the inter-VC compatible displacement field; in section 3, we
introduce the Trefftz trial displacement fields in the form of Papkovich-Neuber so-
lution; in section 4, we briefly discuss ellipsoidal harmonics as Papkovich-Neuber
potentials; in section 5, we develop 3D TVCs with ellipsoidal voids/inclusions; in
section 6, we demonstrate the accuracy and efficiency of the developed TVCs by
some numerical examples; in section 7, we complete this paper with some conclud-
ing remarks.
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2 Boundary Displacement Fields with Barycentric Coordinates as Nodal Shape
Functions

 

Figure 1: A 3D Trefftz Voronoi Cell with an ellipsoidal inclusion/void

For an arbitrary TVC in the 3D space, each surface is a polygon, see Fig. 1 for ex-
ample. Constructing an inter-VC compatible displacement on the boundary of the
polyhedral VC is not as simple as that for 2D TVCs. One way of doing this is to use
Barycentric coordinates as nodal shape functions on each polygonal face of the 3D
TVC. There are other ways, such as discretizing the VC boundary with 2D trian-
gles, quadrangles, etc. But using Barycentric coordinates seems to be the simplest
way, because no additional nodes are needed to be introduced to the polyhedron.

Consider a polygon face Vn with n nodes x1, x2, . . . ,xn, the Barycentric coordinates,
denoted as λi(i = 1, 2, ... n). λi is a function of the position vector x. To obtain a
good performance of TVC, we only consider Barycentric coordinates which satisfy
the following properties:

Non-negative: λi ≥ 0 in the polygon Vn

Smooth: λi is at least C1 continuous in the polygon Vn

Linear along each edge that composes the polygon Vn
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Linear completeness: For any linear function f (x), the following equality holds:
f (x) = ∑

n
i=1 f (xi)λi

Partition of unity: ∑
n
i=1 λi ≡ 1.

Dirac delta property: λi(xj) = δi j.

Among the many Barycentric coordinates that satisfy these conditions, Wachspress
coordinates [Wachspress (1975)] is among the most simple and efficient.

 
 

Figure 2: Definition of triangles Biand Ai(x)

Let x ∈ Vn, and define the areas: Bi as the area of the triangle with xi−1,xi and
xi+1 as its three vertices, and Ai(x) as the area of the triangle having x, xi and xi+1

as its three vertices. This is illustrated in Fig. 2.

Define the Wachspress weight function as:

wi(x) = Bi ∏
j 6=i, i−1

A j(x) (1)

Then, the Wachspress coordinates are given by the rational functions:

λi(x) =
wi(x)

∑
n
j=1 w j(x)

(2)

Fig. 3 shows the Wachspress coordinate for one node of a regular pentagon. It can
be seen that the Wachspress coordinate as shown in Fig. 3 have all the properties
described previously in this section.

Similar to the well-known triangular Barycentric coordinates used in the 2D pri-
mal triangular elements, the nodal shape functions associated with the vertices of
this polygonal surface displacement field are their corresponding Barycentric co-
ordinates. An inter-VC compatible displacement field is therefore expressed in the
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following form:

ũi(x) =
n

∑
k=1

λk(x)ui(xk) x ∈Vn ,Vn ⊂ ∂Ω
e (3)

 

Figure 3: Barycentric coordinates as nodal shape functions

3 Trefftz Trial Displacement field: the Papkovich-Neuber Solution

Consider a linear elastic solid undergoing infinitesimal elasto-static deformation.
Cartesian coordinates xi identify material particles in the solid. σi j,εi j,ui are Carte-
sian components of the stress tensor, strain tensor and displacement vector respec-
tively. fi,ui, t i are Cartesian components of the prescribed body force, boundary
displacement and boundary traction vector. Su,St are displacement boundary and
traction boundary of the domain Ω. We use (),ito denote differentiation with re-
spect to xi. The equations of linear and angular momentum balance, constitutive
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equations, compatibility equations, and boundary conditions can be written as:

σi j, j + f i = 0 in Ω (4)

σi j = σ ji in Ω (5)

σi j = Ci jklεkl (or εi j = Si jklσkl) in Ω for a linear elastic solid (6)

εi j =
1
2
(ui, j +u j,i)≡ u(i, j) in Ω (7)

ui = ūi at Su (8)

n jσi j = t̄i at St (9)

For 3D isotropic media where body force is negligible, equation (4)-(6) can be
rewritten in terms of displacements, which is the Navier’s equation:

(λ +µ)θ,i +µ∆ui = 0 (10)

where

θ = uk,k

λ =
Ev

(1+ v)(1−2v)

µ = G =
E

2(1+ v)

(11)

The Trefftz methods start by selecting a set of trial functions which satisfy (10) a
priori. For 3D isotropic elasticity, this can be done by using the Papkovich-Neuber
solution, see [Lurie (2005)]:

u = [4(1− v)B−∇(R ·B+B0)]/2G

=
[
(3−4v)B−R · (∇B)T −∇B0)

]
/2G

(12)

B0,Bare scalar and vector harmonic functions, which are sometimes called Papkovich-
Neuber potentials

The second equation in (12) can be written in the following index form:

ui = [(3−4v)Bi− xkBk,i−B0,i]/2G (13)

An interesting fact of 3D Papkovich-Neuber solution is that, the 3D displacements
as in (13) have a very similar form to the displacements in 2D expressed in terms
of complex potentials, as shown in [Muskhelishvili (1954)]. However, unlike the
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approach of complex potentials, for a specific displacement field ui in 3D, the har-
monic potentials have large degrees of freedom. That is to say, there may exist
many different sets of B0,B1,B2,B3, which are harmonic potentials of the same
specific displacement field ui. This prompts people to think about whether it is
possible to drop the scalar harmonic function, to express the solution as:

u = [4(1− v)B−∇R ·B]/2G (14)

It was proved by M.G. Slobodyansky that (14) is complete for the infinite region
which is external to a closed surface for any v. However, for a simply-connected
domain, (14) is complete only when v 6= 0.25.

By expressing B0 to be a specific function of B, M.G. Slobodyansky has shown that
a specific case of the Papkovich Neuber solution is :

u = [4(1− v)B+R ·∇B−R∇ ·B)]/2G (15)

which is complete for a simply connected domain, for any v.

For detailed discussion of the completeness of the Papkovich-Neuber solution, see
[Lurie (2005)].

4 On Ellipsoidal Harmonics as Papkovich-Neuber General Potentials

In this section, we make a brief introduction to ellipsoidal harmonics. One can
refer to [Hobson (1931);Romain and Jean-Pierre (2001); Hu(2012)] for detailed
discussion.

4.1 Laplace Equation and Lamé Equation in an Ellipsoidal Coordinate System

Ellipsoidal coordinate systems are developed and used for solving specific prob-
lems of ellipsoid-shaped objects, for example, computation of the gravitational
field of a celestial body, the electrical field of a molecule, and in this study, the
stresses/strains around an ellipsoidal inclusion/void. Consider a background ellip-
soid with semi-axes a > b > c, for any point with Cartesian coordinates x1,x2,x3,
the ellipsoidal coordinates λ1,λ2,λ3 are roots of the following equation:

x2
1

λ 2 +
x2

2
λ 2−h2 +

x2
3

λ 2− k2 = 1

λ
2
1 ≥ k ≥ λ

2
2 ≥ h≥ λ

2
3 ≥ 0

k =
√

a2− c2,h =
√

a2−b2

(16)
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Figure 4: Coordinate surfaces of ellipsoidal coordinates λ1,λ2,λ3 are respectively
an ellipsoid, a one-sheet hyperboloid, and a two-sheet hyperboloid

From (16), we find that the coordinate surfaces of ellipsoidal coordinates λ1,λ2,λ3
are respectively an ellipsoid, a one-sheet hyperboloid, and a two-sheet hyperboloid,
as shown in Fig. 4.

