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MLPG Analysis of Layered Composites with Piezoelectric
and Piezomagnetic Phases
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Abstract: A meshless method based on the local Petrov-Galerkin approach is
proposed, to solve static and dynamic problems of two-layered magnetoelectroe-
lastic composites with specific properties. One layer has pure piezoelectric prop-
erties and the second one is a pure piezomagnetic material. It is shown that the
electric potential in the piezoelectric layer is induced by the magnetic potential in
the piezomagnetic layer. The magnetoelectric effect is dependent on the ratio of
the layer thicknesses. Functionally graded material properties of the piezoelectric
layer and homogeneous properties of the piezomagnetic layer are considered too.
The magnetoelectric composites are analyzed under a pure magnetic or combined
magneto-mechanical load. Various boundary conditions and geometric parameters
are considered to analyze their influence on the value of the electromagnetic pa-
rameter.

Keywords: Meshless local Petrov-Galerkin method (MLPG), moving least-squares
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1 Introduction

An important application of composite structures is the use of the product property,
which is found in the composite structures but is absent in the individual phases
(Ryu et al., 2002). It has been observed that remarkably larger magnetoelectric
(ME) effect is observed for composites than for either composite constituent (Nan,
1994; Feng and Su, 2006). Smith et al. (1985) and Shaulov et al. (1989) found that
the piezocomposites can provide a higher piezoelectric strain modulus d31 than the
constituents. Numerical results by Dunn (1993) showed that the effective thermal
expansion coefficients of composites could significantly exceed those of the matrix
and the fiber phases.
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Originally, sintered granular composites were used for producing composite mag-
netoelectric (ME) effects. The ME is defined as the ratio between the magnetic
(electrical) field output over the electrical (magnetic) input. The ME effect was dis-
covered in 1894 by Curie. The ME coupling coefficient in single-phase compounds
is small for principle reasons (Eerenstein et al., 2006). However, the ME effect is
intensively studied to utilize it for the energy conversion between the magnetic and
electric fields and the ME memory elements, smart sensors and transducers (Wood
and Austin, 1975; Wang et al., 2005). From earlier investigations it is well known
that some composite materials can provide superior properties compared to their
virgin monolithic constituent materials. Similarly one can expect larger ME effect
in layered composites than in monoliths. An applied magnetic field induces strain
in the magnetostrictive constituent of the bilayer mutifferoic composite. This is
passed on to the piezoelectric constituent, where it induces an electric polariza-
tion. In turn an applied electric field induces a magnetization via the mechanical
coupling between the constituents. A strong ME effect has been recently observed
by Pan and Wang (2009) in artificially fabricated multiferroic composites. It has
been shown that the ME response of the laminated composites is determined by
four major aspects: (i) the magnetic, electrical and mechanical coefficients of the
constituents; (ii) the respective thickness and number of the piezoelectric and mag-
netostrictive layers; (iii) the type of boundary constituents; (iv) the orientation of
the constituents and of the applied electric or magnetic fields. The influence of the
thickness ratio for piezomagnetic and piezoelectric layers hm/he on the ME effect
was investigated in other papers too (Shastry et al., 2004, Laletin et al., 2008, Zhai
et al., 2004).

A noticeable enhancement of the ME response is to make use of strong internal
electromagnetic fields by finding components with a large dielectric or magnetic
susceptibility. The largest dielectric coefficients are found in ferroelectrics, while
ferromagnets display the largest magnetic permeabilities. Consequently, ferromag-
netic ferroelectrics are primary candidates for displaying giant ME effects. Subse-
quently it was discovered that the coupling between the constituents can be greatly
enhanced by using laminated double, triple or multilayer composites. Theories for
understanding the interaction between the constituents in both bulk and laminated
composites have been developed, and it has been shown that the efficiency of the
micromechanical coupling plays a crucial role. A micromechanical model to pre-
dict the effective moduli of multicoated elliptic fibrous composites of piezoelectric
and piezomagnetic phases is given by Kuo (2011).

All aspects of research works on composite ME effects discussed thus far were
accompanied or preceded by intense theoretical works with the intention of un-
derstanding the coupling between the composite phases and quantifying the result-
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ing ME response. The pioneering experiments on the ME were given by Van den
Boomgard et al, (1974, 1976). The early works were mainly devoted to the de-
scription of ME coupling mechanisms in bulk composites. In the simplest case
the effective linear ME effect of a composite made of two isotropic materials was
determined from the ME constants of the constituents and the dielectric and mag-
netic permeabilities of the constituents and the composite (Milgrom and Shtrikman,
1994).

