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Optimally Generalized Regularization Methods for
Solving Linear Inverse Problems
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Abstract: In order to solve ill-posed linear inverse problems, we modify the
Tikhonov regularization method by proposing three different preconditioners, such
that the resultant linear systems are equivalent to the original one, without drop-
ping out the regularized term on the right-hand side. As a consequence, the new
regularization methods can retain both the regularization effect and the accuracy
of solution. The preconditioned coefficient matrix is arranged to be equilibrated
or diagonally dominated to derive the optimal scales in the introduced precondi-
tioning matrix. Then we apply the iterative scheme to find the solution of ill-posed
linear inverse problem. Two theorems are proved that the iterative sequences are
monotonically convergent to the true solution. The presently proposed optimally
generalized regularization methods are able to overcome the ill-posedness of linear
inverse problems, and provide rather accurate numerical solution.

Keywords: Inverse Problem, Ill-posed linear system, Optimally generalized Tikhonov
regularization method (OGTRM), Tikhonov regularization method (TRM), modi-
fied Tikhonov regularization method (MTRM), Generalized relaxed steepest de-
scent method (GRSDM)

1 Introduction

In this paper we propose generalized and optimal Tikhonov regularization methods
to solve the linear inverse problem, which might be recast to the following linear
equations system:

Vx = b1, (1)

where det(V) 6= 0 and V ∈ Rn×n is an ill-conditioned, and generally unsymmetric
matrix. Finding the solution of such an ill-posed linear system is an important issue
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for many linear inverse problems and numerical solutions of linear problems. In a
practical situation of linear equations which arise in scientific problems, the data
b1 are rarely given exactly; instead of, the noises in b1 are unavoidable due to the
measurement error. Therefore, we may encounter the problem that the numerical
solution of an ill-posed system of linear equations may deviate from the exact one
to a great extent, when V is severely ill-conditioned and b1 is perturbed by noise.

Hansen (1992), and Hansen and O’Leary (1993) have explained that the Tikhonov
regularization method [Tikhonov and Arsenin (1977)] to solve ill-posed linear prob-
lem is a trade-off between the size of the regularized solution and the quality to fit
the given data:

min
x∈Rn

ϕ(x) = min
x∈Rn

[
‖Vx−b1‖2 +α‖x‖2] . (2)

To account for the sensitivity to noise, it is customary to use a “regularization"
method to solve the ill-posed problem [Kunisch and Zou (1998); Wang and Xiao
(2001); Xie and Zou (2002); Resmerita (2005)], wherein a suitable regularization
parameter is used to seeking a better balance of the error of approximation and the
propagated data error. Several regularization methods were developed to follow
the pioneering work of Tikhonov and Arsenin (1977). For a large scale system,
the main choice is the iterative regularization algorithm, which works if an early
stopping criterion is used to prevent the introduction of noisy components into the
approximate solutions.

Here, we briefly review four existent techniques to select the regularization param-
eter α used in Eq. (2), where as pointed out by Kilmer and O’Leary (2001) many
of these algorithms are rather complicated.

(i) The discrepancy principle [Morozov (1966)] says that the regularization pa-
rameter should be chosen such that the norm of the residual vector corresponding
to the regularized solution xreg is τσ :

‖Vxreg−b1‖= τσ , (3)

where τ > 1 is some predetermined real number. Note that xreg −→ xtrue if σ −→
0.

(ii) The generalized cross-validation [Goloub, Heath and Wahba (1979)] does
not depend on a priori information about the variance of noise σ . One finds the
parameter α that minimizes the following GCV functional:

G(α) =
‖(In−V[VTV+αIn]−1VT)b1‖2

[Trace(In−V[VTV+αIn]−1VT)]2
. (4)
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(iii) For the L-curve, the plot of the norm of xreg versus the corresponding residual
norm for each of a set of the regularization parameter values, was introduced by
Hansen (1992). The best regularization parameter should lie on the corner of the
L-curve, since for values higher than this, the residual norm increases without re-
ducing the norm of xreg much, while for values smaller than this, the norm ‖xreg‖
increases rapidly without much decreasing the residual norm.

(iv) The iteration technique was introduced by Engl (1987) and Gfrerer (1987).
Basically, they constructed an iterative sequence:

(VTV+αIn)x j
α,σ = b+αx j−1

α,σ , j = 1, . . . ,m, (5)

where b = VTb1, by starting from the initial value of x0
α,σ = 0, and then inserted the

convergent solution of Eq. (5) into Eq. (3) to iteratively solve the implicit nonlinear
algebraic equation for finding the best α .

