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Local Electroelastic Field and Effective Electroelastic
Moduli of Piezoelectric Nanocomposites with Interface

Effect
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Abstract: Due to the large ratio of surface area to volume in nanoscale objects,
the property of surfaces and interfaces likely becomes a prominent factor in con-
trolling the behavior of nano-heterogeneous materials. In this work, based on the
Gurtin-Murdoch surface/interface elastic theory, a distinct expression is derived for
embedded nano-inclusion in an infinite piezoelectric matrix coupled with interface
effect. For the problem of a spherical inclusion in transversely isotropic piezoelec-
tric medium, we reach a conclusion that the elastic and electric field are uniform
when eigen-strain and eigen-electric field imposed on the inclusion are uniform
even in the presence of the interface influence. The electroelastic fields in the inclu-
sion are related to both interface electroelastic parameters and the radius of the in-
clusion. Then overall properties of the composites are estimated by using the dilute
distribution model. Numerical results reveal that the effective electroelastic moduli
are function of the interface parameters and the size of the nano-inhomogeneities.
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1 Introduction

Along with advances in nanotechnology, many investigations are devoted to nanoscale
science and developments of nanocomposites. Nanocomposites are of interest be-
cause of their unusual mechanical, thermal, electrical, optical and magnetic prop-
erties (Cherkaoui and Capolungo, 2009; Hu and Shen, 2010; Shen and Hu, 2010;
Xu and Shen, 2012). That is because, when the size is on nanoscale, the prop-
erty of surfaces and interfaces becomes a prominent factor in controlling the whole
behavior due to the large ratio of surface/interface to volume.
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Many studies focused on the effect of surface/interface on the elastic properties
of nanocomposites. The work of Sharma et al. (2003) is one of the pioneering
works to combine surface elasticity with Eshelby’s formalism to nanoinhomogene-
ity problem. They derived the closed-form expression for the elastic state of spher-
ical inhomogeneities with surface effects using a variational formulation. Then
Sharma and Ganti (2004) modified the classical formulation of Eshelby for embed-
ded inclusions by incorporating the interface effect. They proved that only inclu-
sions of a constant curvature admit a uniform elastic state under uniform eigen-
strains coupled with interface elasticity. Duan et al. (2005b) extended the Eshelby
formalism to nano-inhomogeneities. Duan et al. (2005a) also investigated the gen-
eral micromechanical framework for the prediction of the effective elastic moduli
of the heterogeneous materials containing spherical nanoinhomogeneities. In 2008,
Duan et al. (2008) gave a review article about how to extend the classical theory
of elasticity to nanoscale. Lim et al. (2006) analyzed the influence of interface
stress on the elastic field within a nanoscale inclusion when the eigenstrain is non-
hydrostatic. Yang (2006) gave the effective bulk modulus of a composite consisting
of spherical inclusions at dilute concentrations, in which the surface effect is sim-
ply simulated by a constant residual tension. Huang et al. ( Huang and Sun, 2007;
Huang and Wang, 2007) considered the change of the elastic fields induced by the
interface energy and interface stresses using the finite deformation theory. They
thought during the deformation process, the size, the shape and the curvature ten-
sor of the interface will change, which is different from Sharma and Ganti (2004)
and Duan et al. (2005a). Tian and Rajapakse (2007) studied the two-dimensional
elastic field of a nanoscale elliptical inhomogeneity embedded in an infinite ma-
trix under arbitrary remote loading and a uniform eigenstrain by complex potential
function method. Chen et al. (Chen et al., 2007; Chen and Dvorak, 2006; Chen
et al., 2007) predicted the effective elastic moduli of the heterogeneous materials
containing nano-inhomogeneities. All the studies indicate that the surface/interface
effect is important to the mechanical behavior of nanocomposites.

In addition to the elastic behavior, lots of theoretical and technological interests fo-
cused on piezoelectric nanomaterials and nanocomposites recently. For examples,
Huang and Yu (2006) gave the stress and electric fields in a piezoelectric ring under
prescribed electric potential based on the surface piezoelectricity. Chen (2008) con-
sidered the macroscopic behavior of two-phase fibrous piezoelectric composites.
Xiao et al. (2011) studied the nanocomposites under far-field antiplane mechanical
load and inplane electric load. The present work concerns with the fundamental
solution of the electroelastic fields incorporating the interface effect by means of
Green’s function methods. Additionally, the influence of the interface electroelastic
modulus on the overall effective modulus is discussed in detail, which has not been
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analyzed yet in previous articles.

