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3D FEM Analysis of the Buckling Delamination of a
Rectangular Viscoelastic Composite Plate with an
Embedded Rectangular Crack Under Two-Axial

Compression

S. D. Akbarov1, N. Yahnioglu2 and E. E. Karatas2

Abstract: In Akbarov, Yahnioglu and Karatas (2010) a buckling delamination
problem for a rectangular viscoelastic composite plate with a band and edge cracks
was investigated under uniaxial compression of the plate. In the present study this
investigation is developed for the case where the mentioned rectangular plate con-
tains an embedded rectangular crack and in addition it is assumed that the plate is
subjected to two-axial compression.
It is supposed that all end surfaces of the considered plate are simply supported and
that these ends are subjected to uniformly distributed normal compressive forces
with intensity p1 and p3 which act along the Ox1 and Ox3 axes, respectively. More-
over, we assume that the plate contains a rectangular embedded crack, the edge-
surfaces of which have initial infinitesimal imperfections before the loading.
The evolution of these initial imperfections with time under two-axial compression
of the plate is studied within the framework of the three-dimensional geometrically
nonlinear field equations of the theory of viscoelasticity for anisotropic bodies.
For determination of the values of the critical force or of the critical time, as well
as those of the buckling delamination mode of the considered plate, the initial im-
perfection criterion is used.
For the solution to the corresponding boundary-value problems, boundary form
perturbation techniques; the Laplace transform; the Schapery method for obtaining
the numerical inverse Laplace transform of the sought values; and the 3D FEM are
used.
The numerical results of the critical force and critical time, as well as of the buck-
ling delamination modes are presented and discussed.
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1 Introduction

One of the most common failure mechanisms in laminated composite materials is
a local buckling around the delaminated zone, i.e. of the zone in which two adja-
cent layers are partially debonded with each other at their interface. Note that this
zone may be formed as a consequence of various impact events, poor fabrication
processes and fatigue. As is well-known, the compressive strength of structures
made of unidirectional fibrous-laminated composite materials may be reduced sev-
eral times by the presence of a damaged bonded zone, which is modeled as a crack
in related investigations. A review of these investigations is given in the papers by
Hwang and Mao (1999), Short, Guild and Pavier (2001), Arman, Zor and Aksoy
(2006) and others in which it is supposed that there is a crack whose edges are
parallel to the free plane and to the direction of the compressed external forces.
In the foregoing investigations the beginning of the delamination growing process
is modeled as a buckling of the part of the material which occupies the region
between the crack and the aforementioned free plane. Solutions are found in the
framework of the approximate stability loss theories of plates or beams. It is ev-
ident that the results of these investigations do not apply in the cases where the
thickness of the mentioned part is equal to or greater than the length of the crack.
Therefore, it is necessary to develop buckling-failure theories within the framework
of the Three Dimensional Linearized Theory of Stability (TDLTS) of deformable
solid body mechanics, as carried out by Guz (1990, 1999), Guz and Nazarenko
(1989a, 1989b) and others. A review of the related investigations is given in the
paper by Guz, Dyshel and Nazarenko (2004). In all the investigations reviewed
above, it was assumed that the materials of the composites are time-independent.
In the papers by Akbarov (1998, 2007), Akbarov, Sisman and Yahnioglu (1997),
Akbarov and Yahnioglu (2001), and Akbarov and Mamedov (2009) the TDLTS is
developed for time-dependent materials. The development and application of the
above-noted version of the TDLTS on the study of the buckling delamination prob-
lems of the elements of construction (such as plate-strips and circular plates) made
from viscoelastic materials was done in papers by Akbarov and Rzayev (2002a,
2002b, 2003), Rzayev and Akbarov (2002) and others.

In the paper by Akbarov, Yahnioglu and Karatas (2010) the aforementioned method
and investigations were developed for the three-dimensional buckling delamination
problem for a rectangular viscoelastic composite plate containing a rectangular
band and edge cracks. In the present paper both the method and the investiga-
tions carried out in this paper are developed for the three-dimensional buckling
delamination problem for a rectangular viscoelastic composite plate containing an
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embedded rectangular crack.