In this paper we introduce simple modifications of the Tikhonov regularization
method for solving the ill-posed linear inverse problem, where the regularization
parameter α is no longer restricted to be a small number, because the novel regu-
larization methods do not perturb the original ill-posed linear system. On the other
hand, we no more need to pay much attention on the choice of the regularization
parameter α .

Earlier on, the author and his coworkers have developed several methods to solve
the ill-posed linear problems: using the fictitious time integration method as a filter
for ill-posed linear system [Liu and Atluri (2009a)], a modified polynomial expan-
sion method [Liu and Atluri (2009b)], the non-standard group-preserving scheme
[Liu and Chang (2009)], a vector regularization method [Liu, Hong and Atluri
(2010)], the preconditioners and postconditioners generated from a transformation
matrix, obtained by Liu, Yeih and Atluri (2009) for solving the Laplace equation
with a multiple-scale Trefftz basis functions, the relaxed steepest descent method
[Liu (2011a, 2012a)], the optimal iterative algorithm [Liu and Atluri (2011a)], an
optimally scaled vector regularization method [Liu (2012b)], an adaptive Tikhonov
regularization method [Liu (2012c)], the best vector iterative method [Liu (2012d)],
as well as a globally optimal iterative method [Liu (2012e)].

This paper is organized as follows. We first modify the Tikhonov regularization
method by using the preconditioner and iteration for solving an ill-posed linear
system in Section 2. In Section 3 we describe the optimally generalized Tikhonov
regularization methods by using the preconditioner and iteration method, where
the preconditioned matrix is optimized based on the concepts of equilibrated ma-
trix and the diagonally dominated matrix, which are then compared with the gen-
eralized Tikhonov regularization method. The above methods require some inner
iterations to solve the regularized linear systems. In Section 4 we introduce the
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third preconditioner and directly use an iterative scheme without inner iteration to
solve the regularized linear system. In Section 5 we give numerical examples of the
Hilbert linear system, backward heat conduction problem, and the inverse Cauchy
problems to test the efficiency and accuracy of the novel iteratively regularized al-
gorithms. Finally, the conclusions are drawn in Section 6.

2 An iterative Tikhonov regularization method

It is known that the original Tikhonov regularization method is solving the follow-
ing regularized normal equation:

(VTV+αIn)x = b, (6)

which is obtained from Eq. (2), where b := VTb1, and α is a regularization param-
eter to be determined. Several methods have been introduced in Section 1 to find
the best value of α . However, we need to emphasize that the Tikhonov regular-
ization method perturbs the original system into a new one by adding a perturbed
term αx on the left-hand side, which plays the role of regularization to stabilize the
coefficient matrix VTV+αIn. So the regularization parameter α must be a suitable
number, and is small enough to make a little perturbation of the original equation.

Let us begin with the following preconditioner:

P1 := VT +αV−1, (7)

where V−1 is the inversion of V, which exists due to the assumption of det(V) 6= 0.
Applying P1 to Eq. (1) and using that equation again, we have

(VT +αV−1)Vx = (VT +αV−1)b1,

(VTV+αIn)x = b+αV−1b1,

(VTV+αIn)x = b+αx. (8)

It is interesting that the regularized Eq. (8) bears certain similarity with the Tikhonov
regularization equation (6); but here the regularization term αx, not only appears
on the left-hand side, but also on the right-hand side, which is different from that in
Eq. (6), where the regularization term αx is dropped out from the right-hand side.

However, in its present form, Eq. (8) can do nothing, which is just equivalent to the
normal form of the original equation (1). However, we can consider an iterative
process to find the solution of x by

Axk+1 = b+αxk, (9)
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where

A := VTV+αIn. (10)

Starting from x0 = 0 we can apply the conjugate gradient method (CGM) to solve
the above linear system and generate a sequence of vectors xk, k = 1, . . . ,m. In each
inner iteration we apply the CGM to solve the linear system (9) under a conver-
gence criterion specified by a value ε1. When the following convergence criterion
is satisfied ‖xk+1−xk‖ ≤ ε2, we also stop the outer iterative sequence, and then the
solution of x is obtained.

Theorem 1: For Eq. (9) with α > 0 the iterative sequence xk converges to the true
solution xtrue monotonically.