The mapping from ellipsoidal to Cartesian coordinates is:

x2
1 =

λ 2
1 λ 2

2 λ 2
3

h2k2

x2
2 =

(
λ 2

1 −h2
)(

λ 2
2 −h2

)(
h2−λ 2

3
)

h2 (k2−h2)

x2
3 =

(
λ 2

1 − k2
)(

k2−λ 2
2
)(

k2−λ 2
3
)

k2 (k2−h2)

(17)

As seen in (16)(17), the signs of λ1,λ2,λ3 play no rule in defining x1,x2,x3, and the
signs of x1,x2,x3 cannot be uniquely defined by λ1,λ2,λ3.Therefore, in this study,
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λ1,λ2,λ3 are prescribed to be non-negative. And the signs of x1,x2,x3 are always
stored together with λ1,λ2,λ3 for a unique definition of the inverse mapping.

The Laplace operator of a scalar V has the following form in ellipsoidal coordi-
nates:

∇
2V =

(
λ

2
2 −λ

2
3
) ∂ 2V

dξ 2
1
+
(
λ

2
3 −λ

2
1
) ∂ 2V

dξ 2
2
+
(
λ

2
1 −λ

2
2
) ∂ 2V

dξ 2
3
= 0

ξ1(λ1) =
∫

λ1

k

ds√
s2−h2

√
s2− k2

ξ2(λ2) =
∫

λ2

h

ds√
s2−h2

√
k2− s2

ξ3(λ3) =
∫

λ3

0

ds√
h2− s2

√
k2− s2

(18)

By assuming V = E1 (λ1)E2 (λ2)E3 (λ3), the Laplace equation is changed to:(
λ

2
2 −λ

2
3
) 1

E1 (λ1)

∂ 2E1 (λ1)

dξ 2
1

+
(
λ

2
3 −λ

2
1
) 1

E2 (λ2)

∂ 2E2 (λ2)

dξ 2
2

+
(
λ

2
1 −λ

2
2
) 1

E3 (λ3)

∂ 2E3 (λ3)

dξ 2
3

= 0
(19)

From (19) one can readily see that functions E1 (λ1) ,E2 (λ2) ,E3 (λ3) should have
exactly the same form E (λi), and they should all satisfy the following equation:

1
E(λi)

d2E(λi)

dξ 2
i

= n(n+1)λ
2
i − p (20)

where n(n+1) , p are separation constants.

Equation (20) is identical to:(
λ

2
i −h2)(

λ
2
i − k2) d2Ei(λi)

dλ 2
i

+λi(2λ
2
i −h2− k2)

dEi(λi)

dλi

+
(

p−n(n+1)λ 2
i
)

Ei (λi) = 0
(21)

Equation (21) is called Lamé equation, the solution of which are called Lamé func-
tions.

4.2 Lamé Functions of the First Kind and Ellipsoidal Harmonics for Internal
Problems

Solutions of the Lamé equation (21) are recorded in the monograph of [Hobson
(1931)] in detail, where constants p for each natural number n are determined by
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solving four eigenvalue problems. However, as shown in many recent works, this
method is computationally unstable. Instead, the approach as shown in [Romain
and Jean-Pierre (2001)] is used here because of its stability, accuracy and efficiency.

For each natural number n, 2n+1 different values of p can be found by solving four
different eigenvalue problems. And the corresponding functions E p

n (λi), which
satisfy (21) and are non-singular for any finite λi, are called Lamé functions of the
first kind:

E p
n (λi) = φ

p
n (λi)Pp

n (λi)

Pp
n (λi) =

m

∑
j=0

b j

(
1− λ 2

i

h2

) j (22)

m+1is the size of matrices in these four different eigenvalue problems, and b j are
entries of the corresponding eigenvector of each p.

According to their expressions, φ
p
n (λi) are categorized to four classes:

K p
n (λi) = λ

n−2r
i , m = r

Lp
n(λi) = λ

1−n+2r
i

√∣∣λ 2
i −h2

∣∣, m = n− r−1

Mp
n (λi) = λ

1−n+2r
i

√∣∣λ 2
i − k2

∣∣, m = n− r−1

N p
n (λi) = λ

n−2r
i

√∣∣(λ 2
i −h2

)(
λ 2

i − k2
)∣∣, m = r−1

(23)

where r =
⌈n−1

2

⌉
.

Each class of φ
p
n (λi) corresponds to a specific one of the four different eigenvalue

problems, from which eigenvalue p and eigenvector b j are found, and thereafter
Pp

n (λi) is defined.

The eigenvalue problem can be expressed in the following form:



d0 g0 0 · · · · · · 0

f1 d1 g1
. . . . . .

...

0 f2 d2 g2
. . .

...
...

. . . . . . . . . . . . 0
...

. . . . . . fm−1 dm−1 gm−1
0 . . . . . . 0 fm dm





b0
b1
b2
...

bm−1
bm


= p



b0
b1
b2
...

bm−1
bm


(24)
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For K p
n with even n,

fi =−(2r−2i+2)(2r+2i−1)α
di = 2r(2r+1)α−4i2γ

gi =−(2i+2)(2i+1)β

(25)

where

α = h2, β = k2−h2, γ = α−β (26)

For K p
n with odd n,

fi =−(2r−2i+2)(2r+2i+1)α
di = ((2r+1)(2r+2)−4i2)α +(2i+1)2β

gi =−(2i+2)(2i+1)β

. (27)

For Lp
n with even n,

fi =−(2r−2i)(2r+2i+1)α
di = (2r(2r+1)− (2i+1)2)α +(2i+2)2β

gi =−(2i+2)(2i+3)β

(28)

For Lp
n with odd n,

fi =−(2r−2i+2)(2r+2i+1)α
di = (2r+1)(2r+2)α− (2i+1)2γ

gi =−(2i+2)(2i+3)β

(29)

For Mp
n with even n,

fi =−(2r−2i)(2r+2i+1)α
di = 2r(2r+1)α− (2i+1)2γ

gi =−(2i+2)(2i+1)β

(30)

For Mp
n with odd n,

fi =−(2r−2i+2)(2r+2i+1)α
di = ((2r+1)(2r+2)− (2i+1)2)α +4i2β

gi =−(2i+2)(2i+1)β

(31)
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For N p
n with even n,

fi =−(2r−2i)(2r+2i+1)α
di = 2r(2r+1)α− (2i+2)2α +(2i+1)2β

gi =−(2i+2)(2i+3)β

(32)

For N p
n with odd n,

fi =−(2r−2i)(2r+2i+3)α
di = (2r+1)(2r+2)α− (2i+2)2γ

gi =−(2i+2)(2i+3)β

(33)

Solutions of these four eigenvalue problems are computationally stable, because
of the well-posedness of these coefficient matrices, as compared to those ill-posed
ones in the monograph of [Hobson (1931)].