The paper is organized as follows. In Sec.2, we derive the general formulas of the
electroelastic fields for nanoinclusion embedded in an infinite piezoelectric matrix
including the interface effect. We obtain the closed form of the electroelastic fields
within the spherical inclusion under some assumption in Sec.3. Based on the equiv-
alent inclusion method, effective electroelastic constants are investigated by using
dilute schemes in Sec.4. In Sec.5, the size effects on local electroelastic fields and
effective electroelastic moduli are numerically discussed and illustrated. Finally,
concluding remarks are made in Sec.6.

2 General formulas

The composite under consideration consists of a piezoelectric matrix in which an
arbitrary shaped inclusion are embedded. We suppose a prescribed uniform eigen-
strain εεε∗ and uniform eigen-electric field E∗ within the domain of the inclusion.
The constitutive relations in the bulk piezoelectric materials are written as:

σσσ
B = c : εεε− e ·E (1)

DB = e : εεε +κκκ ·E (2)

where c, e and κκκ being the bulk elastic, piezoelectric and dielectric tensors. The
superscript “B” represents the quantity on the bulk.

If the free charges and body forces do not exist, the equilibrium and Gauss equa-
tions can be written as :

∇ ·σσσB = 0 (3)

∇ ·DB = 0 (4)

As a departure from the classical solution, the interface Π between the inclusion
and matrix is endowed with a deformation-dependent interfacial energy Γ. Here,
we first introduce the tangent projection operator ps of the interface Π. It is defined
by Gurtin et al. (1998):

ps = I−n⊗n (5)

Here, I is the three-dimensional identity tensor and n is the unit normal vector on
the interface. This surface projection tensor maps tensor fields from bulk to surface.
In Gurtin et al. (1998), the interface is assumed to be coherent in which no atomic
bonds are broken. The coherency implies that the tangential projection of strain
and the tangential components of electric field are continuous across Π. So, the
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Figure 1: Schematic of the problem

interface can be considered as a material surface and every point x of Π is endowed
with a surface strain εεεs = psεεεps, a surface stress σσσ s, a surface electric field Es = psE
and a surface electric displacement Ds. As proposed by Huang and Yu (2006), the
constitutive equations for the surface are expressed as:

σσσ
s = σσσ

0 + cs : εεε
s− es ·Es (6)

Ds = D0 + es : εεε
s +κκκ

s ·Es (7)

where σσσ0 and D0 can be termed as residual surface stress and residual surface
electric displacement without applied strain and electric field, and cs, es and κκκs are
surface elastic moduli, surface piezoelectric tensor and surface dielectric tensor.
The superscript “s” represents the quantity on the surface.

Hu and Shen (2009) gave the generalized electromechanical Young-Laplace equa-
tions with surface and gradient effects, as well as effect of electrostatic force. In
this paper, we use the results only considering the surface/interface effect, which
can be written as(
σσσ

M−σσσ
I) ·n =−divsσσσ

s (8)(
DM−DI) ·n =−divsDs (9)

Here the superscript “M” and “I” mean the matrix and the inclusion respectively,
which both are the bulk quantities. Eq. (8) and Eq. (9) connect the bulk quantities
and the interface quantities which are significant in the following derivation.



Local Electroelastic Field and Effective Electroelastic Moduli 283

Notes that the eigen-value is only nonzero within the inclusion domain, introducing
the characteristic function H(x) of Ω (see in Fig.1) as:{

H(x) = 1|x ∈Ω

H(x) = 0|x /∈Ω
(10)

so the whole constitutive law for the inclusion-matrix is given by{
σσσB = c : {εεε−εεε∗H(x)}− e · {E−E∗H(x)}
DB = e : {εεε−εεε∗H(x)}+κκκ · {E−E∗H(x)}

(11)

Analogous to Sharma and Ganti (2004), substituting Eq. (11) into Eq. (3) and Eq.
(4), and accounting for the discontinuity of σ(x) and D(x) across the interface Π

yield:

∇ ·σσσB =

∇ · (c : εεε)−∇ · {c : εεε
∗H(x)}−∇ · (e ·E)+∇ · {e ·E∗H(x)}− (σM−σσσ

I) ·nδΠ(x)
= 0 (12)

∇ ·DB =

∇ · (e : εεε)−∇ · {e : εεε
∗H(x)}+∇ · (κκκ ·E)−∇ · {κκκ ·E∗H(x)}− (DM−DI) ·nδΠ(x)

= 0 (13)

where δΠ(x) is the Dirac delta function defined on Π.