Proof: Let

εk = xk−xk−1, εk+1 = xk+1−xk (11)

be two consecutive relative vectorial errors of the iterative solutions. From Eq. (9)
it follows that

Axk = b+αxk−1,

Axk+1 = b+αxk, (12)

from which by subtracting the first equation from the second equation and using
Eq. (11) we can obtain

Aεk+1 = αεk. (13)

It follows the following inequalities:

(λmin +α)‖εk+1‖ ≤ ‖Aεk+1‖= α‖εk‖, (14)

where λmin > 0 is the smallest eigenvalue of VTV. Hence we have

‖εk+1‖ ≤
α

λmin +α
‖εk‖, (15)

which is a monotonically decreasing sequence for the norm ‖εk‖ of the relative
vectorial error when α > 0 and hence α/(λmin +α) < 1. Thus when ‖εk‖ mono-
tonically tends to zero, the iterative solution xk converges to the true solution xtrue
monotonically. This ends the proof. �
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The present regularization method does not perturb the original system, but mathe-
matically converts it to a new problem by iteratively solving a sequence of regular-
ized linear systems, and thus the parameter α does not need to be a small number,
which can be selected such that the condition number of A := VTV+αIn is smaller
than that of VTV. This new regularization method will be named the modified
Tikhonov regularization method (MTRM), which can remedy the shortcoming of
the original Tikhonov regularization method that there exists nothing on the right-
hand side in Eq. (6) to balance the perturbation term of αx on the left-hand side.
Hence, in the original Tikhonov regularization method, if one over emphasizes
the regularization effect, the accuracy of solution may lose to a great extent. The
MTRM does not have such a drawback.

The present MTRM is also different from the iterative Tikhonov regularization
method as introduced in Section 1 with the item (iv), which was developed by
Engl (1987) and Gfrerer (1987). They solved Eq. (5) and inserted the convergent
solution into Eq. (3) to iteratively solve the implicitly nonlinear algebraic equation
for finding the best value of α . Although Eqs. (9) and (5) are the same, here we
approach it by using the preconditioner method, and we do not use it to find the
best α; instead of, we directly use Eq. (9) to find the approximate solution xk, and
α in Eq. (9) can be a quite large number, without restricting to be a small parameter.

3 Optimally generalized Tikhonov regularization method

A generalization of Eq. (2) can be written as

min
x∈Rn

ϕ(x) = min
x∈Rn

[
‖Vx−b1‖2 +xTRx

]
, (16)

where R is a positive definite matrix. In the present study we only consider R :=
diag(R1, . . . ,Rn), where Rk, k = 1, . . . ,n are positive real numbers, which will be
optimized below.

3.1 The second preconditioner

Consider the second preconditioner to be

P2 := VT +RV−1, (17)



Optimally Generalized Regularization Methods 109

and applying it to Eq. (1) and using that equation again, we have

(VT +RV−1)Vx = (VT +RV−1)b1,

(VTV+R)x = b+RV−1b1,

(VTV+R)x = b+Rx. (18)

By dropping out the regularized term Rx on the rigth-hand side we can recover to
the form in Eq. (16). In this sense we have made an improvement of the generalized
Tikhonov regularization method.

From the regularized linear system (??) we can derive an iterative process to find
the unknown vector x by

Axk+1 = b+Rxk, (19)

where

A := VTV+R. (20)

Starting from x0 = 0 we can apply the CGM to solve the above regularized linear
system (19) and generate a sequence of vectors xk, k = 1, . . . ,m. When the follow-
ing convergence criterion is satisfied ‖xk+1− xk‖ ≤ ε2, we stop the outer iterative
sequence, and meanwhile the solution of x is obtained.

Theorem 2: For Eq. (19) with positive definite R the iterative sequence xk con-
verges to the true solution xtrue monotonically.

Proof: As that done in the proof of Theorem 1 we can derive

Aεk+1 = Rεk. (21)

Because R is positive definite, by Eq. (20) the following inequality holds:

A≥ λminIn +R, (22)

where λmin > 0 is the smallest eigenvalue of VTV. From Eq. (21) it follows that

‖Aεk+1‖= ‖Rεk‖, (23)

Hence, from Eqs. (22) and (23) we have

‖λminIn +R‖‖εk+1‖ ≤ ‖R‖‖εk‖, (24)
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where the norm of a matrix is induced by the Euclidean norm of a vector. Due to
λmin > 0 and R being positive definite the factor γ satisfies the following inequality:

γ :=
‖R‖

‖λminIn +R‖
< 1. (25)

Hence, one has

‖εk+1‖ ≤ γ‖εk‖, γ < 1. (26)