Throughout the investigations, the considered composite material is modelled as an
orthotropic viscoelastic material with effective mechanical properties. For the solu-
tion to the corresponding boundary value problems the boundary form perturbation
technique; the Laplace transform; the Schapery method for obtaining the numerical
inverse Laplace transform of the sought values; and the 3D FEM are employed.

2 Formulation of the problem

Consider a thick rectangular plate with the geometry shown in Fig 1. The Carte-
sian coordinate system Ox1x2x3 is associated with the plate so as to give Lagrange
coordinates of points of the plate. Assume that the plate occupies the region:(
Ω−Ω

′) (1)

where,

Ω = {0≤ x1 ≤ `1, 0≤ x2 ≤ h, 0≤ x3 ≤ `3}

Ω
′ =
{(`1− `10)/2 ≤ x1 ≤ (`1 + `10)/2 , x2 = hA±0, (`3− `30)/2≤ x3 ≤ (`3 + `30)/2}

(2)

In Equation (2), `10 (`30) is the length of the crack along the Ox1 (Ox3) axis. It is
supposed that the edge surfaces of the crack have insignificant initial imperfections
and these imperfections are symmetric with respect to both the x1 = `1/2 and x3 =
`3/2 planes. The equations of the crack edge surfaces are given as follows:

x±2 =hA + ε f±(x1,x3),
(`1− `10)/2≤ x1 ≤ (`1 + `10)/2, (`3− `30)/2≤ x3 ≤ (`3 + `30)/2

(3)

where ε is the dimensionless small parameter (ε << 1) which characterizes the
degree of the initial imperfection of the crack’s edge surface and the upper symbol
“+” (“-‘’) shows the upper (lower) edge surface of the crack. It is also supposed that
the function f (x1,x3) and its first order derivatives are satisfied by the following
equations:

f± (`1− `01/2,x3)
∣∣
(`3−`30)/2≤x3≤(`3+`30)/2 = 0,

f± ((`1 + `10)/2,x3)|(`3−`30)/2≤x3≤(`3+`30)/2 = 0,
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∂ f± ((`1− `10)/2,x3)
∂x1

∣∣∣∣
(`3−`30)/2≤x3≤(`3+`30)/2

= 0,

∂ f± ((`1 + `10)/2,x3)
∂x1

∣∣∣∣
(`3−`30)/2≤x3≤(`3+`30)/2

= 0,

f± (x1,(`3− `30)/2)
∣∣
(`1−`10)/2≤x1≤(`1+`10)/2 = 0,

f± (x1,(`3 + `30)/2)
∣∣
(`1−`10)/2≤x1≤(`1+`10)/2 = 0,

∂ f± (x1,(`3− `30)/2)
∂x3

∣∣∣∣
(`1−`10)/2≤x1≤(`1+`10)/2

= 0,

∂ f± (x1,(`3 + `30)/2)
∂x3

∣∣∣∣
(`1−`10)/2≤x1≤(`1+`10)/2

= 0. (4)

Thus, based on the above, we investigate the evolution of the foregoing initial in-
finitesimal imperfections of the crack edge surfaces under the action of two-axial
compression. This development is investigated by the use of the three-dimensional
geometrically nonlinear equations of the theory of viscoelasticity for an anisotropic
body. The governing field equations of this theory are:

∂

∂x j

[
σ jn

(
δ

n
i +

∂ui

∂xn

)]
= 0, σi j = Ci jrs (0)εrs (t)+

t∫
0

Ci jrs (t− τ)εrs (τ)dτ

εi j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi
+

∂un

∂xi

∂un

∂x j

)
, i; j;r;s = 1,2,3. (5)

In equation (5) the conventional notation is used.

For the case under consideration the boundary conditions can be written as follows:

u2|x1=0;`1
= u2|x3=0,`3

= 0
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(a) 

 

(b) 

 Figure 1: The geometry of the considered quarter plate with (a) an embedded crack
and (b) loading condition.