Now that Lamé functions of the first kind are completely defined, and are non-
singular for any finite λi, their products can be used to solve Laplace equation
in a finite ellipsoidal domain. These ellipsoidal harmonics for internal problems
exhibit several similar characteristics to spherical harmonics as shown in [Dong
and Atluri (2012b)]. For example, E p

n (λ2)E p
n (λ3) are called ellipsoidal surface

harmonics, which have the property of orthogonally with respect to the integral
over the background ellipsoidal surface S:∫
S

E p
n (λ2)E p

n (λ3)Eq
l (λ2)Eq

l (λ3)dS = δ
l
nδ

q
p (γ

p
n )

2 (34)

And they can be normalized as:

Y p
n (λ2,λ3) =

1
γ

p
n

E p
n (λ2)E p

n (λ3) (35)

Details of how to compute the γ
p
n is shown in [Romain and Jean-Pierre (2001)].

The first function E p
n (λ1) is similar to the function Rn in spherical harmonics, which

increases drastically with respect to n. Therefore, a characteristic length λ1p is in-
troduced, which should be the largest λ1 at locations where boundary conditions
are specified. Therefore, E p

n (λ1) is scaled to E p
n (λ1)/E p

n (λ1p), which is between
0 and 1 for any point at the boundary. Scaling of harmonic functions with char-
acteristic lengths were firstly presented by [Liu (2007a,b)]. This method was used
by authors of this paper to scale the Trefftz trial function of TVCs in a series of
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paper [Dong and Atluri (2011b,2012a,b,c)], in order to avoid solving a system of
ill-posed equations.

The ellipsoidal harmonics of internal problems are thereafter expressed as:

V p
n (λ1,λ2,λ3) =

E p
n (λ1)

E p
n (λ1p)

E p
n (λ2)E p

n (λ3)

γ
p
n

(36)

4.3 Lamé Functions of the Second Kind and Ellipsoidal Harmonics for Exter-
nal Problems

Ellipsoidal harmonics as shown in (36) obviously cannot be used to solve external
problems, because E p

n (λ1) becomes infinity when λ1→ ∞.

Using the usual technique of Wronskian, one can find a second solution of the
Lamé equation:

F p
n (λ1) = E p

n (λ1) Ip
n (λ1)

Ip
n (λ1) =

∫
∞

λ1

ds[
E p

n (s)
]2√

(s2−h2)(s2− k2)

=
∫ 1/λ1

0

dt[
E p

n (1/t)
]2√

(1−h2t2)(1− k2t2)

(37)

F p
n (λ1)is called Lamé function of the second kind.

As opposed to E p
n (λ1), the function F p

n (λ1) is singular at λ1 = 0 only, and decreases
drastically with respect to n. Therefore, a characteristic length λ1k is introduced,
which should be the smallest λ1 at locations where boundary conditions are speci-
fied. Therefore, Lamé functions of the second kind is scaled to F p

n (λ1)/F p
n (λ1k),

which is between 0 and 1 for any point at the boundary.

And the ellipsoidal harmonics of external problems are thereafter expressed as:

V p
n (λ1,λ2,λ3) =

F p
n (λ1)

F p
n (λ1k)

E p
n (λ2)E p

n (λ3)

γ
p
n

(38)

4.4 Spatial Differentiation of Ellipsoidal Harmonics

From the explicit formulas of E p
n (λ1) ,F

p
n (λ1) ,E

p
n (λ2) ,E

p
n (λ3), one can easily de-

rive ∂V n
p

∂λi
,

∂ 2V n
p

∂λi∂λ j
. And the spatial differentiation of ellipsoidal harmonics with re-
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spect to x1,x2,x3can be written as:

∂V
∂xi

=
∂V
∂λm

∂λm

∂xi

∂ 2V
∂xi∂x j

=
∂

∂x j

(
∂V
∂λm

∂λm

∂xi

)
=

∂ 2V
∂λm∂λn

∂λm

∂xi

∂λn

∂x j
+

∂V
∂λm

∂ 2λm

∂xi∂λn

∂λn

∂x j

(39)

The formulas of Pi j =
∂λ j
∂xi

can be derived from (17):

P11 =
x1
(
λ 2

1 − k2
)(

λ 2
1 −h2

)
λ1
(
λ 2

1 −λ 2
2

)(
λ 2

1 −λ 2
3

) , P12 =
x1
(
λ 2

2 − k2
)(

λ 2
2 −h2

)
λ2
(
λ 2

2 −λ 2
1

)(
λ 2

2 −λ 2
3

)
P13 =

x1
(
λ 2

3 − k2
)(

λ 2
3 −h2

)
λ3
(
λ 2

3 −λ 2
1

)(
λ 2

3 −λ 2
2

) , P21 =
x2λ1

(
λ 2

1 − k2
)(

λ 2
1 −λ 2

2

)(
λ 2

1 −λ 2
3

)
P22 =

x2λ2
(
λ 2

2 − k2
)(

λ 2
2 −λ 2

1

)(
λ 2

2 −λ 2
3

) , P23 =
x2λ3

(
λ 2

3 − k2
)(

λ 2
3 −λ 2

1

)(
λ 2

3 −λ 2
2

)
P31 =

x3λ1
(
λ 2

1 −h2
)(

λ 2
1 −λ 2

2

)(
λ 2

1 −λ 2
3

) , P32 =
x3λ2

(
λ 2

2 −h2
)(

λ 2
2 −λ 2

1

)(
λ 2

2 −λ 2
3

)
P33 =

x3λ3
(
λ 2

3 −h2
)(

λ 2
3 −λ 2

1

)(
λ 2

3 −λ 2
2

)

(40)

And the formulas of ∂Pi j
∂λ1

are derived by differentiating(40):

∂P11

∂λ1
= 2x1

(
(2λ 2

1 −h2− k2)(
λ 2

1 −λ 2
2

)(
λ 2

1 −λ 2
3

) − (2λ 2
1 −λ 2

2 −λ 2
3 )(λ

2
1 −h2)(λ 2

1 − k2)(
λ 2

1 −λ 2
2

)2 (
λ 2

1 −λ 2
3

)2

)
∂P21

∂λ1
= x2

(
4λ 4

1 − (3h2 +2k2)λ 2
1 +h2k2(

λ 2
1 −λ 2

2

)(
λ 2

1 −λ 2
3

)
(λ 2

1 −h2)
−

2λ 2
1 (λ

2
1 − k2)(2λ 2

1 −λ 2
2 −λ 2

3 )(
λ 2

1 −λ 2
2

)2 (
λ 2

1 −λ 2
3

)2

)
∂P31

∂λ1
= x3

(
4λ 4

1 − (2h2 +3k2)λ 2
1 +h2k2(

λ 2
1 −λ 2

2

)(
λ 2

1 −λ 2
3

)
(λ 2

1 − k2)
−

2λ 2
1 (λ

2
1 −h2)(2λ 2

1 −λ 2
2 −λ 2

3 )(
λ 2

1 −λ 2
2

)2 (
λ 2

1 −λ 2
3

)2

)
∂P12

∂λ1
= P12

λ 2
1 +λ 2

2

λ1
(
λ 2

2 −λ 2
1

) , ∂P22

∂λ1
= P22

λ 3
1 +λ1

(
λ 2

2 −2h2
)(

λ 2
2 −λ 2

1

)
(λ 2

1 −h2)