It is a monotonically decreasing sequence for the norm ‖εk‖ of the relative vecto-
rial error. Thus when ‖εk‖ monotonically tends to zero, the iterative solution xk
converges to the true solution xtrue monotonically. This ends the proof. �

3.2 The optimally scaled Rk

Now, the problem is how to choose the multiple-scale Rk, k = 1, . . . ,n appeared in
R. Usually, the linear system (19) is severely ill-conditioned, and if we do not prop-
erly choose R, the situation may become worse. So we have to look for values of
Rk, k = 1, . . . ,n which will render the linear system (19) to be less ill-conditioned.
The problem becomes to search for the suitable scales Rk, k = 1, . . . ,n, such that
the condition number of A is reduced as much as possible. Theoretically, there
are theories of optimal scaling proposed by Bauer (1963), van der Sluis (1969),
Gautschi (2011), and Liu (2012b, 2012f). A matrix is said to be equilibrated if
all its rows or columns have the same norm, and under this condition the matrix
is best conditioned. According to the idea of "equilibrated matrix", we can choose
Rk, such that each row of the matrix A in Eq. (19) has the same Euclidean norm,
say R0 > 0, i.e.,

n

∑
k=1

A2
1k = . . . =

n

∑
k=1

A2
nk = R2

0, (27)

where Ai j denotes the i j-th component of A. The constant R0 can be selected by

R0 ≥ Rmax := max
i=1,...,n

√
n

∑
k=1

C2
ik, (28)

where Cik denote the components of C := VTV. Definitely, we can take

R0 = Rmax + c0, (29)
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where c0 is a non-negative constant, whose value is problem dependent. Then, from
Eqs. (20) and (27) through some manipulations we can derive

Rk = β

(√
C2

kk +R2
0−

n

∑
j=1

C2
k j−Ckk

)
. (30)

Here β is a stability factor to guarantee that the iterative process can converge fast.

On the other hand, we can require that the new coefficient matrix A has the same
diagonal value R0 like as a diagonally dominated matrix, such that we can derive

Rk = β (R0−Ckk), (31)

where

R0 = max
i=1,...,n

Cii + c0, (32)

and similarly β is a stability factor, and c0 is a non-negative constant specified by
the user.

For convenience we may call the present regularization method to be the optimally
generalized Tikhonov regularization method: OGTRM(1), if Eq. (30) is used to se-
lect Rk, k = 1, . . . ,n, and the regularized linear system (19) is used to iteratively
solve the unknown vector x; alternatively, the OGTRM(2), if Eq. (31) is used to
select Rk, k = 1, . . . ,n, and the regularized linear system (19) is used to iteratively
solve the unknown vector x. The present regularization methods do not perturb
the original system, but mathematically convert it to a new problem by iteratively
solving a sequence of regularized linear systems in Eq. (19).

4 A generalized relaxed steepest descent method

Let us further consider the third preconditioner:

P3 := VT−E−1V−1, (33)

and applying it to Eq. (1) we can derive

(VTV−E−1)x = b−E−1x, (34)

where E is a positive definite matrix.

Instead of Eq. (19) to solve a linear system at each inner iterative loop, here we
employ a directly iterative scheme to find the solution of x by

(VTV−E−1)xk = b−E−1xk+1, (35)
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which is obtained from Eq. (34). Thus through some operations we can derive

xk+1 = xk +Erk, (36)

where

rk = b−Cxk (37)

is a residual vector for the normal equation:

Cx = b, (38)

in which

C := VTV, (39)

b := VTb1. (40)

The scheme in Eq. (36) is more time saving, which does not need an inner iteration.

Upon letting

E = (1− γ)
rT

k Grk

rT
k GCGrk

G (41)

in Eq. (36), we can derive the following algorithm (see the Appendix):
(i) Select a suitable value of 0≤ γ < 1, and assume an initial value of x0.
(ii) For k = 0,1,2 . . . we repeat the following iterations:

rk = b−Cxk, (42)

xk+1 = xk +(1− γ)
rT

k Grk

rT
k GCGrk

Grk. (43)

If xk+1 converges according to a given stopping criterion ‖rk+1‖ < ε1, then stop;
otherwise, go to step (ii). The above parameter γ is a relaxed constant with 0 ≤
γ < 1. If we take G = In, then the above algorithm reduces to the relaxed steepest
descent method [Liu (2011a, 2012a)]. If we take G = VTV, or G = VVT, we can
obtain a different new algorithm. Hence, this algorithm is a generalized relaxed
steepest descent method (GRSDM), with G being a positive definite matrix.
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5 Numerical examples

