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Abstract: Artificial neural networks (ANNs) are employed as an alternative to
physical modeling for calculation of the relations between the production path pro-
cess parameters (melting of scrap steel and alloying, continuous casting, hydrogen
removal, reheating, rolling, and cooling on a cooling bed) and the final product me-
chanical properties (elongation, tensile strength, yield stress, hardness after rolling,
necking) of steel semi products. They provide a much faster technique of response
evaluation complementary to physical modeling. The Štore Steel company pro-
cess path for production of steel bars is used as an example for demonstrating the
approach. The applied ANN is of a multilayer feedforward type with sigmoid acti-
vation function and supervised learning. The entire set of 123 process parameters
has been reduced to 34 influential ones and 1879 data sets from the production line
have been used for learning. The results of parametric studies performed on the
ANN based model seem consistent with the expectations based on industrial expe-
riences. However, further improvements in data acquisition and analytical proce-
dures are envisaged in order to obtain a methodology, reliable enough for use in
the everyday industrial practice. The methodology seems to be for the first time
applied in the through process modeling of steel production.
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1 Introduction

Prediction of the final mechanical properties of the steel rods, based on the physics
based numerical modeling of the whole process (through process modeling (TPM))
[Quested, Crumbach, and Hamerton (2006); Crumbach, Quested, and Hamerton
(2006)], is extremely complicated due to the multi-scale and multi-phase character
of the underlying physics as well as complicated material behavior. As an alter-
native approach to the physical modeling, the computational artificial intelligence
approach, based on the neural networks (ANNs) is used in the present paper.

For several years, ANNs have been successfully used for second level process au-
tomation in a number of industries [Bhadeshia (1999)]. For example, in steel mak-
ing industries, neural networks are already being used for predicting steel mechan-
ical properties [Mukherjee and Singh (2009)], for thermal model of a ladle furnace
[Sampaio, Braga, and Fujii (2007)], for rolling mills [Martinez, Protzel, Gramchow,
and Sorgel (1994)], for heat transfer in continuous casting process [Bouhouche,
Lahreche, and Bast (2008)], for predicting the mechanical properties of aluminum
foil [Trčko and Šarler (2009)], etc.

One of the fields where it is additionally possible to exploit the neural networks
is to predict important mechanical properties of steel, such as elongation, tensile
strength, yield stress, hardness and necking on the basis of the composition, and
other process parameters that define the complete process path from the steelmak-
ing to the final semi-product.

The complete process path in steelworks Štore Steel, Slovenia [Store Steel d.d.
(2012)] consists of six main individual process steps [Verlinden, Driver, and Sama-
jdar (2007); Irwing (1993); Lenard (2007)]: steel making, continuous casting of
steel, hydrogen removal, reheating, multiple stage rolling, and cooling on the cool-
ing bed. Each of these processes can be modeled either by a physics based nu-
merical model [Šarler, Vertnik, Saletić, Manojlović, and Cesar (2005); Vertnik and
Šarler (2006); Vertnik and Šarler (2009); Hanoglu, Islam, and Šarler (2011); Lor-
biecka, A.; Vertnik, R.; Gjerkeš, H.; Manojlović, G.; Cesar, J.; Šarler, B. (2009);
Lorbiecka, A.; Šarler, B. (2010)] or by a computational intelligence approach such
as for example the genetic programming [Kovačič and Šarler (2011); Kovačič and
Šarler (2009)]. Output values of a process step can define the input values of the
next process step in the path and thus act as input parameters (e.g. by defining ini-
tial or boundary conditions) in the model of that process. Another possibility, when
using ANN, is to build an integrated model of the whole production path. We can
model only outcomes after the last process step and relate them to the entire set of
process parameters of the whole production path.

The main aim of this work is to explore the possibility of applying ANN for mod-
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Figure 1: Steel manufacturing process in Štore Steel company.

eling the whole process path. The results of the ANN model are used for prediction
of five mechanical properties of a steel semi-product in terms of a set of process
parameters of the whole production path.