∂P32

∂λ1
= P32

λ 3
1 +λ1

(
λ 2

2 −2k2
)(

λ 2
2 −λ 2

1

)
(λ 2

1 − k2)
,
∂P13

∂λ1
= P13

λ 2
1 +λ 2

3

λ1
(
λ 2

3 −λ 2
1

)
∂P23

∂λ1
= P23

λ 3
1 +λ1

(
λ 2

3 −2h2
)(

λ 2
3 −λ 2

1

)
(λ 2

1 −h2)
,
∂P33

∂λ1
= P33

λ 3
1 +λ1

(
λ 2

3 −2k2
)(

λ 2
3 −λ 2

1

)
(λ 2

1 − k2)
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(41)

And the formulas of ∂Pi j
∂λ2

are:

∂P11

∂λ2
= P11

λ 2
1 +λ 2

2

λ2
(
λ 2

1 −λ 2
2

) , ∂P21

∂λ2
= P21

λ 3
2 +λ2

(
λ 2

1 −2h2
)(

λ 2
1 −λ 2

2

)
(λ 2

2 −h2)

∂P31

∂λ2
= P31

λ 3
2 +λ2

(
λ 2

1 −2k2
)(

λ 2
1 −λ 2

2

)
(λ 2

2 − k2)

∂P12

∂λ2
= 2x1

(
(2λ 2

2 −h2− k2)(
λ 2

2 −λ 2
1

)(
λ 2

2 −λ 2
3

) − (2λ 2
2 −λ 2

1 −λ 2
3 )(λ

2
2 −h2)(λ 2

2 − k2)(
λ 2

2 −λ 2
1

)2 (
λ 2

2 −λ 2
3

)2

)
∂P22

∂λ2
= x2

(
4λ 4

2 − (3h2 +2k2)λ 2
2 +h2k2(

λ 2
2 −λ 2

1

)(
λ 2

2 −λ 2
3

)
(λ 2

2 −h2)
−

2λ 2
2 (λ

2
2 − k2)(2λ 2

2 −λ 2
1 −λ 2

3 )(
λ 2

2 −λ 2
1

)2 (
λ 2

2 −λ 2
3

)2

)
∂P32

∂λ2
= x3

(
4λ 4

2 − (2h2 +3k2)λ 2
2 +h2k2(

λ 2
2 −λ 2

1

)(
λ 2

2 −λ 2
3

)
(λ 2

2 − k2)
−

2λ 2
2 (λ

2
2 −h2)(2λ 2

2 −λ 2
1 −λ 2

3 )(
λ 2

2 −λ 2
1

)2 (
λ 2

2 −λ 2
3

)2

)
∂P13

∂λ2
= P13

λ 2
2 +λ 2

3

λ2
(
λ 2

3 −λ 2
2

) , ∂P23

∂λ2
= P23

λ 3
2 +λ2

(
λ 2

3 −2h2
)(

λ 2
3 −λ 2

2

)
(λ 2

2 −h2)

∂P33

∂λ2
= P33

λ 3
2 +λ2

(
λ 2

3 −2k2
)(

λ 2
3 −λ 2

2

)
(λ 2

2 − k2)

(42)

And the formulas of ∂Pi j
∂λ3

are:

∂P11

∂λ3
= P11

λ 2
1 +λ 2

3

λ3
(
λ 2

1 −λ 2
3

) , ∂P21

∂λ3
= P21

λ 3
3 +λ3

(
λ 2

1 −2h2
)(

λ 2
1 −λ 2

3

)
(λ 2

3 −h2)

∂P31

∂λ3
= P31

λ 3
3 +λ3

(
λ 2

1 −2k2
)(

λ 2
1 −λ 2

3

)
(λ 2

3 − k2)
,
∂P12

∂λ3
= P12

λ 2
2 +λ 2

3

λ3
(
λ 2

2 −λ 2
3

)
∂P22

∂λ3
= P22

λ 3
3 +λ3

(
λ 2

2 −2h2
)(

λ 2
2 −λ 2

3

)
(λ 2

3 −h2)
,
∂P32

∂λ3
= P32

λ 3
3 +λ3

(
λ 2

2 −2k2
)(

λ 2
2 −λ 2

3

)
(λ 2

3 − k2)

∂P13

∂λ3
= 2x1

(
(2λ 2

3 −h2− k2)(
λ 2

3 −λ 2
1

)(
λ 2

3 −λ 2
2

) − (2λ 2
3 −λ 2

1 −λ 2
2 )(λ

2
3 −h2)(λ 2

3 − k2)(
λ 2

3 −λ 2
1

)2 (
λ 2

3 −λ 2
2

)2

)
∂P23

∂λ3
= x2

(
4λ 4

3 − (3h2 +2k2)λ 2
3 +h2k2(

λ 2
3 −λ 2

1

)(
λ 2

3 −λ 2
2

)
(λ 2

3 −h2)
−

2λ 2
3 (λ

2
3 − k2)(2λ 2

3 −λ 2
1 −λ 2

2 )(
λ 2

3 −λ 2
1

)2 (
λ 2

3 −λ 2
2

)2

)
∂P33

∂λ3
= x2

(
4λ 4

3 − (2h2 +3k2)λ 2
3 +h2k2(

λ 2
3 −λ 2

1

)(
λ 2

3 −λ 2
2

)
(λ 2

3 − k2)
−

2λ 2
3 (λ

2
3 −h2)(2λ 2

3 −λ 2
1 −λ 2

2 )(
λ 2

3 −λ 2
1

)2 (
λ 2

3 −λ 2
2

)2

)
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(43)

5 TVCs with Ellipsoidal Inclusions/Voids

5.1 Trefftz Trial Displacement Fields for Different Types of Inhomogeneities

Consider a linear elastic solid undergoing infinitesimal elasto-static deformation.
The governing equation can be written in terms of displacements, which is the
Navier’s equation:

(λ +µ)θ,i +µ∆ui = 0 (44)

The boundary conditions are:

ui = ui at Su (45)

n jσi j = t i at St (46)

We consider that the domain Ω is discretized into many Voronoi Cells Ωe with
boundary ∂Ωe, each VC boundary can be divided into Se

u,S
e
t ,ρ

e, which are inter-
sections of ∂Ωe with Su,St and other VC boundaries respectively. For VCs devel-
oped in this study, an inclusion or void Ωe

c is present inside each VC, which satisfies
Ωe

c ⊂Ωe,∂Ωe
c∩∂Ωe = /0, see Fig. 1. We denote the matrix material in each VC as

Ωe
m, such that Ωe

m = Ωe−Ωe
c,∂Ωe

m = ∂Ωe +∂Ωe
c,.

When an elastic inclusion is considered, we denote the displacement field in Ωe
m

and Ωe
cas um

i and uc
i , the strain and stress fields corresponding to which are εm

i j ,σ
m
i j

and εc
i j,σ

c
i j respectively. We also denote the displacement field along ∂Ωe as ũm

i ,
which is inter-VC compatible, by using Barycentric coordinates as nodal shape
functions. Then, in addition to uc

i satisfying (44) in each Ωe
c, um

i satisfying (44) in
each Ωe

m, satisfying (46) at Se
t , ũm

i satisfying (45) at Se
u,displacement continuity and

traction reciprocity conditions at each ρe should be considered:

um
i = ũm

i at ∂Ω
e (47)(

n jσ
m
i j
)+

+
(
n jσ

m
i j
)−

= 0 at ρ
e (48)

Displacement continuity and traction reciprocity conditions at ∂Ωe
cshould also be

considered:

um
i = uc

i at ∂Ω
e
c (49)

−n jσ
m
i j +n jσ

c
i j = 0 at ∂Ω

e
c (50)
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where n j is the unit outer-normal vector at ∂Ωe
c.