5.1 Example 1: two simple but highly ill-conditioned linear systems

This example will illustrate that the present iterative regularization methods are
better than the original Tikhonov regularization method. Before embarking on a
further numerical test of the present methods, we give a simple example of the
solution of a linear system of two linear algebraic equations:[

2 2
6 6.00001

][
x
y

]
=
[

4
12.00001

]
. (44)

The exact solution is (x,y) = (1,1). We add a random noise σ = 0.05 on the
data of (4,12.00001)T, and apply the Tikhonov regularization method to solve this
problem with α = 10−7, of which the solution is (x,y) = (1.246,0.754).
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Figure 1: For example 1, comparing the iterative paths generated by the optimally 
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Figure 1: For example 1, comparing the iterative paths generated by the opti-
mally generalized Tikhonov regularization method OGTRM(1), and the modified
Tikhonov regularization method (MTRM).

We use the MTRM in Section 2 to solve this problem with α = 10 (here, α is not
necessary a small constant). It is interesting that the condition number is greatly
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reduced from Cond(VTV) = 1.59× 1013 to Cond(VTV + αIn) = 9, where V de-
notes the coefficient matrix in Eq. (44). A solution (x,y) = (0.999611,0.999613)
is obtained, which is convergent with 15 iterations under the convergence crite-
ria ε1 = 10−15 and ε2 = 10−3. The iterative path is shown in Fig. 1. Then, we
use the OGTRM(1) in Section 3.2 to solve this problem with c0 = 5 and β = 1.
The condition number is greatly reduced to Cond(VTV + R) = 12.75. We obtain
a solution of (x,y) = (0.999582,0.99960), which is convergent very fast with 12
iterations under the convergence criteria ε1 = 10−15 and ε2 = 10−3. The itera-
tive path is compared with that obtained by the MTRM in Fig. 1. Although, the
OGTRM(1) has obtained the solution with the same accuracy as that obtained by
the MRTM, the OGTRM(1) converges faster than the MTRM. It can be seen that
both the MTRM and OGTRM(1) are more accurate than the original Tikhonov
regularization method with three orders. It is interesting that when we apply the
GRSDM in Section 4 with G = C and γ = 0 to solve the above linear system, it ap-
proaches to a very accurate solution (x,y) = (0.99963,0.99963) only through two
iterations.

Next, in order to further test the new algorithm of GRSDM, we consider a more
difficult linear system:

[
2 6
2 6.0001

][
x
y

]
=
[

8
8.0001

]
. (45)

The condition number of this system is Cond(VTV) = 1.596× 1011, where V de-
notes the coefficient matrix . The exact solution is (x,y) = (1,1). For this system
the above algorithms MTRM and OGTRM are both not applicable.

Now we fix the noise to be σ = 0.01, ε1 = 10−8 and starting from an initial
condition (x0,y0) = (0.5,0.5). By applying the Barzilai-Borwein method (BBM)
[Barzilai and Borwein (1988)], it does not converge with 2000 iterations, and ob-
tain an inaccurate solution of (x,y) = (0.7,1.1). Then we apply the RSDM al-
gorithm [Liu (2011a)] with γ = 0.2 to this problem, which, through 2000 iter-
ations, led to an approximate solution of (x,y) = (1.004,0.999) with the max-
imum error being 4.47× 10−3. When we apply the GRSDM with G = VVT

and γ = 0, it approaches to a very accurate solution (x,y) = (1.00004,1.00005)
only through two iterations. Although, for a more ill-posed case with the above
6.0001 and 8.0001 replaced by 6.00001 and 8.00001, of which the condition num-
ber is raised to Cond(VTV) = 1.596×1013, the GRSDM can also find the solution
(x,y) = (1.00005,1.00005) only through two iterations.
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5.2 Example 2: Hilbert linear equations system

The Hilbert matrix

Vi j =
1

i+ j−1
(46)

is notoriously ill-conditioned. It is known that the condition number of Hilbert
matrix grows as e3.5n when n is very large. For the case with n = 200 the condition
number is extremely huge to the order 10348. The exact inverse of the Hilbert matrix
has been derived by Choi (1983):

(V−1)i j = (−1)(i+ j)(i+ j−1)
(

n+ i−1
n− j

)(
n+ j−1

n− i

)(
i+ j−2

i−1

)2

. (47)

Since the exact inverse has large integer entries when n is large, a small perturbation
of the given data will be amplified greatly, such that the solution is contaminated
seriously by errors. The program can compute the inverse by using the exact integer
arithmetic for n = 13. Past that number the double precision approximation should
be used. However, due to the overflow of arithmetic computation the inverse can
be computed only for n which is much smaller than 200.