[
σ1n

(
δ

n
i +

∂ui

∂xn

)]∣∣∣∣
x1=0;`1

= p1δ
1
i ,

[
σ3n

(
δ

n
i +

∂ui

∂xn

)]∣∣∣∣
x3=0;`3

= p3δ
3
i

[
σ jn

(
δ

n
i +

∂ui

∂xn

)]
n±j

∣∣∣∣ x±2 = hA + ε f±(x1,x3)
(`1− `10)/2≤ x1 ≤ (`1 + `10)/2
(`3− `30)/2≤ x3 ≤ (`3 + `30)/2

= 0, i; j;n = 1,2,3

(6)
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where n j (n±j ) is the orthonormal component of the unit normal vector of the con-
sidered surfaces (i.e. the crack edge surfaces).

This completes the formulation of the problem.

3 Method of solution

According to Akbarov (1998), Akbarov and Yahnioglu (2001), Akbarov, Sisman
and Yahnioglu (1997), and Akbarov and Rzayev (2002a, 2002b, 2003), the sought
values are represented in series form in terms of ε as follows:

{
σi j;εi j;ui

}
=

∞

∑
q=0

ε
q
{

σ
(q)
i j ;ε

(q)
i j ;u(q)

i

}
(7)

Employing the solution procedure developed in the paper by Akbarov, Yahnioglu
and Karatas (2010) we obtain the closed system of equations and boundary con-
ditions for each approximation in (7). As was noted in Akbarov, Yahnioglu and
Karatas (2010) and others, for determination of the values of the critical param-
eters we use the zeroth and first approximations only. Under the aforementioned

solution procedure it is assumed that δ n
i + ∂u(0)

i
∂xn
≈ δ n

i . According to this and to the
corresponding boundary conditions for the zeroth approximation, we obtain:

σ
(0)
11 = p1, σ

(0)
33 = p3 and σ

(0)
i j = 0, i j 6= 11,33 (8)

Moreover, according to the relation δ n
i + ∂u(0)

i /∂xn ≈ δ n
i , and expression (8) we

obtain the following equations and boundary conditions for the first approximation:

∂

∂x j

[
σ

(1)
ji +σ

(0)
jn

∂u(1)
i

∂xn

]
= 0, ε

(1)
i j =

1
2

(
∂u(1)

i
∂x j

+
∂u(1)

j

∂xi

)
, (9)

u(1)
2

∣∣∣
x1=0;`1

= 0, u(1)
2

∣∣∣
x3=0;`3

= 0,[
σ

(1)
11 +σ

(0)
11

∂u(1)
1

∂x1

]∣∣∣∣∣
x1=0;`1

= 0, σ
(1)
13 |x1=0;`1 = 0

σ
(1)
31

∣∣∣
x3=0;`3

= 0,

[
σ

(1)
33 +σ

(0)
33

∂u(1)
3

∂x3

]∣∣∣∣∣
x3=0;`3

= 0, σ
(1)
2i

∣∣∣
x2=0;h

= 0, i = 1,2,3

(10)
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σ
(1)
2i

∣∣∣ x±2 = hA±0
(`1− `10)/2≤ x1 ≤ (`1 + `10)/2
(`3− `30)/2≤ x3 ≤ (`3 + `30)/2

=±σ
(0)
11

∂ f±

∂x1
δ

1
i ±σ

(0)
33

∂ f±

∂x3
δ

3
i ,

i = 1,2,3. (11)

Note that the equations (9) and the conditions (10) and (11) are obtained from equa-
tion (5) (except the constitutive relations) and from the conditions (6) respectively.

Let us assume that the material of the considered plate is homogeneous and transver-
sally isotropic with the principle axis of elastic symmetries Ox1,Ox2 and Ox3. In
this case, the constitutive relations of the plate material can be written as follows:

σ
(q)
ii = Ai jε

(q)
j j , i; j = 1,2,3,

σ
(q)
12 = 2A66ε

(q)
12 , σ

(q)
13 = 2A55ε

(q)
13 ,

σ
(q)
23 = 2A44ε

(q)
23 , q = 0,1,2, . . . (12)

In Eq. (12) A11,. . . ,A66 are the following operators:

Ai j ϕ(t) = Ai j0 ϕ(t)+
t∫

0

Ai j1(t− τ)ϕ(τ)dτ, i j = 11;22;33;12;13;23;44;55;66

(13)

The meaning of the notation used in Eqs. (12) and (13) is obvious.