Coupling the generalized electromechanical Young-Laplace equations , Eq. (12)
and Eq. (13) can be rewritten as:

∇ · (c : εεε)−∇ · (e ·E) = ∇ · {c : εεε
∗H(x)}−∇ · {e ·E∗H(x)}︸ ︷︷ ︸−divsσσσ

s
δΠ(x)︸ ︷︷ ︸ (14)

∇ · (e : εεε)+∇ · (κκκ ·E) = ∇ · {e : εεε
∗H(x)}+∇ · {κκκ ·E∗H(x)}︸ ︷︷ ︸−divsDs

δΠ(x)︸ ︷︷ ︸ (15)

Obviously, the right hand side of the equations contain the eigen items caused by
εεε∗ and E∗, and the interface items caused by σσσ s and Ds. Analogous to Sharma
and Ganti (2004), treating the underlined terms as body force and body electric
charge respectively, in conjunction with the piezoelectric Green’s function, we can
write the displacement field and electric potential due to the eigenfield and interface
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effect as

u(x) =−
∫
V

G1(y−x)(∇ · {c : εεε∗H(y)}−∇ · {e ·E∗H(y)})dV (y)

−
∫
V

G2(y−x)(∇ · {e : εεε∗H(y)}+∇ · {κκκ ·E∗H(y)})dV (y)

+
∫
Π

G1(y−x)divsσσσ
s(y)dS(y)+

∫
Π

G2(y−x)divsDs(y)dS(y)

(16)

Φ(x) =−
∫
V

G3(y−x)(∇ · {c : εεε∗H(y)}−∇ · {e ·E∗H(y)})dV (y)

−
∫
V

G4(y−x)(∇ · {e : εεε∗H(y)}+∇ · {κκκ ·E∗H(y)})dV (y)

+
∫
Π

G3(y−x)divsσσσ
s(y)dS(y)+

∫
Π

G4(y−x)divsDs(y)dS(y)

(17)

Here G1,G2,G3,G4 are Green’s tensors for classical piezoelectrics (see in Ap-
pendix). We make use of Gauss theorem to cast Eq. (16) and Eq. (17) in more
explicit forms:

u =−
∫
Ω

(∇x⊗G1) :(c : εεε∗− e ·E∗)dV −
∫
Ω

(∇x⊗G2)·[e : εεε∗+k ·E∗]dV

+
∫
Π

G1 ·divsσ
sdS +

∫
Π

G2divsDsdS
(18)

Φ =−
∫
Ω

(∇x⊗G3) :(c : εεε∗− e ·E∗)dV −
∫
Ω

(∇x⊗G4)·[e : εεε∗+k ·E∗]dV

+
∫
Π

G3 ·divsσ
sdS +

∫
Π

G4divsDsdS
(19)

In the derivation of Eq. (18) and Eq. (19), the relation ∂Gi(y−x)
∂y = − ∂Gi(y−x)

∂x (i=1,
2, 3, 4) and the fact that Green’s functions are equal to zero at infinity are also used.

Correspondingly, the resulting strain field and electric field components are given
by:

εεε(x) = S1 : εεε∗−S2 ·E∗

+sym
{

∇x⊗
∫
Π

G1 ·divsσσσ
sdS
}

+ sym
{

∇x⊗
∫
Π

G2divsDsdS
}

(20)

E(x) =−S3 : εεε∗+S4 ·E∗

−
{

∇x⊗
∫
Π

G3 ·divsσσσ
sdS
}
−
{

∇x⊗
∫
Π

G4divsDsdS
}

(21)

Here S1,S2,S3,S4 are piezoelectric Eshelby tensors (see in Appendix). The relation
between piezoelectric Green’s function and Eshelby tensors are also revealed in
Appendix. The notation sym {·} represents the symmetric part of the quantities.
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Until now, we obtained the general expressions of strain and electric fields in the
piezoelectric composites incorporating interface effects. The equations are implicit
since the interface stress and interface electric displacement are related to bulk
strain and bulk electric field. Without additional assumption, further simplification
seems to be infeasible. So particular case are studied in detail in the next section.