We apply the Tikhonov regularization method (TRM) with α = 10−4, the MTRM
with α = 10−4, the OGTRM(1) with c0 = 0.5 and β = 1, and the OGTRM(2) with
c0 = 1 and β = 1, to solve the linear equations system (1) with the Hilbert matrix
as the coefficient matrix, where a random noise with an intensity σ = 0.05 is added
on the input data on the right-hand side. The exact solutions are supposed to be
xi = 1, i = 1, . . . ,200, and the absolute errors of numerical results are compared
in Fig. 2(a), of which one can see that the present methods are more accurate than
the Tikhonov regularization method. Both OGTRM(1) and OGTRM(2) are better
than the MTRM and TRM. In Fig. 2(b) we show the norm of each column of the
coefficient matrix A for the OGTRM(2). Even, we require that in the OGTRM(2)
the diagonal elements have the same value, it also results in a quite better matrix
near to the equilibrated matrix. This explains why the OGTRM(2) is the best one
among the above four methods to solve this highly ill-posed linear problem with
n = 200.

5.3 Example 3: backward heat conduction problem

When the backward heat conduction problem (BHCP) is considered in a spatial
interval of 0 < x < ` by subjecting to the boundary conditions at two ends of a slab:

ut(x, t) = κuxx(x, t), 0 < t < T, 0 < x < `, (48)

u(0, t) = u0(t), u(`, t) = u`(t), (49)
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Figure 2: For example 2, (a) comparing the numerical errors obtained by the opti-
mally generalized Tikhonov regularization methods [OGTRM(1), OGTRM(2)], the
modified Tikhonov regularization method (MTRM), and Tikhonov regularization
method (TRM), (b) the norm of column for the OGTRM(2).

we solve u under a final time condition:

u(x,T ) = uT (x). (50)

The fundamental solution to Eq. (48) is given as follows:

K(x, t) =
H(t)

2
√

κπt
exp
(
−x2

4κt

)
, (51)

where H(t) is the Heaviside function.
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The method of fundamental solutions (MFS) has a broad application in engineer-
ing computations. However, the MFS has a serious drawback that the resulting lin-
ear equations system is always highly ill-conditioned, when the number of source
points is increased [Golberg and Chen (1996)], or when the distances of source
points are increased [Chen, Cho and Golberg (2006)].
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Figure 3: For example 3, comparing the numerical solutions obtained by the opti-
mally generalized Tikhonov regularization methods [OGTRM(1), OGTRM(2)] and
the GRSDM with the exact one.

In the MFS the solution of u at the field point z = (x, t) can be expressed as a linear
combination of the fundamental solutions U(z,s j):

u(z) =
n

∑
j=1

c jU(z,s j), s j = (η j,τ j) ∈Ω
c, (52)

where n is the number of source points, c j are unknown coefficients, and s j are
source points being located in the complement Ωc of Ω = [0, `]× [0,T ]. For the
heat conduction equation we have the basis functions

U(z,s j) = K(x−η j, t− τ j). (53)
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It is known that the location of source points in the MFS has a great influence on
the accuracy and stability. In a practical application of MFS to solve the BHCP,
the source points are uniformly located on two vertical straight lines parallel to the
t-axis and one horizontal line over the final time, which was adopted by Hon and
Li (2009) and Liu (2011b), showing a large improvement than the line location of
source points below the initial time. After imposing the boundary conditions and
the final time condition to Eq. (52) we can obtain a linear equations system:

Vx = b1, (54)

where

Vi j = U(zi,s j), x = (c1, · · · ,cn)T,

b1 = (u`(ti), i = 1, . . . ,m1;uT (x j), j = 1, . . . ,m2;u0(tk), k = m1, . . . ,1)T, (55)

and n = 2m1 +m2.

Since the BHCP is highly ill-posed, the ill-condition of the coefficient matrix V in
Eq. (54) is serious. To overcome the ill-posedness of Eq. (54) we can use the new
methods to solve this problem. Here we compare the numerical solution with an
exact solution:

u(x, t) = cos(πx)exp(−π
2t).