Thus, the investigation of the buckling delamination around a rectangular edge
crack contained within a thick rectangular plate is reduced to the solutions of series-
boundary value problems such as (9)-(13). As in papers by Akbarov and Rzayev
(2002a, 2002b, 2003) and others, by direct verification it is proven that the lin-
ear equations in (9)-(13) coincide with the corresponding equations for the TDLTS
which are presented by Guz (1990, 1999).

Hence for the investigation of the buckling delamination of the plate under consid-
eration we must solve the boundary value problem (9)-(12). For this purpose we
use the principle of correspondence by using the Laplace transform:

ϕ̄(s) =
∞∫

0

ϕ(t)e−stdt (14)

with the parameter s > 0 to the equations (9)-(13). So, replacing σ
(1)
i j , ε

(1)
i j , u(1)

i and

Ai j in (9)-(13) by σ̄
(1)
i j , ε̄

(1)
i j , ū(1)

i and Āi j respectively, we obtain the corresponding
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equations and boundary conditions with respect to the Laplace transform of values
for the first approximation. For the solution to the considered problem we employ
the FEM and for the FEM modeling of the problem we use the functional:

Π =
1
2

∫∫∫
Ω−Ω′

[(
σ̄

(1)
11 +σ

(0)
11

∂ ū(1)
1

∂x1
+σ

(0)
33

∂ ū(1)
1

∂x3

)
∂ ū(1)

1
∂x1

+ σ̄
(1)
12

∂ ū(1)
1

∂x2
+ σ̄

(1)
13

∂ ū(1)
1

∂x3
+

(
σ̄

(1)
21 +σ

(0)
11

∂ ū(1)
1

∂x1
+σ

(0)
33

∂ ū(1)
1

∂x3

)
∂ ū(1)

2
∂x1

+ σ̄
(1)
22

∂ ū(1)
2

∂x2
+ σ̄

(1)
23

∂ ū(1)
2

∂x3
+(

σ̄
(1)
31 +σ

(0)
11

∂ ū(1)
3

∂x1
+σ

(0)
33

∂ ū(1)
3

∂x3

)
∂ ū(1)

3
∂x1

+ σ̄
(1)
32

∂ ū(1)
3

∂x2
+ σ̄

(1)
33

∂ ū(1)
3

∂x3

]
dx1dx2dx3−

(`3+`30)/2∫
(`3−`30)/2

(`1+`10)/2∫
(`1−`10)/2

1
s

σ
(0)
11

∂ f−

∂x1
ū(1)

1

∣∣∣∣
x2=hA−0

dx1dx3−

(`3+`30)/2∫
(`3−`30)/2

(`1+`10)/2∫
(`1−`10)/2

1
s

σ
(0)
11

∂ f +

∂x1
ū(1)

1

∣∣∣∣
x2=hA+0

dx1dx3−

(`3+`30)/2∫
(`3−`30)/2

(`1+`10)/2∫
(`1−`10)/2

1
s

σ
(0)
33

∂ f +

∂x3
ū(1)

3

∣∣∣∣
x2=hA−0

dx1dx3−

(`3+`30)/2∫
(`3−`30)/2

(`1+`10)/2∫
(`1−`10)/2

1
s

σ
(0)
33

∂ f +

∂x3
ū(1)

3

∣∣∣∣
x2=hA+0

dx1dx3 (15)

For the numerical investigations, the solution domain is divided into a finite number
of standard rectangular prism (brick) finite elements with eight nodes. The number
of finite elements is determined from the convergence requirement of the numerical
results. We should note that all computer programs used in the numerical investiga-
tions carried out have been composed by the authors in the package FTN77. After
determination of the Laplace transform of the sought values the originals are deter-
mined by employing the Schapery method (Schapery (1966)).