Because of the complex nature of the ME interaction between the constituents the
relation between the applied magnetic field and the voltage induced in the detection
circuit is not simply linear as in the case of single-phase compounds. Due to the
hysteretic nature of the ME effect, the composites may find applications in memory
devices. The linear ME effect has a positive or a negative sign, depending on the an-
nealing conditions (parallel or antiparallel magnetic and electric fields). In binary
data storage devices the ME material can thus store information in two different
states distinguished by the sign of the ME response. Such a memory will be an
effective ‘read only’ memory, since the reading can be done at very high frequen-
cies. Data writing is more difficult because it involves temperature annealing in
magnetic and electric fields or the use of very high writing fields (Ryu et al. 2002).
Further applications include magnetic field sensors. The transduction properties of
the ME effect can also be employed in ME recording heads and electromagnetic
pick-ups. Historical perspective, status and future of multiferroic magnetoelectric
composites are given in a review paper (Nan et al., 2008).

In the present paper the meshless local Petrov-Galerkin (MLPG) method is devel-
oped to investigate the magnetoelectric coupling in bilayered piezomagnetic/piezo-
electric composites with various geometrical sizes and boundary conditions. A
meshless method based on the local Petrov-Galerkin approach is proposed, to solve
two-dimensional (2-D) boundary value problems for layered magnetoelectroelas-
tic composites. The coupled governing partial differential equations are satisfied
in a weak-form on small fictitious subdomains (Atluri et al., 2003, Sladek et al.,
2008a,b). Nodal points are spread on the analyzed domain, and each node is sur-
rounded by a small circle for simplicity. A Heaviside step function as the test
functions is applied in the weak-form on the local subdomains. The local inte-
gral equations are derived. The spatial variations of the displacements, electrical
and magnetic potentials are approximated by the Moving Least-Squares (MLS)
scheme (Atluri, 2004, Belytschko et al., 1996). Numerical techniques based on the
C1-continuity, such as in the present meshless methods, are expected to be more
accurate than the conventional discretization techniques for homogeneous or con-
tinuously nonhomogeneous solids. However, higher order continuity of primary
fields (displacements, electrical and magnetic potentials) would not yield jumps for
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secondary fields (gradients of primary fields), if the interface were not modeled.
Such jumps occur due to the discontinuities of the material parameters on the inter-
faces of the joint laminates and the continuity of tractions and electrical/magnetic
fluxes. Therefore, a special treatment for modeling discontinuities in piecewise
homogeneous solids is required in the case of higher order modeling like in the
present meshless approximations. After performing the spatial integrations, one
obtains a system of ordinary differential equations. The Houbolt finite-difference
scheme (Houbolt, 1950) is applied to the approximation of the time evolution of
the field variables.

The proposed MLPG method is applied in several numerical calculations of the
magnetoelectric effect for bilayer piezomagnetic/piezoelectric composites. Both
static and dynamic loading conditions are considered. The influences of various
mechanical boundary conditions and volume ratio of piezomagnetic and piezoelec-
tric constituents on the ME coefficient are investigated.

2 Basic equations

Two-layered composite with only piezoelectric (PE) and only piezomagnetic (PM)
properties in each layer exhibits non-vanishing magnetoelectric properties as a
whole. This is so because in the PM layer the external magnetic field generates
certain strains and due to mechanical contact between the two layers these strains
give rise to an electric field in the PE layer. Strictly speaking the evaluation of the
magnetoelectric coefficients is a rather complex problem requiring an iterative so-
lution. Only in the first approximation, we can consider the coupling between the
PE and PM layers with assuming vanishing magnetoelectric coefficients in each
layer. The electric and magnetic boundary conditions for such simplified problems
are shown in Fig. 1 for the longitudinal ME effect and the in-plane longitudinal
ME effect.