When a rigid inclusion is considered, because only rigid-body displacement is al-
lowed for the inclusion, there is no need to assume uc

i . The following conditions
need to be satisfied at ∂Ωe

c:

um
i (non - rigid - body) = 0 at ∂Ω

e
c (51)

∫
∂Ωe

c

n jσ
m
i j dS = 0∫

∂Ωe
c

eghixhn jσ
m
i j dS = 0

(52)

When a void is to be considered, for TVC-BVP, ũc
i is assumed only along ∂Ωe

c. The
following displacement continuity and traction free conditions are to be satisfied:

um
i = ũc

i at ∂Ω
e
c (53)

n jσ
m
i j = 0 at ∂Ω

e
c (54)

For TVC-C, on the other hand, there is no need to assume such a boundary field ũc
i .

Only (54) needs to be satisfied at ∂Ωe
c.

It should be noted that, for a priori equilibrated displacement fields, condition (52)
is a necessary condition of (50) or (54). Hence, for problems with elastic inclusion
or voids, condition (52) is satisfied as long as conditions (50) or (54) are satisfied.

In TVCs derived in this study, um
i ,u

c
i satisfy (44) as well as (52) a priori, and all

other conditions as shown in (45)-(54) are satisfied using variational principles or
using collocation method. Such displacement fields can be expressed in terms of
Papkovich-Neuber potentials. When an ellipsoidal inclusion or void is present, as
shown in Fig. 5, a local Cartesian coordinate system is used, where the origin lies at
the center of the ellipsoid, and the three axes x1,x2,x3 coincide with the three semi-
axes a,b,c of the ellipsoid. Therefore, an ellipsoidal coordinate system λ1−λ2−λ3
is developed which corresponds to this local Cartesian system x1−x2−x3. And the
two types of ellipsoidal harmonics are used as Papkovich-Neuber potentials for the
displacements in the matrix material:

Bmp =
M

∑
n=0

∑
p

α
p
n

E p
n (λ1)

E p
n (λmp)

E p
n (λ2)E p

n (λ3)

γ
p
n

Bmk =
N

∑
n=0

∑
p

β
p
n

F p
n (λ1)

F p
n (λmk)

E p
n (λ2)E p

n (λ3)

γ
p
n

(55)
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Bmpare ellipsoidal harmonics for the internal problems, which are non-singular in
the whole domain. And Bmk are ellipsoidal harmonics for the external problems,
which are singular at the source point:

Two characteristic lengths λmk and λmp are defined. λmk is equal to the minimum
λ1between the source point Se and any point in Ωe

m, therefore F p
n (λ1)

F p
n (λmp)

is confined
between 0 and 1 for any positive n. For an ellipsoidal inclusion/void, it is obvious
that λmk is equal to a.

λmpis equal to the maximum λ1 between the source point Se and any point in Ωe
m,

therefore E p
n (λ1)

E p
n (λmp)

is confined between 0 and 1 for any positive n.

And the displacement field in the matrix material is express as:

um = ump +umk

ump = [4(1− vm)Bmp +R ·∇Bmp−R∇ ·Bmp)]/2Gm

umk = [4(1− vm)Bmk−∇Rmk ·B]/2Gm

(56)

When an ellipsoidal elastic inclusion is considered, uc
i can be express using the

ellipsoidal harmonics for internal problems:

uc = ucp = [4(1− vc)Bcp +R ·∇Bcp−R∇ ·Bcp)]/2Gc

Bcp =
L

∑
n=0

∑
p

χ
p
n

E p
n (λ1)

E p
n (λcp)

E p
n (λ2)E p

n (λ3)

γ
p
n

(57)

λcpis equal to the maximum λ1 between the source point Se and any point in Ωe
c,

therefore E p
n (λ1)

E p
n (λcp)

is confined between 0 and 1 for any positive n.

When a rigid inclusion is considered, uc
i does not need to be assumed. Assuming

um
i is enough for developing TVCs.

When a void is considered, for TVC-BVP, ũc
i is assumed only at ∂Ωc. We assume

ũc = ũcp =
[
4(1− vm)B̃cp +R ·∇B̃cp−R∇ · B̃cp)

]
/2Gm

B̃cp =
L

∑
n=0

∑
p

χ
p
n

E p
n (λ1)

E p
n (λmp)

E p
n (λ2)E p

n (λ3)

γ
p
n

(58)

It should be noted that, there are 6 modes in E p
n (λ1)

E p
n (λmp)

E p
n (λ2)E

p
n (λ3)

γ
p
n

corresponding to the

potentials of rigid-body displacement modes, and there are 6 modes in F p
n (λ1)

F p
n (λmp)

E p
n (λ2)E

p
n (λ3)

γ
p
n

corresponding to the potentials of displacement modes which contribute to the re-
sultant force and moment at ∂Ωe

c, these modes should be found out numerically
and eliminated beforehand.
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Now that the displacement fields are defined, the undetermined parameters can be
related to nodal displacements of the VC using either multi-field boundary varia-
tional principles or using the collocation method, and leading to different methods
of deriving stiffness matrices as shown in the next two sections.

It should be noted that, the displacement fields in this section are developed in a
local coordinate system, thus the developed stiffness matrices should be transferred
to the global coordinate system using well-known coordinate transfer techniques.

Moreover, the displacement assumptions considered in this section are all invariant
with respect to change of coordinate systems. Therefore, the VC stiffness matrices
developed from these displacement assumptions are invariant.

5.2 TVCs Using Multi-Field Boundary Variational Principles

In this section, TVCs are developed using multi-field boundary variational princi-
ples.

An inter-VC compatible displacement field ũm
i is assumed at ∂Ωe with Wachspress

coordinates as nodal shape functions. Using matrix and vector notation, we have:

ũm = Ñmq at ∂Ω
e (59)

The displacement field in Ωe
m and its corresponding traction field tm

i at ∂Ωe
m,∂Ωe

c
as:

um = Nmα in Ω
e
m

tm = Rmα at ∂Ω
e
m,∂Ω

e
c

(60)

When an elastic inclusion is to be considered, the displacement field in the inclusion
is independently assumed. We have:

uc = Ncβ in Ω
e
c

tc = Rcβ at ∂Ω
e
c

(61)

Therefore, finite element equations can be derived using the following three-field
boundary variational principle:

π3(ũm
i ,u

m
i ,u

c
i ) =∑

e

{
−
∫

∂Ωe+∂Ωe
c

1
2

tm
i um

i dS+
∫

∂Ωe
m

tm
i ũm

i dS−
∫

Se
t

t iũm
i dS

}
+∑

e

{∫
∂Ωe

c

tm
i uc

i dS+
∫

∂Ωe
c

1
2

tc
i uc

i dS
} (62)
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This leads to finite element equations:

δ

{
q
β

}T [GT
αqH−1

ααGαq GT
αqH−1

ααGαβ

GT
αβ

H−1
ααGαq GT

αβ
H−1

ααGαβ +Hββ

]{
q
β

}
= δ

{
q
β

}T {Q
0

}
(63)

where

Gαq =
∫

∂Ωe
RT

mÑmdS

Gαβ =
∫

∂Ωe
c

RT
mNcdS

Hαα =
∫

∂Ωe+∂Ωe
c

RT
mNmdS

Hββ =
∫

∂Ωe
c

RT
c NcdS

Q =
∫

Se
t

ÑT
mtdS

(64)

This equation can be further simplified by static-condensation.