2 Steel manufacturing process and process parameters

The manufacturing of steel semi-products in Štore Steel company involves a se-
ries of subsequent process steps. First, the steel is melted from scrap in an electric
arc furnace (EAF). When the molten steel reaches a foreseen temperature (around
1600 ◦C), it is poured into a preheated ladle (tapping) where it reaches the desired
composition and temperature by adding the alloying elements. Once the specifica-
tion of the steel is confirmed, the ladle is transported by a crane to the continuous
casting device where the billets are manufactured. The cast billets are reheated in
the reheating furnace and enter the rolling line, composed of the roughing and con-
tinuous rolling mill. Before the steel semi products leave the production path, they
pass to the cooling bed. A scheme of complete process is shown in Figure 1.

There are 123 important parameters, divided into seven groups that define the com-
plete process path (Table 1). Of these, 24 parameters define the steel grade, 12 pa-
rameters the casting, 2 parameters the hydrogen removal, 4 parameters the reheat-
ing furnace, 31 parameters the rolling mill, 43 parameters the continuous rolling
mill, and 7 parameters the cooling bed. On the other hand, five basic mechanical
properties characterize the output values of the product (Table 2).
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Table 1: A complete list of process (input) parameters.
ID PROCESS PARAMETER USED in ANN 

1 – 24 Composition Elements: C, Si, Mn, P, S, Cr, Mo, Ni, Al, Cu, Ti, V, W, Sn, As, Zr, 
Ca, Sb, B, N, O, H, Pb, Zn 

24 

25 Casting dimensions (140 x 140mm or 180 x 180mm)  

26 Casting temperature 1 

27 Casting speed  1 

28 Casting powder type  

29 Mould level depth  

30 Mould water flow 1 

31 Mould inlet water tem-
perature 

32 Mould outlet water tem-
perature 

Delta Temperature 1 

33 Wreath spray water flow 1 

34 Wreath spray water temperature 0 

35 Spray cooling system 01 spray flow 1 

36 

Continuous 
casting 

of steel 

Cooling water 01 temperature 1 

37 Time in the furnace  

38 

Hydrogen re-
moval Temperature in the furnace  

39 Conveyor speed  

40 – 42 
Biller reheating 

furnace Temperature in furnace Zone 1 – 3 3 

43 Input dimension (140 x 140 mm or 180 x 180 mm)  

44 Input temperature  

45 Number of rolling passes  

46 – 52 Entry rolling speed pass 1 – 7  

53 – 59 Radius of roll 1 – 7  

60 – 66 Roll gap 1 – 7  

67 – 73 

Rolling mill 

Roll groove 1 – 7  

74 Input dimension  

75 Input temperature  

76 Entry or outlet rolling speed  

77 – 86 Roll 1 – 10 engagement yes/no  

87 – 96 Radius of roll 1 – 10  

97 – 106 Roll gap 1 – 10  

107 – 116 

Continuous roll-
ing mill 

Roll groove 1 – 10  

117 Product dimension – cross-section  

118 Product dimension – length  

119 Product temperature  

120 Distance between two products  

121 Number of bars in one spot  

122 Lifting apron (radiation shield) height  

123 

Cooling 

bed 

Frequency of product moving  

123 Process path input parameters      ←      Total      →      Training data for ANN 34 

3 Neural networks approximation module

In everyday industrial practice, the process design parameters have to be adapted
quickly in order to produce the results that comply with the customer requirements
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Table 2: A complete list of material properties (output values).
ID TYPE VALUES USED in ANN 

1 Elongation (A) 1 

2 Tensile strength (Rm) 1 

3 Yield stress (Rp0,2) 1 

4 Hardness after rolling (HB) 1 

5 

Mechanical 
properties of 

materials 

Necking (Z) 1 

5 Process path output values      ←      Total      →      Training data for ANN 5 

 

and productivity. The classical approach to optimization of process parameters,
where the physics based simulators impose long computational times, can limit ap-
plicability of process optimization in industrial environment. The solution has been
conceived in the form of ANN – based approximation of the system response [Belič
(2006); Belič (2012)], which is calculated on the basis of a sampled response pre-
pared in advance, either by runs of numerical model or by measurements performed
on previous designs used. The optimization procedure that searches for optimum
process design parameters, consistent with the requirements, can alternatively be
performed much faster on the surrogate model, based on the approximated response
[Grešovnik, Kodelja, Vertnik, and Šarler, (2012)], than on the physics based model.