The general constitutive equations for magnetoelectroelastic solids (Nan, 1994) can
be written as

σi j(x,τ) = ci jkl(x)εkl(x,τ)− eki j(x)Ek(x,τ)−dki j(x)Hk(x,τ), (1)

D j(x,τ) = e jkl(x)εkl(x,τ)+h jk(x)Ek(x,τ)+α jk(x)Hk(x,τ), (2)

B j(x,τ) = d jkl(x)εkl(x,τ)+αk j(x)Ek(x,τ)+ γ jk(x)Hk(x,τ), (3)

where {εi j, Ei, Hi} is the set of secondary field quantities (strains, intensity of elec-
tric field, intensity of magnetic field) which are expressed in terms of the gradients
of the primary fields such as the elastic displacement vector, potential of electric
field, and potential of magnetic field {ui, ψ, µ}, respectively. Finally, the elastic
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Figure 1: Two-layered multifferoic composite

stress tensor, electric displacement, and magnetic induction vectors {σi j, Di, Bi}
form the set of fields conjugated with the secondary fields {εi j, Ei, Hi}. The con-
stitutive equations correlate these two last sets of fields in continuum media includ-
ing the multifield interactions. The constitutive equations (1)-(3) involve general
magnetoelectroelastic interactions in media with spatially dependent material coef-
ficients in continuously non-homogeneous solids. In this paper, we shall consider
also functionally graded material properties for one layer (piezomagnetic or piezo-
electric) of the two-layered multiferroic composite.

For a layered PE/PM composite where each layer is either piezoelectric (PE) or
piezomagnetic (PM), the extended constitutive matrix is reduced to

ΛPE =

 c e 0
eT h 0
0 0 γ

 , (4)
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ΛPM =

 c 0 d
0 h 0

dT 0 γ

 (5)

for the PE and PM layers, respectively.

The strain tensor εi j is related to the displacements ui by

εi j =
1
2

(ui, j +u j,i) . (6)

The material parameters ci jkl , h jk and γ jk are the elasticity coefficients, dielectric
permittivities and magnetic permeabilities, while eki j , dki j and α jk are the piezo-
electric, piezomagnetic and magnetoelectric coefficients, respectively.

In the case of some crystal symmetries, one can formulate also the plane-deformation
problems (Parton and Kudryavtsev, 1988). For the poling direction along the pos-
itive x2-axis the constitutive equations (1)-(3) are reduced to the following matrix
formsσ11

σ33
σ13

=

c11 c13 0
c13 c33 0
0 0 c44

 ε11
ε33

2ε13

−
 0 e31

0 e33
e15 0

[E1
E3

]
−

 0 d31
0 d33

d15 0

[H1
H3

]
=

= C

 ε11
ε33
2ε13

−L
[

E1
E3

]
−K

[
H1
H3

]
, (7)

[
D1
D3

]
=
[

0 0 e15
e31 e33 0

] ε11
ε33
2ε13

+
[

h11 0
0 h33

][
E1
E3

]
+
[

α11 0
0 α33

][
H1
H3

]
=

= G

 ε11
ε33
2ε13

+H
[

E1
E3

]
+A

[
H1
H3

]
, (8)

[
B1
B3

]
=
[

0 0 d15
d31 d33 0

] ε11
ε33
2ε13

+
[

α11 0
0 α33

][
E1
E3

]
+
[

γ11 0
0 γ33

][
H1
H3

]
=

= R

 ε11
ε33
2ε13

+A
[

E1
E3

]
+M

[
H1
H3

]
. (9)
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The Maxwell’s equations have usually a quasi-static character in magneto-electro-
elastic problems, which is determined by realistic material coefficients. Accord-
ing to Parton and Kudryavtsev (1988) the Maxwell’s equations are reduced to two
scalar equations

D j, j(x,τ)−Π(x) = 0, (10)

B j, j(x,τ) = 0, (11)

where Π is the volume density of free charges.

The remaining vectorial Maxwell’s equations in the quasi-static approximation,
∇×E = 0 and ∇×H = 0, are satisfied identically if

E j(x,τ) =−ψ, j(x,τ) , (12)

H j(x,τ) =−µ, j (x,τ), (13)

where ψ(x,τ) and µ(x,τ) are the electric and magnetic potentials, respectively.

To complete the set of the governing equations, eqs. (10) and (11) need to be
supplemented by the balance of momentum

σi j, j(x,τ)+Xi(x,τ) = ρ üi(x,τ), (14)

where üi ,ρ and Xi denote the acceleration of the displacements, the mass density
and the body force vector, respectively.

The following essential and natural boundary conditions are assumed for the me-
chanical field

ui(x,τ) = ũi(x,τ), on Γu,

ti(x,τ) = σi jn j = t̃i(x,τ) , on Γt ,

where Γ = Γu∪Γt .