4 Numerical results and discussion

We assume that the plate material consists of two alternating layers whose mate-
rials are isotropic and homogeneous and that these layers are located in the Ox1x3
plane. The reinforcing layers are supposed to be pure elastic with mechanical char-
acteristics E(2) (Young’s modulus) and ν(2) (Poisson coefficient). The material of



3D FEM Analysis of the Buckling Delamination 9

the matrix layers is supposed to be linearly viscoelastic with the operators:

E(1) = E(1)
0 [1−ω0R∗α (−ω0−ω∞)] , ν

(1) = ν
(1)
0

[
1+

1−2ν10

2ν10
ω0R∗α (−ω0−ω∞)

]
(16)

where E(1)
0 are ν

(1)
0 are the instantaneous values of Young’s modulus and Poisson

coefficient, respectively; α, ω0 and ω∞ are the rheological parameters of the matrix
material, R∗α is the fractional-exponential operator of Rabotnov (1977) and this
operator is determined as:

R∗αφ (t) =
t∫

0

Rα (β , t− τ)φ (τ)dt (17)

where

Rα (β , t) = tα
∞

∑
n=0

β ntn(1+α)

Γ((1+n)(1+α))
, −1 < α ≤ 0 (18)

In Eq. (18), Γ(x) is the Gamma function.

We introduce the dimensionless rheological parameter ω = ω∞/ω0 and the dimen-
sionless time t ′ = ω

1/(1+α)
0 t and assume that η(2) = 0.5 where η(2) is the filler

concentration. It is known that in the continuum approach this composite material
is taken as a viscoelastic and transversally isotropic material with effective me-
chanical properties whose isotropy axis lies on the Ox2 axis. It is known that these
effective mechanical properties are determined through the well-known operations
described, for example, in the monograph by Christensen (1979).

For the concrete numerical investigations the initial imperfection mode is selected
as

f± (x1,x3) = hA±Asin2
(

π

`10

(
x1−

`1− `10

2

))
sin2

(
π

`30

(
x3−

(`3− `30)
2

))
.

(19)

Thus, we turn to the analysis of the numerical results and at first we consider a pure
elastic stability loss buckling delamination which takes place at t ′ = 0 and t ′ = ∞.
Note that in all numerical calculations p3 = δ p1, 0 ≤ δ ≤ 1. Hence, the critical
values of the external compressive forces which act along the Ox1 axis denoted by
P1cr.0/E(1)

0 (for t ′ = 0) and Pcr1.∞/E(1)
0 (for t ′ = ∞) are obtained for various δ and
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Figure 2: The values of P1cr.0/E(1)

0 for various E(2)/E(1)
0 and `30/`1 for which

h/`1 = 0.15, `10/`1 = 0.5, hA = h/2, t ′ = 0 and ω = 1

for selected values of the problem parameters. In the present paper, we assume that
h/` = 0.15, `3/`1 =γ31 = 1 and ν

(1)
0 = ν(2) = 0.3.

Before analyzing the numerical results, we consider the testing of the algorithm
and programs used in obtaining these results. For this purpose we consider the
graphs given in Fig. 2 which show the dependence between P1cr.0/E(1)

0 and `30/`1

for various values of E(2)/E(1)
0 in the case where `10/`1 = 0.5 and hA = h

/
2. In this

figure the corresponding values of P1cr.0/E(1)
0 , obtained in the paper by Akbarov,

Yahnioglu and Karatas (2010), are also indicated by dashed lines. According to
the well-known mechanical consideration, with `30/`1 the values of Pcr1.0/E(1)

0 ob-
tained for an embedded crack must approach the corresponding ones obtained for
a band crack. This prediction is proven by the results illustrated in Fig. 2 and this
also validates the algorithm and programs used for the present investigation.

Thus, we consider the data given in Table 1 which shows the ratio(
P1cr.0/E(1)

0

)
/
(

P1cr.∞/E(1)
0

)
under ω = 1 and `30/`1 = 0.5 for various of `10/`1.
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It follows from this table that the values of P1cr.0/E(1)
0 (given in the numerator of

the ratio) and P1cr.∞/E(1)
0 (given in the denominator of the ratio) decrease monoton-

ically with `10/`1. Moreover the data given in this table show that the bi-axiality of
the external compression, i.e. an increase of the ratio δ (= p3/p1) causes a decrease
in the values of P1cr.0/E(1)

0 and P1cr.∞/E(1)
0 .