For the case with T = 1 the value of final time data is in the order of 10−4, which
is small in a comparison with the value of the initial temperature u0(x) = cos(πx)
to be retrieved, which is O(1). We solve this problem by the OGTRM(1) with
c0 = 0 and β = 10−5, the OGTRM(2) with c0 = 1 and β = 10−8 and the GRSDM
with G = In and γ = 0.1. We have added a relative random noise with an intensity
σ = 10% on the final time data, of which we compare the initial time data computed
by the OGTRM(1), the OGTRM(2), and the GRSDM with the exact one in Fig. 3.
The numerical errors are smaller than 0.0195 for the OGTRM(1) and OGTRM(2),
and 0.0199 for the GRSDM. It indicates that the present iteratively regularized al-
gorithms are robust against noise, and can provide quite accurate numerical results.

5.4 Inverse Cauchy problems

Let us consider the inverse Cauchy problem for the Laplace equation:

∆u = urr +
1
r

ur +
1
r2 uθθ = 0, (56)

u(ρ,θ) = h(θ), 0≤ θ ≤ β0π, (57)

un(ρ,θ) = g(θ), 0≤ θ ≤ β0π, (58)
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where h(θ) and g(θ) are given functions and β0 ≤ 1. The inverse Cauchy problem
is given as follows:
To seek an unknown boundary function f (θ) on the part Γ2 := {(r,θ)|r = ρ(θ), β0π <
θ < 2π} of the boundary under Eqs. (56)-(58) with the overspecified data on
Γ1 := {(r,θ)|r = ρ(θ), 0≤ θ ≤ β0π}.
It is well known that the method of fundamental solutions (MFS) can be used to
solve the Laplace equation when a fundamental solution is known [Kupradze and
Aleksidze (1964)]. In the MFS the solution of u at the field point z =(r cosθ ,r sinθ)
can be expressed as a linear combination of fundamental solutions U(z,s j):

u(z) =
n

∑
j=1

c jU(z,s j), s j ∈Ω
c. (59)

For the Laplace equation (56) we have the fundamental solutions:

U(z,s j) = lnr j, r j = ‖z− s j‖. (60)

Previously, Liu (2008a) has proposed a new preconditioner to reduce the ill-condition
of the MFS. In the practical application of MFS, by imposing the boundary condi-
tions (57) and (58) to Eq. (59) we can obtain a linear equations system:

Vx = b1, (61)

where

zi = (z1
i ,z

2
i ) = (ρ(θi)cosθi,ρ(θi)sinθi),

s j = (s1
j ,s

2
j) = (R(θ j)cosθ j,R(θ j)sinθ j),

Vi j = ln‖zi− s j‖, if i is odd,

Vi j =
η(θi)
‖zi− s j‖2

(
ρ(θi)− s1

j cosθi− s2
j sinθi−

ρ ′(θi)
ρ(θi)

[s1
j sinθi− s2

j cosθi]
)

, (62)

if i is even,

x = (c1, . . . ,cn)T, b1 = (h(θ1),g(θ1), . . . ,h(θm),g(θm))T, (63)

in which n = 2m, and

η(θ) =
ρ(θ)√

ρ2(θ)+ [ρ ′(θ)]2
. (64)

The above R(θ) = R with a constant R, or R(θ) = ρ(θ)+D with a constant offset
D can be used to locate the source points along a contour with a radius R(θ).
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5.4.1 Example 4

For the purpose of comparison we consider the following exact solution:

u(r,θ) = r2 cos(2θ), (65)

defined in a domain with the boundary ρ(θ) =
√

10−6cos(2θ), 0≤ θ < 2π .
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Figure 4: For example 4 comparing the numerical solutions obtained by
OGTRM(1) and OGTRM(2) with the exact one.

We add a random noise with an intensity σ = 1% on the boundary data, and the
numerical solutions on the boundary β0π < θ < 2π with β0 = 0.4 are computed
by the OGTRM(1) with β = 10−9 and c0 = 0, and the OGTRM(2) with β = 10−12

and c0 = 0. For both methods we take R = 15 and n = 40 used in the MFS, and the
convergence criteria are fixed to be ε1 = 10−5 and ε2 = 10−3. We compare the nu-
merical solutions with the exact one in Fig. 4, where the maximum errors are both
near to 0.1. When the OGTRM(1) is convergent with 48 iterations, the OGTRM(2)
is convergent with only 24 iterations and with the maximum error being 0.09993.
It indicates that the present algorithms of OGTRM(1) and OGTRM(2) are robust
against noise, and the required data are parsimonious with β0 = 0.4 only. To the
best knowledge of the author, in the open literature there exist no other numerical
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Figure 5: For example 5 comparing the numerical solutions obtained by
OGTRM(1) and OGTRM(2) with the exact one.

methods can treat this type Cauchy problem with β0 = 0.4. Previously, Liu (2008b)
used the modified Trefftz method can treat a Cauchy problem with β0 = 0.5.