3 Local electroelastic fields

When dealing with piezoelectric solids, transverse isotropy is of fundamental im-
portant in technology. So we assume the material is transversely isotropic. Here,
the shape of the inclusion is spherical which are endowed with a constant curvature.
Here again, εεε∗ and E∗ will be uniformly distributed in subdomain Ω and vanish out-
side Ω. Since the medium is transverse isotropic, the interface can be regarded as
isotropic. That means, the surface piezoelectric constant can be neglected. Mean-
while, if the deformation is infinitesimal, the contribution of εεεs is negligibly small
compared to the residue surface stress .(Yang, 2006). To simplify the derivation,
we set D0 = 0 in this paper. Thus, the constitutive equation for the interface can be
reduced to:

σσσ
s = σσσ

0 (22)

Ds = κκκ
s ·Es (23)

Now a series of calculations will be exhibited to derive the strain and electric field
within a spherical inclusion. First, we calculate the right items of Eq. (20) and Eq.
(21) for a constant electric field E(x) = EΩ inside the inclusion.

According to Sharma and Ganti (2004) and Quang et al. (2010), the surface diver-
gence of σσσ s and Ds are obtained as:

divsσσσ
s = divs(σ0ps) = σ

0divsps = 2σ
0
λn (24)

divsDs =−2λksEΩ ·n (25)

where λ is the mean curvature of the inclusion. Here λ = 1/R0 for spheres where
R0 is the radius. In addition, κκκs = ksPs for the point x on the interface Π.

Substituting Eq. (24) and Eq. (25) into Eq. (20) and Eq. (21), and using the diver-
gence theorem, the third term on the right hand side of Eq. (20) can be obtained as
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following:

sym
{

∇x⊗
∫
Π

G1 ·divsσσσ
sdS
}

= sym
{

∇x⊗
∫
Π

Gm j(y− x)2σ0λn jdS(y)
}

= (2σ0λ )sym
{

∇x⊗
∫
Π

Gm j(y− x)n jdS(y)
}

= (2σ0λ )sym
{

∇x⊗
∫
Ω

∇ ·G1(y−x)dV (y)
}

=−sym
{

∇x⊗
∫
Ω

∇x⊗G1(y−x)dV (y)
}

: (2σ0λ )I = (2σ0λ )T1 : I

(26)

The fourth term on the right hand side of Eq. (20) is :

sym
{

∇x⊗
∫
Π

G2divsDsdS
}

=−(2λks)sym
{

∇x⊗
∫
Π

Gm4(y− x)EΩ
i nidS(y)

}
=−(2λks)sym

{
∇x⊗

∫
Ω

(Gm4(y− x)EΩ
i ),idV (y)

}
=−(2λks)sym

{
∇x⊗

∫
Ω

[Gm4,i(y− x)EΩ
i +Gm4(y− x)EΩ

i,i]dV (y)
}

= (2λks)sym
{

∇x⊗
∫
Ω

∇x⊗G2(y−x)dV (y)
}
·EΩ = (−2λks)T2 ·EΩ

(27)

Similarly, the third term on the right hand side of Eq. (21) can be written as:

−
{

∇x⊗
∫
Π

G3 ·divsσσσ
sdS
}

=−(2σ0λ )
{

∇x⊗
∫
Π

G4 j(y− x)n jdS(y)
}

= (−2σ0λ )T3 : I
(28)

The fourth term on the right hand side of Eq. (21) is:

−
{

∇x⊗
∫
Π

G4divsDsdS
}

= (2λks)
{

∇x⊗
∫
Π

G44(y− x)EΩ
i nidS(y)

}
= (2λks)T4 ·EΩ

(29)

Here, the four interaction tensors T1, T2, T3, T4 are related to piezoelectric Es-
helby tensors S1, S2, S3, S4. The explicit expressions of these tensors are elabo-
rated in Appendix. Then Eq. (20) and Eq. (21) can be reduced to

εεε(x) = S1 : εεε
∗−S2 ·E∗+(

2σ0

R0
)T1 : I− (

2ks

R0
)T2 ·EΩ (30)
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E(x) = −S3 : εεε
∗+S4 ·E∗− (

2σ0

R0
)T3 : I+(

2ks

R0
)T4 ·EΩ (31)

If the electric field is constant within the inclusion, E(x) must be identical to EΩ

for x inside the inclusion. Thus, we have:

E(x)|x∈Ω = −S3 : εεε
∗+S4 ·E∗− (

2σ0

R0
)T3 : I+(

2ks

R0
)T4 ·EΩ = EΩ (32)

For x within the spherical inclusion, the classical piezoelectric Eshelby tensors
S1,S2,S3,S4 are all constant tensors in the classical piezoelectric theory (Wang,
1992; Dunn and Taya, 1993; Dunn and Wienecke, 1997). So, form Eq. (32) we can
get the conclusion that in this particular case, the electric fields within the inclusion
are uniform even including interface effect. When EΩ =constant, it is easy to get
that:

εεε(x)|x∈Ω ≡ εεε
Ω = S1 : εεε

∗−S2 ·E∗+(
2σ0

R0
)T1 : I− (

2ks

R0
)T2 ·EΩ = constant (33)

This is the strain field within the inclusion, and is also identically uniform when
concerning interface effect. Moreover, we emphasize that the conclusion that elec-
troelastic fields are uniform inside the inclusion is only established under the as-
sumptions in this section.

4 Effective electroelastic moduli

Since for a spherical inclusion, strain and electric fields with interface effect are
uniform, the equivalent inclusion method can be easily applied to investigate piezo-
electric inhomogeneities. At the macroscopic scale, the composite is assumed to be
statistically homogeneous. The corresponding effective moduli are characterized
by:

σ̃σσ = c∗ 〈εεε〉− e∗ 〈E〉 (34)

D̃ =e∗ 〈εεε〉+k∗ 〈E〉 (35)

where c∗,e∗,k∗ are effective elastic, piezoelectric and dielectric constants with in-
terface effect, respectively. σ̃ , D̃ denote the macroscopic stress and electric dis-
placement respectively. Here, the symbol <> denotes the volume average. Ac-
cording to Duan et al. (2005a) and Quang et al. (2010), unlike the classical case
where the matrix-inclusion interface is perfect, the macroscopic stress and electric
displacement can be determined by:

σ̃σσ = 〈σσσ〉+ 1
V

∫
Π

(σσσM−σσσ
I) ·nxdx (36)
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D̃ = 〈D〉+ 1
V

∫
Π

(DM−DI) ·nxdx (37)

Here, V denotes the volume of the domain W , and W is the representative volume
element (see in Figure 2). Compared with the classical case, a new term due to the
discontinuity of σ(x) and D(x) across the interface Π appears in Eq. (36) and Eq.
(37) respectively.

In this paper, the effective moduli of composites with interface effect are deduced
by applying dilute schemes. Now we consider the composites described in Figure
2.

 
 

W

W∂

Ω
Π

Figure 2: A schematic illustration of nanocomposites containing spherical inhomo-
geneities of same radius

On the boundary ∂W , the homogeneous strain and electric field boundary condition
are prescribed. With the framework of dilute distribution model, the interaction
between the inhomogeneities is omitted. Then, the macroscopic stress and electric
displacement obtained from Eq. (36) and Eq. (37) are calculated by:

σ̃ = c0 : 〈εεε〉− e0 〈E〉+ vI(δc) : εεε
Ω− vI(δe) ·EΩ− (

2σ0

R0
)vII (38)

D̃ = e0 : 〈εεε〉+k0 · 〈E〉+ vI(δe) : εεε
Ω + vI(δk) ·EΩ +(

2ks

R0
)vIEΩ (39)



Local Electroelastic Field and Effective Electroelastic Moduli 289

with

〈εεε〉= εεε
0; 〈E〉= E0 (40)

where c0,e0,k0 are moduli of matrix while c1,e1,k1 denote the moduli of the in-
clusion, and δc = c1− c0,δe = e1− e0,δk = k1−k0. vI is the volume fraction of
the inclusion phase.εεε0 and E0 are uniform strain and electric field applied on ∂W .