Table 1: The values of P1cr.0/E(1)
0 (P1cr.∞/E(1)

0 ) in the numerator (denominator) of
the ratio for various elasticity modulus (E(2)/E(1)

0 ), δ = p3/p1 and `10/`1 under
`30/`1 = 0.5 and hA = h/2

E(2)/E(1)
0 δ = p3

p1

`10/`1
0.6 0.5 0.4 0.3 0.2 0.15

1

0.0 0.1167
0.0858

0.1174
0.0865

0.1203
0.0882

0.1342
0.0971

0.1699
0.1205

0.2021
0.1411

0.3 0.0933
0.0691

0.0955
0.0705

0.1032
0.0757

0.1220
0.0884

0.1623
0.1151

0.1965
0.1373

0.5 0.0796
0.0590

0.0838
0.0619

0.0938
0.0688

0.1148
0.0832

0.1573
0.1117

0.1929
0.1348

1.0 0.0569
0.0422

0.0634
0.0468

0.0756
0.0555

0.0991
0.0719

0.1451
0.1031

0.1829
0.1281

5

0.0 0.2817
0.1966

0.2857
0.2026

0.2884
0.2033

0.3092
0.2091

0.3657
0.2308

0.4146
0.2500

0.3 0.2313
0.1699

0.2347
0.1706

0.2482
0.1759

0.2815
0.1907

0.3493
0.2207

0.4035
0.2436

0.5 0.1980
0.1463

0.2063
0.1503

0.2257
0.1601

0.2648
0.1796

0.3387
0.2142

0.3961
0.2393

1.0 0.1418
0.1048

0.1561
0.1138

0.1819
0.1292

0.2287
0.1555

0.3127
0.1985

0.3766
0.2284

10

0.0 0.4015
0.2537

0.4123
0.2617

0.4135
0.2669

0.4280
0.2677

0.4767
0.2784

0.5196
0.2906

0.3 0.3436
0.2335

0.3456
0.2341

0.3578
0.2360

0.3903
0.2452

0.4558
0.2666

0.5060
0.2834

0.5 0.2956
0.2049

0.3046
0.2076

0.3256
0.2153

0.3674
0.2311

0.4422
0.2590

0.4970
0.2787

1.0 0.2119
0.1470

0.2306
0.1573

0.2627
0.1740

0.3176
0.2004

0.4089
0.2405

0.4733
0.2664

Table 2 shows the influence of `30/`1 on the values of P1cr.0/E(1)
0 (upper number)

and P1cr.∞/E(1)
0 (lower number) under ω = 1 and `10/`1 = 0.5. It follows from this
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table that the values of P1cr.0/E(1)
0 and P1cr.∞/E(1)

0 increase with decreasing crack
length in the direction of the Ox3 axis.

Table 2: The values of P1cr.0/E(1)
0 (P1cr.∞/E(1)

0 ) in the numerator (denominator) of
the ratio for various elasticity modulus (E(2)/E(1)