When the inclusion is rigid, uc
i does not need to be assumed, and we use the fol-

lowing variational principle:

π4(ũm
i ,u

m
i ) = ∑

e

{
−
∫

∂Ωe+∂Ωe
c

1
2

tm
i um

i dS+
∫

∂Ωe
m

tm
i ũm

i dS−
∫

Se
t

t iũm
i dS

}
(65)

The corresponding finite element equations are:

∑
e

(
δqT GT

αqH−1
ααGαqq−δqT Q

)
= 0 (66)

When the VC includes a void instead of an elastic/rigid inclusion, ũc
i is merely

assumed at ∂Ωe
c. We have:

ũc = Ñcγ at ∂Ω
e
c (67)

We use the following variational principle:

π5(ũm
i ,u

m
i , ũ

c
i ) = ∑

e

{
−
∫

∂Ωe+∂Ωe
c

1
2

tm
i um

i dS+
∫

∂Ωe
m

tm
i ũm

i dS−
∫

Se
t

t iũm
i dS

}
+∑

e

∫
∂Ωe

c

tm
i ũc

i dS
(68)
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The corresponding finite element equations are:

δ

{
q
γ

}T [GT
αqH−1

ααGαq GT
αqH−1

ααGαγ

GT
αγH−1

ααGαq GT
αγH−1

ααGαγ

]{
q
γ

}
= δ

{
q
γ

}T {Q
0

}
(69)

where

Gαγ =
∫

∂Ωe
c

RT
mNcdS (70)

Similarly, this equation can be further simplified by static-condensation.

It should be pointed out that TVC-BVPs developed in this section, with ellip-
soidal voids/inclusions, are plagued by LBB conditions, because all these multi-
field boundary variational principles involve Lagrange multipliers. Similarly, be-
cause the VCFEMs developed by Ghosh and his coworkers involve Lagrange mul-
tipliers, they are also plagued by LBB conditions. For detailed discussion of LBB
conditions, see [Babuska (1973); Brezzi (1974); Rubinstein, Punch and Atluri
(1983); Punch and Atluri (1984); Xue, Karlovitz and Atluri (1985); Dong and
Atluri (2011a)]. TVC-Cs without involving LBB conditions are developed in sec-
tion 5.3, by using collocation method to enforce the compatibility between inde-
pendently assumed fields.

In addition, the VCFEMs developed by Ghosh and his coworkers are based on
Hybrid-Stress variational principle of Pian, and involve only equilibrated stresses
which are forced to satisfy compatibility conditions through the variational princi-
ples. Thus the hybrid-stress VCFEMs of Ghosh et al. involve volume integrals as
wells as surface integrals in the development of the stiffness matrices. However,
only surface integrals are involved in developing TVC-BVP, as well as the TVC-C
in section 5.3. Therefore, TVCs developed in this study are computationally more
efficient.

Moreover, the TVCs developed in this study are based on a well-known complete
trial displacement field. Therefore, TVCs can obtain more accurate solutions of
stress/strains than the VCFEMs developed by Ghosh and his coworkers, because
the completeness of Airy and Maxwell stress functions in a multiply connected
domain is of question.

5.3 Trefftz TVCs Using Collocation and a Primitive Field Boundary Variational
Principle

In this section, we develop 3D TVCs with ellipsoidal inclusions/voids using col-
location method and a primitive field variational principle, in a similar fashion to
its 2D versions as shown in [Dong and Atluri (2012a)], and its 3D version with
spherical inclusions/voids in [Dong and Atluri (2012b)].
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A finite number of collocation points are selected along ∂Ωe and ∂Ωe
c, denoted as

xmp
i ∈ ∂Ωe, p = 1,2.... , and xcq

i ∈ ∂Ωe
c,q = 1,2....

Collocations are carried out in the following manner:

1. When an elastic inclusion is considered, we enforce the following conditions at
corresponding collocation points:

um
i (x

mp
j ,α) = ũm

i (xmp
j ,q) xmp

j ∈ ∂Ω
e

um
i (x

cq
j ,α)−uc

i (xcq
j ,β ) = 0 xcq

j ∈ ∂Ω
e
c

wtm
i (x

cq
j ,α)+wtc

i (xcq
j ,β ) = 0 xcq

j ∈ ∂Ω
e
c

(71)

α,β are related to q in the following way:

α = C1
αqq

β = C1
βqq

(72)

2. When the inclusion is rigid, there is no need to assume uc
i , and the following

collocations are considered:

um
i (x

mp
j ,α) = ũm

i (xmp
j ,q) xmp

j ∈ ∂Ω
e

um
i (non - rigid - body,xcq

j ,α) = 0 xcq
j ∈ ∂Ω

e
c

(73)

We obtain:

α = C2
αqq (74)

3. When a void is considered instead of a inclusion, there is no need to assume uc
i

or ũc
i . The following conditions are enforced:

um
i (x

mp
j ,α) = ũm

i (xmp
j ,q) xmp

j ∈ ∂Ω
e

wtm
i (x

cq
j ,α) = 0 xcq

j ∈ ∂Ω
e
c

(75)

By solving (75), we have:

α = C3
αqq (76)

It should be noted that, in (71) and (75), a parameter w is used to weigh the col-
location equations for tractions, so that they have the same order of importance as
collocation equations for displacements. For displacement fields assumed in sec-
tion 5.1, it is obvious that a proper choice of w is w = a/2Gm. It should also be
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pointed out that, for the over-determined system of equations obtained using ei-
ther (71), (73), or (75), the least square solution as discussed in [Dong and Atluri
(2012b)] is obtained.

Now that the interior displacement field is related to nodal displacements, finite
element equations can be derived from the following primitive-field boundary vari-
ational principle:

π2(ui) = ∑
e

{∫
∂Ωe

1
2

tiuidS−
∫

Se
t

t iuidS
}

(77)

Substituting corresponding displacement fields into (77), we obtain finite element
equations:

∑
m

(
δqT Cs

αq
T MααCs

αqq−δqT Q
)
= 0, s = 1,2 or 3

Mαα =
∫

∂Ωe
Rm

T NmdS
(78)

When s is equal to 1, 2, and 3, Cs
αq

T MααCs
αq is the stiffness matrix for TVCs with

an elastic inclusion, a rigid inclusion, and a void respectively.

Because in the development of TVC-C, integration of only one matrix Mαα along
the outer boundary is needed, and collocation along the inner boundary require
less points where the Trefftz trial functions are evaluated, TVC-C is expected to
be computationally more efficient than TVC-BVP. Also, as explained previously,
TVC-C does not suffer from LBB conditions, which is a tremendous advantage of
TVC-C over TVC-BVP.