According to the equivalent inclusion method, the inhomogeneity can be simulated
by an equivalent inclusion with a uniform fictitious εεε∗ and E∗. The fictitious εεε∗ and
E∗ can be obtained from the following equations

c0 : εεε
∗− e0 ·E∗+(δc) : εεε

Ω− (δe) ·EΩ =−(δc) : εεε
0 +(δe) ·E0 (41)

e0 : εεε
∗+k0 ·E∗+(δe) : εεε

Ω +(δk) ·EΩ =−(δe) : εεε
0− (δk) ·E0 (42)

Then by substituting Eqs. (32) and (33) into Eqs. (41) and (42), we can get the
expressions of εεε∗ and E∗ which are related to εεε0 and E0. Correspondingly, the
uniform strain εεεΩ and electric field EΩ inside the homogeneity can be derived im-
mediately through Eq. (32) and Eq. (33). Bring the results of εεεΩ and EΩ into Eq.
(38) and Eq. (39), we get the expressions of σ̃ and D̃. According to the definitions
of Eq. (34) and Eq. (35), we can obtain the expression of c∗,e∗,k∗, which depend
on the inhomogeneity radius R0.

5 Numerical results

5.1 Local electroelastic fields

To numerically illustrate the features of the results obtained above, we now con-
sider a spherical inclusion undergoing uniform εεε∗ and E∗ embedded in an infinite
matrix which is transverse isotropic. PZT-5 material is considered, and its elec-
troelastic constants are listed in Table 1. The interface properties can be obtained
through atomistic caculations. However, due to lack of such work on piezoelectric
materials, we choose σ0 = 0.5J / m2 and ks = 4.5×10−17c2/N ·m2 as an approxi-
mation.

The variation of the component of electric field and strain inside the inclusion with
the inclusion radius R0 is plotted in Fig. 3 and Fig. 4, respectively. The superscript
“c” denotes the value without the interface effect. One can figure out that when
R0 is in the range of several nanometers, both the electric field and strain deviate
from their classical solutions, while they approach to their classical solutions with
the increase of R0. These figures show that the interface effect is significant on the
strain and electric fields in nanometer scale.
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Figure 3: Electric field inside inclusion as a function of inclusion radius
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 Figure 4: Strain inside inclusion as a function of inclusion radius
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5.2 Effective electroelastic moduli

Here as an example, we choose PZT-5H as the inhomogeneity and PZT-5 as the
matrix. The electroelastic constants of the inhomogeneity and matrix are listed in
Table 1. Using the results obtained in Section 3 and 4, the following procedures are
taken:

Table 1: Electroelastic material properties
c11
(Gpa)

c12
(Gpa)

c13
(Gpa)

c33
(Gpa)

c44
(Gpa)

e31

(C / m2)
e33

(C / m2)
e15

(C / m2)
κ11/κ0 κ33/κ0

PZT-5 121 75.4 75.2 111 21.1 -5.4 15.8 12.3 916 830
PZT-5H 126 55 53 117 35.3 -6.5 23.3 17.0 1706.2 1468.9

κ0 = 8.85×10−12(C2 / Nm2),

which is the permittivity of free space.

(a) Only ε0
33 6= 0

From Eq.(38), one obtains

σ̃33 = c0
33ε0

33 + vI[(c1
13− c0

13)ε
Ω
11 +(c1

13− c0
13)ε

Ω
22 +(c1

33− c0
33)ε

Ω
33]

− vI[(e1
33− e0

33)E
Ω
3 ]− (2σ0

R0
)vI = c̄∗33ε0

33
(43)

(b) Only E0
3 6= 0

From Eq.(39), one obtains

σ̃11 =−e0
31E0

3 + vI[(c1
11− c0

11)ε
Ω
11 +(c1

12− c0
12)ε

Ω
22 +(c1

13− c0
13)ε

Ω
33]

− vI(e1
31− e0

31)E
Ω
3 − (2σ0

R0
)vI =−ē∗31E0

3
(44)

D̃3 = k0
33E0

3 + vI[(e1
15− e0

15)ε
Ω
12 +(e1

33− e0
33)ε

Ω
13]

+ vI(k1
33− k0

33)E
Ω
3 +(2ks

R0
)vIEΩ

3 = k̄∗33E0
3

(45)

According to Eq. (43), (44) and (45), we plot the value of c̄∗33/c∗33, ē∗31/e∗31, k̄∗33/k∗33
versus the radius of the inhomogeneity R0 and interface parameters in Fig. 5-Fig.
8 respectively. Here, c∗33, e∗31 and k∗33 are the classical effective electroelastic con-
stants without interface effect. Fig. 5 shows that the effective elastic moduli de-
pends on size dramatically when R0 is on the scale of nanometer. c̄∗33/c∗33 increases
with increasing the inhomogeneity size and approaches to the classical solution.
For the same inhomogeneity size, the value of c̄∗33/c∗33 decreases when σ0 increases.
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Meanwhile, c̄∗33/c∗33 appraoches to 1 (the calssical value) more quickly for a larger
σ0. The similar conclusions can be obtained for effective piezoelectric constant
which are shown in Fig.6. By the way, we found that the values of ks have negligi-
ble effects on effective elastic constants and piezoelectric constants.
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Figure 5: Effective elastic modulus as a function of interface properties and inho-
mogeneity radius