0 ), δ = p3/p1 and `30/`1 under
`10/`1 = 0.5 and hA = h/2

E(2)/E(1)
0 δ = p3

p1

`30/`1
0.8 0.7 0.6 0.5 0.4 0.3 0.2

1

0.0 0.0713
0.0529

0.0796
0.0590

0.0934
0.0692

0.1174
0.0865

0.1519
0.1099

0.1852
0.1323

0.2480
0.1747

0.3 0.0643
0.0497

0.0699
0.0518

0.0792
0.0586

0.0955
0.0705

0.1252
0.0918

0.1686
0.1209

0.2219
0.1571

0.5 0.0602
0.0446

0.0644
0.0478

0.0714
0.0529

0.0838
0.0619

0.1067
0.0783

0.1490
0.1079

0.2043
0.1446

1.0 0.0515
0.0383

0.0534
0.0396

0.0569
0.0422

0.0634
0.0468

0.0756
0.0555

0.0991
0.0719

0.1451
0.1031

5

0.0 0.1786
0.1327

0.1991
0.1476

0.2321
0.1705

0.2857
0.2026

0.3482
0.2291

0.4079
0.2606

0.5157
0.3438

0.3 0.1609
0.1197

0.1749
0.1298

0.1970
0.1454

0.2347
0.1706

0.2989
0.2087

0.3759
0.2420

0.4724
0.3027

0.5 0.1508
0.1121

0.1612
0.1197

0.1779
0.1314

0.2063
0.1503

0.2564
0.1820

0.3412
0.2269

0.4364
0.2716

1.0 0.1292
0.0962

0.1338
0.0995

0.1418
0.1048

0.1561
0.1138

0.1819
0.1292

0.2287
0.1555

0.3127
0.1985

10

0.0 0.2682
0.1874

0.2986
0.2077

0.3451
0.2356

0.4123
0.2617

0.4715
0.2817

0.5368
0.3114

0.6600
0.4103

0.3 0.2420
0.1693

0.2626
0.1832

0.2942
0.2035

0.3456
0.2341

0.4253
0.2666

0.4990
0.2934

0.6001
0.3545

0.5 0.2266
0.1586

0.2421
0.1691

0.2658
0.1842

0.3046
0.2076

0.3695
0.2437

0.4658
0.2791

0.5609
0.3261

1.0 0.1943
0.1363

0.2010
0.1406

0.2119
0.1470

0.2306
0.1573

0.2627
0.1740

0.3176
0.2004

0.4089
0.2406

Table 3 shows the influence of the distance (h−hA)/`1 between the crack’s location
plane and the upper face-plane of the plate on the values of

(
P1cr.0/E(1)

0

)
/
(

P1cr.∞/E(1)
0

)
obtained under `10/`1 = 0.5 and `30/`1 = 0.5. This table shows that the values of
P1cr.0/E(1)

0 and P1cr.∞/E(1)
0 decrease rapidly with decreasing (h−hA)/`1.
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Table 3: The values of P1cr.0/E(1)
0 (numerator) and P1cr.∞/E(1)

0 (denominator)
for various(h−hA)/`1, elasticity modulus (E(2)/E(1)

0 ) and δ = p3/p1 under
`10/`1 = 0.5 and `30/`1 = 0.5

E(2)/E(1)
0 δ = p3

p1

(h−hA)/`1
0.0750 0.050 0.0375 0.0250

1

0.0 0.1174
0.0865

0.0579
0.0436

0.0436
0.0329

0.0256
0.0195

0.1 0.1096
0.0808

0.0533
0.0496

0.0407
0.0308

0.0237
0.0181

0.5 0.0838
0.0619

0.0398
0.0395

0.0312
0.0237

0.0181
0.0138

1 0.0634
0.0468

0.0299
0.0302

0.0236
0.0179

0.0136
0.0104

10

0.0 0.4123
0.2617

0.2404
0.1760

0.1808
0.1398

0.1058
0.0874

0.1 0.3910
0.2557

0.2256
0.2702

0.1701
0.1325

0.0987
0.0818

0.5 0.3046
0.2076

0.1720
0.1318

0.1326
0.1048

0.0756
0.0631

1 0.2306
0.1573

0.1648
0.0996

0.1007
0.0798

0.0572
0.0478

Now we consider some numerical results obtained for the critical time i.e. for the
t ′cr. It is well known that under investigation of the viscoelastic stability loss prob-
lem, the selected values of the external force p1/E(1)

0 must satisfy the inequality
P1cr.0/E(1)

0 < P1/E(1)
0 <P1cr.∞/E(1)

0 . For some values of p1/E(1)
0 the results obtained

for t ′cr are given in Table 4 for various `10/`1 and δ = p3
p1

under ω = 1; α = −0.5,

`30/`1 = 0.5 and E(2)/E(1)
0 = 10. It follows from these results that the values of t ′cr

decrease with p1/E(1)
0 . This statement agrees with obvious mechanical considera-

tions.