In the current work, approximation of process path, based on the ANN is con-
sidered. A convenient characteristic of the approach is that approximation is per-
formed in two separate stages (Figure 2). In the training stage, the network is
trained by using the sampled response (either measured or calculated by a numer-
ical model). In the approximation stage, the trained network is used for all subse-
quent calculations of the approximated response as a function of input parameters.

An in-house approximation module has been developed, based on general purpose
neural network libraries and extensive code base for development of technical ap-
plications [Grešovnik (2012)]. It features modular design, such that new underly-
ing libraries can be easily utilized (open source libraries Aforge.Net [Aforge.net
(2011)] and NeuronDotNet [NeuronDotNet (2011)] are currently used for ANNs).
This also provides good flexibility in integration with other software, designing
training strategies, filtering training data, verification of results, testing different
network layouts, etc.

This is crucial when approximating behavior of material processing systems with
a large number of process parameters. Data obtained from such systems is often
inaccurate or even corrupted due to practical limitations and possible failures in
acquisition procedures. Response sampling could not be planned in advance but is
accommodated to production schedules in the factory. Therefore, the information
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Figure 2: Approximation with neural networks: training of a network (top) and
calculation of approximated response with a trained network (bottom).

available may be deficient in some regions of parameter space in order to obtain
a good response approximation. Consequently, verification of the results plays an
important role.

Both the Aforge and NeuronDotNet libraries offer a number of neural network
algorithms that are convenient for various tasks. In Aforge, we can find backprop-
agation learning, delta learning, elastic learning, evolutionary learning, perceptron
learning and Kohonen self-organizing map. In NeuronDotNet the backpropagation
learning and Kohonen self-organizing map are implemented. With both Aforge and
NeuronDotNet we have constructed feedforward backpropagation neural networks,
which is a supervised learning method. In our case, architecture is such that every
neuron from the input layer is connected to every neuron in the hidden layer and
every neuron in the hidden layer is connected to every neuron in the output layer
(Figure 3).

In Aforge, we used bipolar sigmoid activation function in all layers. This function
is defined as

f (x) =
2

1+ e−x −1, (1)
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Figure 3: Feedforward backpropagation neural network scheme.

with output range from -1 to 1. In NeuronDotNet we used linear activation function
in the first layer,

f (x) = x, (2)

with range from -2 to 2, and sigmoid activation function, for all layers above with
range from 0 to 1

f (x) =
1

1+ e−x , (3)

The learning procedure in both algorithms is divided in four basic steps (Figure
4). First we compute all outputs on the basis of training input parameters and with
the current weights. Then we calculate the squared difference between the output
calculated by the neural network and actual output from training data. Errors are
propagated backwards. In the next step we compute correction to weights for each
neuron in the network. In the last step we update the network with new values of
weights for the next epoch.

4 Training the artificial neural network

The ANNs are in the present paper trained with the data from the complete steel
production path in Štore Steel company. The process is completely defined with
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Figure 4: Algorithm for training one input-output sample in one epoch.

123 process parameters (Table 1), of which 34 are recognized as influential. 5
output values were considered.