6 Numerical Examples

Firstly, we illustrate the reason why we use characteristic lengths to scale the Tre-
fftz trial functions. See Fig. 5 for the geometry of the VC. Material properties of
the matrix are Em = 1,vm = 0.25. Three kinds of heterogeneities are considered:
an elastic inclusion with Ec = 2,vc = 0.3, a rigid inclusion, and a void. Stiffness
matrices of TVC-C are computed, with and without using characteristic lengths to
scale Trefftz trial functions. Condition numbers of the coefficient matrix of equa-
tions (71)(73)(75)are shown in Tab. 1. We can clearly see that by scaling the Trefftz
functions using characteristic lengths, the resulting systems of equations have sig-
nificantly smaller condition number. Although not shown here, scaling Trefftz trial
functions using characteristic lengths also has similar effect on TVC-BVP.

We also compare the CPU time required for computing the stiffness matrix of the
VC shown in Fig. 5, using different TVCs. The CPU time required is shown in
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Figure 5: A VC with an ellipsoidal inclusion/void used for condition number test,
eigenvalue test, and patch test

Table 1: Condition number of coefficient matrices of equations used to relate α,β
to qusing the collocation method with/without using characteristic lengths to scale
Trefftz Trial functions for the VC shown in Fig. 5

 Elastic Inclusion Rigid Inclusion Void 

Characteristic 
Length 

Scaled 
Not 

scaled 
Scaled 

Not 
scaled 

Scaled 
Not 

scaled 

Condition 
number 

1.31×103 2.3×1031 2.1×103 3.3×1031 3.1×103 2.5×1031 

 

Tab. 2. As can be seen, TVC-C needs less time for computing one VC than that for
TVC-BVP. The computational time for either of these two types of TVCs should
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be much less than VCFEMs developed in [Ghosh and Moorthy (2004)], although
an non-optimized MATLAB code is used for computation.

Table 2: CPU time required for computing the stiffness matrix of the VC in Fig. 7

TVC-BVP TVC-C 
CPU Time 
(seconds) 15.5 10.1 

 

Using the same VC, we compute the eigenvalues of stiffness matrices of different
TVCs. This is conducted in the original and rotated global Cartesian coordinate
system. Experimental results are shown in Tab. 3-5

As can clearly be seen, these VCs are stable and invariant, because additional zero
energy modes do not exist, and eigenvalues do not vary with respect to change of
coordinate systems. However, this does not mean that LBB conditions are satisfied
by TVC-BVP for an arbitrary Voronoi Cell

We also conduct the patch test. The same VC is considered. The materials of the
matrix and the inclusion are the same, with material propertiesE = 1,v = 0.25. A
uniform traction is applied to the upper faces. The displacements in the lower face
are prescribed to be the exact solution.

The exact solution is:

u1 =−
Pv
E

x1

u2 =−
Pv
E

x2

u3 =
P
E

x3

(79)

The numerical result of different VCs is shown in Tab. 6, with error defined as:

Error =
‖q−qexact‖
‖qexact‖ (80)

As can be seen, TVC-BVP can pass the patch test with errors equal to or less than
an order of 10−7. Although the error for TVC-C is larger, but still in an order of
10−3. We consider the performance of all TVCs to be satisfactory in this patch test.

In order to evaluate the overall performances of different TVCs for modeling prob-
lems with inclusions or voids, we consider the following problem: an infinite
medium with an ellipsoidal elastic/rigid inclusion or void in it. Exact solution of all
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Table 3: Eigenvalues of stiffness matrices of different TVCs when an elastic inclu-
sion is considered

Eigenvalues 

Rotation=0°&45° TVC-BVP TVC-C 

1 234.0298 234.7411 

2 108.8477 110.2444 

3 108.1132 109.1381 

4 84.1480 84.4025 

5 84.1361 84.3963 

6 83.5074 77.0706 

7 62.6870 61.6714 

8 61.6146 60.5611 

9 60.0356 60.1607 

10 60.0351 60.1564 

11 55.2950 53.7224 

12 54.0791 52.9699 

13 54.0783 52.9693 

14 50.3029 50.4278 

15 29.8491 29.6434 

16 25.1172 25.4681 

17 25.1168 25.4678 

18 19.1535 18.3437 

19 19.1508 18.3437 

20 16.9186 17.3702 

21 12.1886 13.2283 

22 0.0000 0.0000 

23 0.0000 0.0000 

24 0.0000 0.0000 

25 0.0000 0.0000 

26 0.0000 0.0000 

27 0.0000 0.0000 
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Table 4: Eigenvalues of stiffness matrices of different TVCs when a rigid inclusion
is considered

Eigenvalues 

Rotation=0°&45° TVC-BVP TVC-C 

1 234.3199 235.0434 

2 109.0337 110.4286 

3 108.3032 109.3291 

4 84.3204 84.5869 

5 84.2409 84.5144 

6 83.5379 77.1085 

7 62.7570 61.6943 

8 61.6410 60.5849 

9 60.0685 60.2163 

10 60.0628 60.2009 

11 55.3055 53.7417 

12 54.0904 52.9710 

13 54.0860 52.9706 

14 50.3309 50.4484 

15 29.8729 29.6766 

16 25.1264 25.4732 

17 25.1251 25.4720 

18 19.1552 18.3436 

19 19.1510 18.3435 

20 16.9205 17.3723 

21 12.1893 13.2290 

22 0.0000 0.0000 

23 0.0000 0.0000 

24 0.0000 0.0000 

25 0.0000 0.0000 

26 0.0000 0.0000 

27 0.0000 0.0000 
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Table 5: Eigenvalues of stiffness matrices of different TVCs when a void is consid-
ered

Eigenvalues 

Rotation=0°&45° TVC-BVP TVC-C 

1 233.5479 233.3206 

2 108.7508 108.7786 

3 108.0065 107.8411 

4 87.1961 86.1117 

5 84.2842 84.1957 

6 84.2553 84.1538 

7 64.2478 64.6534 

8 61.9575 61.7710 

9 60.6613 59.6460 

10 60.6404 59.6236 

11 57.5684 55.6119 

12 57.5653 55.6104 

13 56.4398 55.1562 

14 51.0058 51.3416 

15 30.2436 30.0702 

16 25.4234 26.2632 

17 25.4185 26.2587 

18 19.8318 18.6557 

19 19.8309 18.6548 

20 17.2973 18.3053 

21 12.5848 12.2776 

22 0.0000 0.0000 

23 0.0000 0.0000 

24 0.0000 0.0000 

25 0.0000 0.0000 

26 0.0000 0.0000 

27 0.0000 0.0000 
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Table 6: Performances of different TVCs in patch test

TVC-BVP TVC-C 

Error 
3.6×10-7 5.6×10-3 

 

of these three problems found using Eshelby’s solution and the equivalent inclusion
method. For details of the exact solution, see [Eshelby (1957); Nemat-Nasser and
Hori (1999)].

The material properties of the matrix are Em = 1,vm = 0.25. When an elastic in-
clusion is considered, the material properties of the inclusion are Ec = 2,vc = 0.3.
The magnitude of the remote tension P in the direction of x3 is equal to 1. The
semi-axes of the ellipsoid are 1/5, 1/7.5, 1/10 respectively. For numerical imple-
mentation, the infinite medium is truncated to a finite cube. The length of each side
of the truncated cube is equal to 2. For all three cases with an elastic/rigid inclusion
or a void, only one VC is used. Traction boundary conditions are applied to the
outer-boundary of the VC. Least number of nodal displacements are prescribed to
the exact solution.