Similarly, we assume for the electrical field

ψ(x,τ) = ψ̃(x,τ), on Γp,

ni(x)Di(x,τ)≡ Q(x,τ) = Q̃(x,τ) , on Γq,

in which Γ = Γp∪Γq, and for the magnetic field

µ(x,τ) = µ̃(x,τ), on Γa,

ni(x)Bi(x,τ)≡ S(x,τ) = S̃(x,τ) , on Γb,

where Γ = Γa∪Γb, Γu is the part of the global boundary Γ with prescribed displace-
ments, while on Γt , Γp, Γq, Γa and Γb the traction vector, the electric potential, the
normal component of the electric displacement vector, the magnetic potential and
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the normal component of the magnetic induction vector are prescribed, respec-
tively. Recall that in dielectric media there are no free electric charges and Q̃(x,τ)
and S̃(x,τ) represent the normal components of the electric displacement vector
and the magnetic induction vector, respectively, on the outer side of the boundary
(interface).

3 Meshless local Petrov-Galerkin method

In the previous section, the boundary value problem is formulated. Now, we need
to solve the problem. For this purpose, we apply the local integral equation method
with meshless approximations. The MLPG method constructs a weak-form over
the local fictitious subdomains such as Ωs, which is a small region taken for each
node inside the global domain (Sladek et al., 2008a,b). The local subdomains could
be of any geometrical shape and size. In the present paper, the local subdomains are
taken to be of a circular shape for simplicity. The local weak-form of the governing
equations (14) can be written as∫
Ωs

[σi j, j(x,τ)−ρ üi(x,τ)+Xi(x,τ)] u∗ik(x) dΩ = 0, (15)

where u∗ik(x) is a test function.

Applying the Gauss divergence theorem to the first integral and choosing a Heav-
iside step function as the test function u∗ik(x) in each subdomain, one obtains the
following local integral equations (LIE)∫
Ls+Γsu

ti(x,τ)dΓ−
∫
Ωs

ρ üi(x,τ)dΩ =−
∫

Γst

t̃i(x,τ)dΓ−
∫
Ωs

Xi(x,τ)dΩ, (16)

where ∂Ωs is the boundary of the local subdomain which consists of three parts
∂Ωs = Ls ∪Γst ∪Γsu (Atluri, 2004). Here, Ls is the local boundary that is totally
inside the global domain, Γst is the part of the local boundary which coincides
with the global traction boundary, i.e., Γst = ∂Ωs∩Γt , and similarly Γsu is the part
of the local boundary that coincides with the global displacement boundary, i.e.,
Γsu = ∂Ωs∩Γu.

From the constitutive equations (1), we get the traction vector as

ti(x,τ) =
[
ci jkl(x)uk,l(x,τ)+ eki j(x)ψ,k(x,τ)+dki j(x)µ,k(x,τ)

]
n j(x).

Similarly, one can derive the local integral equations corresponding to the govern-
ing equations (10) and (11)∫

Ls+Γsp

Q(x,τ)dΓ =−
∫

Γsq

Q̃(x,τ)dΓ+
∫
Ωs

Π(x)dΩ, (17)
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∫
Ls+Γsa

S(x,τ)dΓ =−
∫

Γsb

S̃(x,τ)dΓ, (18)

where

Q(x,τ) = D j(x,τ)n j(x) =
[
e jkl(x)uk,l(x,τ)−h jk(x)ψ,k(x,τ)−α jk(x)µ,k(x,τ)

]
n j,

S(x,τ) = B j(x,τ)n j(x) =
[
d jkl(x)uk,l(x,τ)−αk j(x)ψ,k(x,τ)− γ jk(x)µ,k(x,τ)

]
n j.

The MLS is used for the spatial approximation of the field variables employing a
number of nodes spread over the domain of influence. According to the MLS (Be-
lytschko et al., 1996) method, the approximation of the primary fields (mechanical
displacements, electric and magnetic potentials) can be given as

uh(x,τ) = ΦΦΦ
T (x) · û =

n

∑
a=1

ϕ
a(x)ûa(τ),

ψ
h(x,τ) =

n

∑
a=1

ϕ
a(x)ψ̂a(τ),

µ
h(x,τ) =

n

∑
a=1

ϕ
a(x)µ̂

a(τ), (19)

where the nodal values ûa = (ûa
1(τ), ûa

3(τ))T , ψ̂a(τ) and µ̂a(τ) are fictitious pa-
rameters for the displacements, the electric and magnetic potentials, respectively,
and ϕa(x) is the shape function associated with the node a.