Process data for steel bars for applications in the forging, spring and engineering
industries were used. After separating the data belonging to two billet dimensions
(140 mm and 180 mm) and after a suitable filtering to exclude the corrupted data,
1879 data sets for billet dimension 140 mm have been prepared. The data have
been manually collected from different synchronized data bases of the plant. The
main goal of the study is to train the ANN in order to be capable of predicting
elongation, tensile strength, yield stress, hardness after rolling and necking, while
changing the chemical composition and other process parameters accounted for in
the training procedure. For the practical set-up of the relevant ANN, we used mul-
tilayer feedforward ANN with sigmoid activation function and supervised learning,
implemented in our software module written in C-sharp. The datasets were stored
in predefined JSON-based format and imported from the file before the training.
The developed module allows checking the training and the verification errors dur-
ing the training procedure. The procedure consists of five steps: reading the data
from a file, data preparation, training, testing and prediction of unknown output
values based on different combinations of 34 input parameters, listed in Table 1.
During training, the state of the ANN is adjusted to the data sets with known out-
put values. These comprise historical cases of steel production in the past. During
training, the ANN response in training and verification points is checked in order
to see how well it does at predicting known and unknown output values. Verifica-
tion and training points used for testing are usually a subset of historical data. The
verification points are randomly chosen from the datasets before training starts and
are not used in the training procedure, while the training points are. When the error
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on training points becomes smaller than the user specified tolerance, or when the
number of training cycles reaches a specified number, the training stops. Differ-
ent combinations of layouts and training parameters, decided on the basis of past
experience [Belič (2006)], and some additional experimentation were tried. More
than 20 trainings with both NeuronDotNet and Aforge libraries were performed.
Good results were achieved by using ANN with one hidden layer containing 20-40
neurons. The learning rate that determines the learning speed was set to 0.3. Mo-
mentum that determines how much of the previous corrective term should be ap-
plied on in the current training was set to 0.6, and the maximum number of epochs
was set to one hundred thousand. The training procedures were performed on a HP
workstation HPDL380G7 with 12 Intel Xenon 2.0GHz processors, 24GB installed
RAM. The trained neural network which gave us the best results was trained in
approximately 18 hours with NeuroDotNet library and slightly more with Aforge.

5 Parametric studies

After the training of the ANN was done, the errors of the approximated outputs
in verification sets were calculated. Some parametric studies were performed as
well and the results were checked against practical industrial knowledge in order to
validate the obtained approximation model.

The relative errors δ of the obtained approximation in all verification points were
first calculated. These errors are a good indicator of accuracy of the obtained neural
network-based approximation, and are defined for an arbitrary output quantity v as

δ vi =

∣∣∣∣∣∣ v(m) (pi)− v(pi)
max
j∈IT

(
v(m) (p j)

)
−min

j∈IT

(
v(m) (p j)

)
∣∣∣∣∣∣ ; i ∈ IV , (4)

where v(m) (pi) is the actual (measured) value of the output quantity v at the vector
of input parameters pi, v(pi) is the approximated value of this quantity at the same
vector of parameters, and denominator contains the range of the considered quantity
over all training sets. pi is the vector of input parameters of the verification set i,
in which the actual values of the output quantities are known, since verification
sets are taken out of the data provided by industrial measurements. Dimension
of the space of input parameters is in our case N p=34. Index i is an element of
the index set IV that enumerates the verification points, with cardinality |IV |= NV .
Index j is an element of the index set IT that enumerates the training points, with
cardinality |IT | = NT . Division by the range is performed for normalization and
easier comparison of the results for different quantities that may typically differ by
several orders of magnitude.
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Verification points represent 5 % of the complete data provided for our test. There
were NM=1879 data sets provided from industrial measurements, of which NV =94
were randomly selected as verification sets and were excluded from the training
procedure. This preparation procedure is done automatically before the training
starts.

 

  

 

 

Figure 5: Approximation of elongation (A) in 94 verification points. Verification
points are represented by dots. Left: real elongation values. Right: relative er-
ror calculated by Eq. 4. The verification points are ordered with respect to the
magnitude of the elongation on both graphs.

The actual values of elongation in verification points and the relative error, calcu-
lated by Eq. 4 in these points, are shown in Figure 5. The maximum relative error
in verification points for elongation is 0.6 %. Data sets in the figure were reordered
in such a way that they are indexed by the growing value of elongation.

Real values for tensile strength in verification points and the relative error, calcu-
lated by Eq. 4 in these points, are shown in Figure 6. The maximum relative error
in verification points for tensile strength is 0.7 %.