We compare the computed σ11 along axis x3, σ33 along axis x1, to that of the exact
solution. As shown in Fig. 7-9, no matter an elastic inclusion, a rigid inclusion,
or a void is considered, TVCs always give very accurate computed stresses, even
though only one VC is used. For this reason, we consider TVCs very efficient for
micromechanical modeling of heterogeneous materials.

We also use the TVCs developed in this study to study the stiffness of heteroge-
neous materials. A Unit Cell model of Al/SiC material is considered. The material
properties are: EAl = 74GPa,vAl = 0.33,ESiC = 410GPa,vSiC = 0.19. The vol-
ume fraction of SiC is 20%. This model was studied in [Chawla, Ganesh, Wunsch
(2004)], using around 76,000 ten-node tetrahedral elements with ABAQUS. How-
ever, in this study, we use just one TVC, see in Fig. 10. The TVCs developed in
[Dong and Atluri(2012b)] was used to study this Unit Cell model with a spherical
inclusion. For the TVCs developed in this study, a quasi-sphere with aspect ratios
1.1:1.05:1.0 is used as the inclusion. As shown in Tab. 7, although only one VC is
used, the homogenized Young’s modulus is quite close to what is obtained by using
round 76,000 ten-node tetrahedral elements with ABAQUS.

We also study a RVE of Al/SiC material, with 125 randomly distributed ellipsoidal
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Figure 6: An ellipsoidal elastic/rigid inclusion or hole under remote tension

SiC particles. The RVE is shown in Fig. 11, discretized with 125 TVCs developed
in this study. The material properties of Al and SiC are taken the same as those
in the last example. The size of the RVE is 100 µm × 100 µm × 100 µm. A
uniform tensile stress of 100 MPa is applied in the x3 direction. Both TVC-BVP and
TVC-C are used to study the microscopic stress distribution in the RVE. However,
because very similar results are obtained by these two types of TVCs, only the
results obtained by TVC-BVP are shown here. The maximum principal stress in
plotted in Fig. 12, and the strain energy density is shown in Fig. 13. While the
inclusions are presenting a relative uniform stress state, the maximum principal
stress and the strain energy density in the matrix material show high concentration.
To be more specific, high stress and strain energy concentration is observed near
the tip of the long axes of the inclusions, and in the direction which is parallel to
the direction of loading. On the other hand, in the direction which is perpendicular
to the direction of loading, very low stress values and strain energy density are
observed. This gives us the idea at where damages are more likely to initiate and
develop, for materials reinforced by stiffer particles.
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Figure 7: Computed σ11 along axis x3, σ33 along axis x1 for the problem with an
elastic inclusion
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Figure 8: Computed σ11 along axis x3, σ33 along axis x1 for the problem with a
rigid inclusion
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Figure 9: Computed σ11 along axis x3, σ33 along axis x1 for the problem with a
void



74 Copyright © 2012 Tech Science Press CMC, vol.30, no.1, pp.39-81, 2012

  
                                   (a)                                                             (b) 

 
(c) 

 
Figure 10: The mesh of an Al/SiC Unit Cell model using: (a) around 76,000 ten-
node tetrahedral elements with ABAQUS in the study of [Chawla, Ganesh, Wunsch
(2004)]; (b) one TVC with a spherical inclusion; (c) one TVC with a quasi-sphere
ellipsoidal inclusion
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Table 7: Homogenized Young’s modulus using different methods

Method 
Young’s Modulus

(GPa) 

TVC-BVP 
(sphere) 

103.8 

TVC-C 

(sphere) 
98.8 

TVC-BVP 
(ellipsoid) 

102.8 

TVC-C 

(ellipsoid) 
98.3 

ABAQUS 100.0 

 

We also use the same RVE as shown in Fig. 11, to study porous PZT ceramic mate-
rial. The RVE includes 125 ellipsoidal voids. The material properties of the matrix
material are: E = 165GPa,v = 0.22. Only the results obtained by TVC-BVP are
shown here. The maximum principal stress in plotted in Fig. 14, and the strain
energy density is shown in Fig. 15. The stress and energy density concentration is
showing a different pattern as the Al/SiC material, of which SiC particles are stiffer
inclusions. For PZT material with ellipsoidal pores, high stress and strain energy
concentration is observed near the long axes of the cavities, and in the direction
which is perpendicular to the direction of loading. On the other hand, in the direc-
tion which is parallel to the direction of loading, very low stress values and strain
energy density are observed. This gives us the idea at where damage is more likely
to initiate and develop for porous materials.

7 Conclusions

Three-dimensional Trefftz Voroni Cells (TVCs) with ellipsoidal inclusions/voids,
are developed. For each VC, a compatible displacement field along the VC outer-
boundary is assumed, with Barycentric coordinates as nodal shape functions. Inde-
pendent displacement fields in the VC are assumed as characteristic-length-scaled
Trefftz trial functions. Papkovich-Neuber solution is used to contruct the Trefftz
trial displacement fields. The Papkovich-Neuber potentials are linear combinations
of ellipsoidal harmonics. Two approaches are used alternatively to develop stiffness
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Figure 11: A RVE with 125 ellipsoidal inclusions/voids

matrices. TVC-BVP uses multi-field boundary variational principles to enforce all
the conditions in a variational sense. TVC-C uses the collocation method to relate
independently assumed displacement fields to nodal displacements, and develop a
linear system of equations based on a primitive-field boundary variational principle.

Through numerical examples, we demonstrate that TVCs developed in this study
can capture the stress concentration around ellipsoidal voids/inclusion quite accu-
rately, and the time needed for computing each VC is much less than that for the
hybrid-stress version of TVCs in [Ghosh and Moorthy (2004)]. TVCs developed in
this study are also used to estimate the overall material properties of heterogeneous
materials, as well as to compute the microscopic stress distribution. It is observed
that, for composite materials with stiffer second-phase inclusions, high stress con-
centration in the matrix is shown near the long axe of the inclusion, in the direction
of which is parallel to the direction of loading. However, for materials with el-
lipsoidal cavities, high stress concentration is observed in the direction which is
perpendicular to the direction of loading.
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Figure 12: Distribution of maximum principal stress in the RVE of Al/SiC material
modeled by 125 TVC-Cs, each VC includes an ellipsoidal inclusion

 
Figure 13: Distribution of strain energy density in the RVE of Al/SiC material
modeled by 125 TVC-Cs, each VC includes an ellipsoidal inclusion
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Figure 14: Distribution of maximum principal stress in the RVE of porous PZT
ceramic material modeled by 125 TVC-Cs, each VC includes an ellipsoidal void

 

Figure 15: Distribution of strain energy density in the RVE of porous PZT ceramic
material modeled by 125 TVC-Cs, each VC includes an ellipsoidal void
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Because of their accuracy and efficiency, we consider that the 3D TVCs developed
in this study are suitable for micromechanical modeling of heterogeneous materi-
als. Moreover, because they can efficiently and accurately capture the micro-scale
stress distribution around inclusions/voids, they can be used to study the damage of
materials, in combination of tools to model micro-crack initiation and fatigue.

We also would like to point out that, 3D TVCs with arbitrary shaped voids/inclusions
will be presented in future studies.
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