5.4.2 Example 5

In the second example of the inverse Cauchy problem a complex amoeba-like ir-
regular shape is adopted:

ρ(θ) = exp(sinθ)sin2(2θ)+ exp(cosθ)cos2(2θ). (66)

We consider the following exact solution:

u(x,y) = cosxcoshy+ sinxsinhy, (67)

from which the exact boundary data can be derived. Here we fix β0 = 1.

Under a random noise with an intensity σ = 1% being imposed on the boundary
data, we compare the numerical solutions obtained by OGTRM(1) with β = 10−10

and c0 = 0, and OGTRM(2) with β = 10−10 and c0 = 0, with the exact one in
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Fig. 5, where we take D = 3 and n = 40 for the use in the MFS. The maximum
errors are both near to 0.027. When the OGTRM(1) is convergent with 179 itera-
tions, the OGTRM(2) is convergent with 138 iterations. It indicates that the present
algorithms of OGTRM(1) and OGTRM(2) are robust against noise.

6 Conclusions

In the present paper, we have introduced four generalized and optimal regular-
ization methods. The new methods computed the approximate solution of ill-posed
linear inverse problem by using the optimally-scaled preconditioning matrices. Dif-
ferent from the Tikhonov regularization method which drops out the regularized
term on the right-hand side, the present iterative regularization methods do not
drop out the regularized term on the right-hand side, do not perturb the original ill-
posed linear equations system, and use the preconditioners and the inner iterations
as the regularization tool to iteratively solve the ill-posed linear equations system.
In doing so we can retain both the regularization effect and the accuracy of nu-
merical solutions. We have proved that the iterative regularized solution sequences
are monotonically convergent to the true solution. Several examples of ill-posed
linear inverse problems were examined, which revealed that the MTRM, GRSDM,
OGTRM(1) and OGTRM(2) have better computational efficiencies and accuracies
than the classical Tikhonov-like regularization method.
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Appendix

In this appendix we derive the algorithm in Section 4. By Eq. (1):

F(x) = b1−Vx, (A1)

we start from a continuous manifold:

h(x, t) :=
1
2

Q(t)‖F(x)‖2 = C, (A2)

where C is a positive constant. For the requirement of "consistency condition", i.e.,
x(t) is always on the manifold in time, we have

1
2

Q̇(t)‖F(x)‖2−Q(t)r · ẋ = 0, (A3)

where r := VTF. We suppose that x is governed by

ẋ = λG
∂h
∂x

= λQ(t)Gr, (A4)

where λ is to be determined, and G is a positive definite matrix. Inserting Eq. (A4)
into Eq. (A3) we can solve

λ =
Q̇(t)‖F‖2

2Q2(t)rTGr
. (A5)

Thus by inserting the above λ into Eq. (A4) we can obtain a nonlinear ODEs system
for x:

ẋ = q(t)
‖F‖2

rTGr
Gr, (A6)

where

q(t) :=
Q̇(t)
2Q(t)

. (A7)

In order to keep x on the manifold we can consider the evolution of F along the
path x(t) by

Ḟ =−Vẋ =−q(t)
‖F‖2

rTGr
VGr. (A8)
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Then, by Eq. (A2) we can derive

a(∆t)2−b∆t +1− Q(t)
Q(t +∆t)

= 0, (A9)

where

a := q2(t)
‖F‖2rTGCGr

(rTGr)2 , (A10)

b := 2q(t). (A11)

Inserting Eqs. (A10) and (A11) into Eq. (A9) we can derive

a0(q∆t)2−2(q∆t)+1− s = 0, (A12)

where

s =
Q(t)

Q(t +∆t)
, (A13)

a0 :=
‖F‖2rTGCGr

(rTGr)2 . (A14)

From Eq. (A12), we can take the solution of q∆t to be

q∆t =
1− γ

a0
, (A15)

where 0 ≤ γ < 1 is a relaxed parameter. After that, by applying the Euler method
to integrate Eq. (A6) and using the above equation we can obtain the following
algorithm:

x(t +∆t) = x(t)+(1− γ)
rTGr

rTGCGr
Gr. (A16)

The reader can refer [Liu (2011a, 2012a); Liu and Atluri (2011a, 2011b, 2011c);
Liu and Kuo (2011); Liu, Dai and Atluri (2011a, 2011b); Liu, Yeih, Kuo and Atluri
(2009)] for other algorithms based on the concept of invariant manifold.