Real values for yield stress in verification points and the relative error, calculated
by Eq. 4 in these points, are shown in Figure 7. The maximum relative error in
verification points for yield stress is 0.4 %.

Real values for hardness after rolling in verification points and the relative error,
calculated by Eq. 4 in these points, are shown in Figure 8. The maximum relative
error in verification points for hardness after rolling is 0.5 %
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Figure 6: Approximation for tensile strength (Rm) in 94 verification points. Ver-
ification points are represented by dots. Left: real tensile strength values. Right:
relative error in verification points.

  

 

 

Figure 7: Approximation for yield stress (Rp0,2) in 94 verification points. Verifica-
tion points are represented by dots. Left: real yield stress values. Right: relative
error in verification points.
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Figure 8: Approximation for hardness after rolling (Hardness) in 94 verification
points. Verification points are represented by dots. Left: real hardness after rolling
values. Right: a relative error in the verification points.

 

  

 

 

Figure 9: The approximation for necking (Z) in 94 verification points. Verification
points are represented by dots. Left: real necking values. Right: a relative error in
the verification points.
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Figure 10: Steel hardness after rolling as a function of the carbon mass fraction,
calculated by the ANN model on two verifications (line with dots) and two training
sets (line with squares).

Finally, the real values for necking in verification points and the relative error, cal-
culated by Eq. 4 in these points, are shown in Figure 9. The maximum relative
error in verification points for necking is 3.4 %.

A comparison between the actual and the approximated response in a number of
randomly selected verification points gives us an indication of the quality of the
approximation. A problem that we notice is that the training sets are grouped in
clusters in the space of input parameters. Each cluster corresponds to a specific
steel grade. This means that the chosen verification points are usually relatively
close to some other points from the training set that remain involved in the train-
ing procedure. Therefore, the accuracy of the approximation in these verification
points is better than the actual average accuracy over the observed domain, which is
affected by regions where the training points are scarcely distributed. In this case,
we do not exactly know what happens with the approximation between the clusters,
because we simply do not have enough information.

In the next study we randomly take 4 data sets from the entire data set. 2 sets were
chosen among verification points and the other 2 from the training points. In each
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chosen set we varied one input parameter, for example, concentration of Carbon
(C), while the other parameters were fixed. The parameter was varied within the
range defined by the minimum and the maximum value of that parameter over all
data sets used in the training. These kind of tests help us find out how the change
of one parameter, influences the output quantities of interest such as the elongation,
the tensile strength, the yield stress, the hardness after rolling, and the necking. We
performed these tests for all 34 input parameters. The influence of the concentration
of element C on hardness after rolling is shown in Figure 10.

From the graph we can see that if we increase C concentration, hardness after
rolling also increases. This trend is well known from metallurgical practice. It
is expressed in the approximated response, whether the parametric tests are based
on parameters taken from the verification of form the training set.

Next we perform a series of parametric tests where carbon mass fraction is var-
ied and each parametric test is based on a vector of input parameters taken from a
spatially related set. This set is constructed in such a way that the contained pa-
rameter vectors lie on the line connecting the two chosen endpoints pI and pF from
the space of input parameters. The effects of variation of the carbon mass fraction
are plotted around the constructed points (including the chosen endpoints). The
intermediate input parameter vectors {p1, p2, . . . pn} are chosen equidistantly such
that

p j = pI +(pF −pI)
j

n+1
; j = 0, 1, 2, ...,n+1, (5)

 

Figure 11: Points for parametric studies chosen on the line between the two points
chosen from the training data.

where n is the number of the intermediate input vectors. The endpoints pI and pF

are in our case taken from the data used for training the ANN. The arrangement of
the input vectors is schematically shown in Figure 11.
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Figure 12: Steel hardness after rolling as a function of carbon mass fraction, calcu-
lated by the ANN model in 2 points from the training data, and for 18 other points
on the line between them.

The influence of the carbon mass fraction on hardness is shown in Figure 12. In
each of the curves in this figure, a single parameter (concentration of C in the
present case) varies over the whole range of values, while other parameters are
fixed and taken from one of the constructed parameter vectors p j.