Table 5 shows the values of t ′cr obtained for various ω and δ = p3/p1 under α =
−0.5, `10/`1 = 0.5, `30/`1 = 0.5 and for the selected values of p1/E(1)

0 . It follows
from these numerical results that the values of t ′cr increase with ω . Note that the
parameter ω characterizes the modulus of elasticity of the matrix material under
t ′ = ∞; therefore the results given in Table 5 confirm known mechanical consider-
ations.
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Table 4: The values of t ′cr for various δ = p3/p1, `10/`1and p1/E(1)
0 under ω = 1,

α =−0.5, `30/`1 = 0.5 and E(2)/E(1)
0 = 10

δ = p3
p1

`10/`1 p1/E(1)
0 t ′cr

0.3

0.60
0.28 0.4167
0.30 0.0943
0.33 0.0042

0.50
0.28 0.4292
0.30 0.0994
0.33 0.0054

0.40
0.28 0.6187
0.30 0.1609
0.33 0.0169

0.5

0.60
0.25 0.2168
0.27 0.0323
0.29 0.0009

0.50
0.25 0.3434
0.27 0.0629
0.29 0.0063

0.40
0.27 0.2033
0.29 0.0443
0.32 0.0002

Table 5: The values of t ′cr for various δ = p3/p1 , ω and p1/E(1)
0 under α =−0.5,

`10/`1 = 0.5, `30/`1 = 0.5 and E(2)/E(1)
0 = 10

p1/E(1)
0 δ = p3

p1
ω t ′cr

0.33 0.3
1 0.0054
2 0.0067
3 0.0086

0.27 0.5
1 0.0629
2 0.1510
3 0.7446
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Table 6 shows the dependencies between α and t ′cr for the case where ω = 1,
`10/`1 = 0.5, `30/`1 = 0.5 and for the selected values of p1/E(1)

0 . From these nu-
merical results it follows that the values of t ′cr decrease with |α|.

Table 6: The values of t ′cr for various δ = p3/p1 ,α and p1/E(1)
0 under ω = 1,

`10/`1 = 0.5, `30/`1 = 0.5 and E(2)/E(1)
0 = 10

p1/E(1)
0 δ = p3

p1
α t ′cr

0.33 0.3
-0.3 0.0197
-0.5 0.0067
-0.7 0.0002

0.27 0.5
-0.3 0.1137
-0.5 0.0629
-0.7 0.0157

Figure 3 shows schematically the distribution of u2E(2)

(`1 p1)
with respect x1 and x3 un-

der x2 = (h−hA)+ 0 for δ = p3
p1

= 0.3, E(2)/E(1)
0 = 10, (h−hA)/`1 = 0.075. In

other words, Figure 3 shows the buckling delamination mode for the external force
p1/E(1)

0 which is very near the corresponding P1cr.0/E(1)
0 , i.e.

∣∣∣p1cr.0/E(1)
0 − p1/E(1)

0

∣∣∣≈
10−4. Note that in this figure the axis x1(`3− x3) is denoted by x (z). Analysis of
the Figure 3 and other related results (which are not illustrated here) shows that in
the cases where `30 > k.`10 (k ∈ R and for the considered case k=0.60) the buckling
delamination mode is similar (in the geometrical sense) to the initial imperfection
mode. However, in the cases where`30 ≤ 0.60`10 the buckling delamination mode
has a more complicated character.

5 Conclusion

According to the foregoing analyses the following main conclusions can be drawn:

1. The type of buckling delamination mode of the embedded rectangular crack
surfaces depends not only on the initial imperfection mode, but also on the
ratio of the lengths of the rectangular crack along the direction of the Ox1
and Ox3 axes,

2. The values of the critical forces decrease monotonically with the crack length
along the Ox1 axis, as well as with the crack depth along the Ox3axis,

3. The values of the critical forces decrease as the crack gets closer to the free
plane of the plate, i.e. with decreasing (h−hA)/`1,
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(a) 

 

   
(b) 

 Figure 3: The buckling delamination mode a) in the case where `30 > 0.60`10 and
b) in the case where `30 ≤ 0.60`10

4. The critical time decreases with the p1/E(1)
0 ,

5. The values of the critical time (t ′cr) increase with rheological parameter ω ,

6. For the considered cases the values of the critical time (t ′cr) decrease with the
absolute values of the rheological parameter α ,

7. The two-axiality of the external compressing force, i.e. δ = p3/p1 6= 0 or the
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existence of the compressing force p3 in the Ox3 axes causes a decrease in
the critical value.
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