Fig.7 gives the effective dielectric modulus versus ks and R0 when σ0 = 0.5J / m2,
while Fig.8 gives the effective dielectric modulus versus σ0 and R0 when ks = 4.5×
10−17c2/N ·m2. One can see from the two figures that, first, the value of k̄∗33/k∗33
is size dependent and deviate considerably from the classical solution when the
radius of inhomogeneities are reduced to a few nanometers. Second, for the same
inhomogeneity size, the effective dielectric modulus decreases with the increase of
ks when residual interface stress is certain. Third, for the same inhomogeneity size,
the effective dielectric modulus increases with the increase of σ0 when interface
dielectric modulus is constant. Fourth, the effect of interface properties becomes
negligible for sufficiently large size of inhomogeneities.

6 Conclusions

The interface effect is incorporated with the piezoelectric inclusion problems to de-
termine size-dependent local electroelastic fields and effective electroelastic moduil
of nanocomposites. Based on the theory of Gurtin-Murdoch interface model and
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Figure 6: Effective piezoelectric modulus as a function of inhomogeneity radius
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Figure 7: Effective dielectric modulus as a function of interface dielectric constant
and inhomogeneity radius when σ0 = 0.5J / m2
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Figure 8: Effective dielectric modulus as a function of residual interface stress and
inhomogeneity radius when ks = 4.5×10−17c2/N ·m2

generalized electromechanical Young-Laplace equations, general formulas of elec-
troelastic fields in matrix and inclusion are presented. For a spherical inclusion in
transversely isotropic piezoelectric medium, we gave the closed-form solution of
the electroelastic fields inside the inclusion which, unlike the classical results, are
size-dependent. We also proved that the electroelastic fields including interface ef-
fect are uniform when eigenstrain and eigen electric field are uniform. Using the
obtained results, effective elecroelastic moduli of piezoelectric nanocomposites are
investigated by the dilute approach. The numerical results reveal that the interface
effect is significant when the size of the inhomogeneity is on the scale of nanometer
and the interface effect becomes negligible for large inhomogeneity in which the
effective electroelastic constants approach to the classical ones.

The effective modulus are shown to be functions of the interface parameters and
size of the nano-inhomogeneities. The present results are useful in understanding
the interface effect on the overall response of nano-piezocomposites, and provide
theoretical guidance for engineering design and application of nanostructures.
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Appendix

The corresponding components of the piezoelectric Green’s functions G1,G2,G3,G4

are recorded asGkp,G4p,Gk4,G44, which are defined by (Biao, 1992):

Ci jklGkp,l j + emi jG4p,m j =−δipδ (y− x)

e jklGkp,l j−κ jkG4p, jk = 0

Ci jklGk4,l j + eki jG44,k j = 0

e jklGk4,l j−κ jkG44, jk =−δ (y− x)

The components of piezoelectric Eshelby tensors are as following:

S1 ≡ Smnab =−1
2

Ci jab

∫
Ω

[Gm j,in +Gn j,im]dV + eiab

∫
Ω

[Gm4,in +Gn4,im]dV



S2 ≡ Smn4b =
1
2

kib

∫
Ω

[Gm4,in +Gn4,im]dV − ebi j

∫
Ω

[Gm j,in +Gn j,im]dV



S3 ≡ S4nab =−

Ci jab

∫
Ω

G4 j,indV + eiab

∫
Ω

G44,indV



S4 ≡ S4n4b =

kib

∫
Ω

G44,indV − ebi j

∫
Ω

G4 j,indV


The expressions of the four interaction tensors T1,T2,T3,T4 are as follows:
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T1 ≡ Ti jkl =−1
2

∫
(G jk,li +G jl,ki)dv

T2 ≡ Ti4kl =−1
2

∫
(G4k,li +G4l,ki)dv

T3 ≡ Ti j4l =−
∫

GJ4,lidv

T4 ≡ Ti44l =−
∫

G44,lidv
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