In this test we can find out how smoothly the curves on the graph pass from the
parameter vector pI to pF . Because the parameter vectors p j that lie between pI

and pF were not included in the training, one could expect lower accuracy of the
approximated response at these parameters.

In the next study we examine how uniformly the parametric space is covered by
the training data. We first calculate for each vector of input parameters from the
training set the smallest weighted Euclidean distance from this vector to any other
input parameters vector from the training set. We define the weighted Euclidean
distance dl as:

dl (x, y) =
Np

∑
k=1

√
w2

k (xk− yk)
2,

wk =
1
lk

, (6)

lk = max
i

(pi k)−min
i

(pi k) ; i ∈ IM,
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Figure 13: A minimum weighted Euclidean distance from the training point to the
closest training point, calculated by Eq. 6.

 

Figure 14: A minimum weighted Euclidean distance to the 35th closest training
point.
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where li represents the range of the corresponding input parameter over the com-
plete measured data obtained from the industrial line, and x and y are arbitrary
vectors in the space of input parameters and N p is the dimension of the space. We
denote by IM the index set used to enumerate all data sets obtained form industrial
measurements, thus pi k represents the k-th element of the vector of input parame-
ters pi.

Figure 13 and Figure 14 show the distribution of the training and the verification
points according to their distances to the closest training point, and to the m-th clos-
est training point, respectively. We use the value m=35, since this is one more than
the number of process parameters and is equal to the minimal number of data-sets
necessary for linear regression. Points on the graphs correspond to the provided
data sets that are ordered by the distance to the m-th closest point. We can see
from the graph that the distance to the closest points varies a lot, and a large por-
tion of points do not have close neighbors. This indicates non-uniformity of the
distribution of data points in the parameter space. This is expected, since the data
were obtained from the actual industrial line. In steel production, a number of stan-
dardized steel qualities are used with narrowly defined chemical compositions, for
which the process is adjusted according to expert knowledge, generated by the past
experience. The clusters of data points are therefore formed around the parameter
settings that are commonly in use.

6 Conclusion

An ANN – based approximation model for complete steel production process path
was presented. A specially designed software framework has been developed for
construction, validation and application of this kind of approximation models. The
represented model was built on a basis of 34 process parameters that turn out to be
influential. Five output values were modeled which represent important outcomes
of the production process. Some parametric studies were performed to examine the
accuracy of the approximation. The trends exhibited by the approximated response
were consistent with the metallurgical knowledge, and the practical experience.
However, the accuracy over the whole domain in the parametric space is not yet
satisfactory for a reliable use in tuning and optimization of the process parameters.
The accuracy varies over domain of interest due to the clustering of the sampling
points contained in the data, captured from the industrial production line.

Further development will be directed towards the development of new methods for
assessment of the quality of training data, and accuracy of the approximation. In
particular, the meaningful ways of quantitative description of the multidimensional
distribution of the training points in space have to be developed and used in op-
timal selection of verification points. The error estimators will be developed and
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integrated with the optimization and other procedures where the approximate mod-
els will be utilized. On the other hand, the feedback regarding the critical influential
factors is continually sent back to industry in order to improve the accuracy of mea-
surements and consistency of conditions at points that critically affect repeatability
of the process. In order to be industrially relevant and effective, ANN model should
always be used with great care and with sufficient data. Physical models [Šarler,
Vertnik, Lorbiecka, Vušanović, and Senčič, (2012); Šarler, Vertnik, and Mramor,
(2012)] should also be developed in parallel and used wherever possible to supple-
ment and validate the ANN models. This would allow also better and more versatile
validation and interpretation of the results.

With the represented trained artificial intelligence TPM, the Štore Steel company
obtained a basic model and particularly a new state-of-the-art methodology for es-
timation of the final product properties as a function of the process parameters. The
developed methodology is particularly important, since it allows the optimization
[Grešovnik, Kodelja, Vertnik, and Šarler, (2012)] of the whole production with re-
spect to the productivity, quality, use of the resources, and the environmental impact
in the outlook. The presented approach can be used in other industries as well.
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