The number of nodes n used for the approximation is determined by the weight
function wa(x). A 4th order spline-type weight function is applied in the present
work

wa(x) =

{
1−6

(da

ra

)2
+8
(da

ra

)3−3
(da

ra

)4
, 0≤ da ≤ ra

0, da ≥ ra
, (20)

where da = ‖x−xa‖ and ra is the size of the support domain. In the MLS approx-
imation the convergence rates of the solution may depend upon the nodal distance
as well as the size of the support domain (Wen and Aliabadi, 2008). It should
be noted that a small size of the subdomains may induce a large oscillation in the
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nodal shape functions (Atluri, 2004). A necessary condition for a regular MLS ap-
proximation is that at least m weight functions are non-zero (i.e. n ≥ m ) for each
sample point x ∈ Ω. This condition determines the size of the support domain.
It is seen that the C1−continuity is ensured over the entire domain, and therefore
the continuity conditions of the tractions, electric displacements and magnetic in-
ductions are satisfied. However, this highly continuous nature leads to difficulties
when there is an imposed discontinuity in the secondary fields (strains, electric and
magnetic field vectors). Because of the highly continuous trial function which is at
least C1continuous, it is not trivial to simulate jumps in the strain field. Krongauz
and Belytschko (1998) introduced a jump shape function for 2-D problems. It is a
trial function with a pre-imposed discontinuity in the gradient of the function at the
location of the material discontinuity in addition to the MLS approximation. This
method is very tedious for curvilinear interfaces. Cordes and Moran (1996) solved
also 2-D problems by using Lagrangian multiplier. The method requires a lot of
computational effort when the discontinuity is of an arbitrary geometrical shape.

Interface between two media

Medium +Medium -

circular subdomain

semi-circular subdomain for node in +

 

Figure 2: Modeling of material discontinuities

It is much simpler to introduce double nodes to describe the material discontinu-
ity [Sladek et al., 2009]. Two sets of collocation nodes are assigned on both the
+side and the –side of the material interface at the same location, but with sup-
porting influence domains lying on corresponding sides of the interface (Fig. 2).
In the present paper, we have used this simple and general approach. The MLS
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approximations are carried out separately on particular sets of nodes within each
of the layers. Then, the support domains for the weights in the weighted MLS-
approximations are truncated at the interface of the two media. Therefore, the high
order continuity is kept within each layer, but not across their interface. Similarly,
the local subdomains considered around nodes are bounded by the interface.

The traction vectors ti(x) at a boundary point x ∈ ∂Ωs are approximated in terms
of the same nodal values ûa, ψ̂a and µ̂a as

th(x,ς)= N(x)C
n

∑
a=1

Ba(x)ûa(τ) +N(x)L
n

∑
a=1

Pa(x)ψ̂a(τ)+N(x)K
n

∑
a=1

Pa(x)µ̂
a(τ),

(21)

where the matrices C, L and K are defined in eq. (7), the matrix N(x) is related to
the normal vector n(x) on ∂Ωs by

N(x) =
[

n1 0 n3
0 n3 n1

]
,

and finally, the matrices Ba and Pa are represented by the gradients of the shape
functions as

Ba(x) =

ϕa
,1 0
0 ϕa

,3
ϕa

,3 ϕa
,1

 , Pa(x) =
[

ϕa
,1

ϕa
,3

]
.

Similarly the normal component of the electric displacement vector Q(x) can be
approximated by

Qh(x,τ) =

N1(x)G
n

∑
a=1

Ba(x)ûa(τ)−N1(x)H
n

∑
a=1

Pa(x)ψ̂a(τ)−N1(x)A
n

∑
a=1

Pa(x)µ̂
a(τ),

(22)

where the matrices G, H and A are defined in eq. (8) and

N1(x) =
[
n1 n3

]
.

Finally, the density of the magnetic flux S(x) is approximated by

Sh(x,τ) =

N1(x)R
n

∑
a=1

Ba(x)ûa(τ)−N1(x)A
n

∑
a=1

Pa(x)ψ̂a(τ)−N1(x)M
n

∑
a=1

Pa(x)µ̂
a(τ) (23)
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with the matrices R, Aand M being defined in eq. (9).

Substituting (21)-(23) into the local boundary-domain integral equations (16)-(18),
one obtains the following system of ordinary differential equations

n

∑
a=1

 ∫
Ls+Γst

N(x)CBa(x)dΓ

 ûa(τ)−

∫
Ωs

ρϕ
adΩ

 ¨̂ua
(τ)


+

n

∑
a=1

 ∫
Ls+Γst

N(x)LPa(x)dΓ

 ψ̂
a(τ)+

+
n

∑
a=1

 ∫
Ls+Γst

N(x)KPa(x)dΓ

 µ̂
a(τ) = −

∫
Γst

t̃(x,τ)dΓ−
∫
Ωs

X(x,τ)dΩ, (24)

n

∑
a=1

 ∫
Ls+Γsq

N1(x)GBa(x)dΓ

 ûa(τ) −
n

∑
a=1

 ∫
Ls+Γsq

N1(x)HPa(x)dΓ

 ψ̂
a(τ)−

−
n

∑
a=1

 ∫
Ls+Γsq

N1(x)APa(x)dΓ

 µ̂
a(τ) =−

∫
Γsq

Q̃(x,τ)dΓ+
∫
Ωs

Π(x,τ)dΩ, (25)

n

∑
a=1

 ∫
Ls+Γsb

N1(x)RBa(x)dΓ

 ûa(τ) −
n

∑
a=1

 ∫
Ls+Γsb

N1(x)APa(x)dΓ

 ψ̂
a(τ)−

−
n

∑
a=1

 ∫
Ls+Γsb

N1(x)MPa(x)dΓ

 µ̂
a(τ) =−

∫
Γsb

S̃(x,τ)dΓ, (26)

which are applied on the subdomains adjacent to the interior nodes as well as to the
boundary nodes on Γst ,Γsq and Γsb.

The discretized essential boundary conditions for displacements, electrical and
magnetic potentials take the form

n

∑
a=1

ϕ
a(xb)ûa(τ) = ũ(xb,τ) for xb ∈ ∂Ω

b
s ∩ Γu = Γ

b
su, (27)

n

∑
a=1

ϕ
a(xb)ψ̂a(τ) = ψ̃(xb,τ) for xb ∈ ∂Ω

b
s ∩ Γp = Γ

b
sp, (28)
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n

∑
a=1

ϕ
a(xb)µ̂

a(τ) = µ̃(xb,τ) for xb ∈ ∂Ω
b
s ∩ Γa = Γ

b
sa. (29)

On the interface ΓI of the two material layers there are no boundary conditions pre-
scribed but we can guarantee the continuity for the displacements and potentials, as
well as the equilibrium for tractions, normal components of the electric displace-
ments and magnetic inductions by collocating the following equations at double
nodes xd ∈ ∂Ωd

s ∩ΓI = Γd
I

n+

∑
a=1

ϕ
a(xd)ûa(τ) =

n−

∑
a=1

ϕ
a(xd)ûa(τ),

n+

∑
a=1

ϕ
a(xd)ψ̂a(τ) =

n−

∑
a=1

ϕ
a(xd)ψ̂a(τ),

n+

∑
a=1

ϕ
a(xd)µ̂

a(τ) =
n−

∑
a=1

ϕ
a(xd)µ̂

a(τ),

N(xb)

[
C+

n+

∑
a=1

Ba(xb)ûa(τ)+L+
n+

∑
a=1

Pa(xb)ψ̂a(τ)+K+
n+

∑
a=1

Pa(xb)µ̂
a(τ) −

− C−
n−

∑
a=1

Ba(xb)ûa(τ)−L−
n−

∑
a=1

Pa(xb)ψ̂a(τ)−K−
n−

∑
a=1

Pa(xb)µ̂
a(τ)

]
= 0, (30)

N1(xd)

[
G+

n+

∑
a=1

Ba(xb)ûa(τ)−H+
n+

∑
a=1

Pa(xb)ψ̂a(τ)−A+
n+

∑
a=1

Pa(xb)µ̂
a(τ)−

−G−
n−

∑
a=1

Ba(xb)ûa(τ)+H−
n−

∑
a=1

Pa(xb)ψ̂a(τ)+A−
n−

∑
a=1

Pa(xb)µ̂
a(τ)

]
= 0, (31)

N1(xd)

[
R+

n+

∑
a=1

Ba(xb)ûa(τ)−A+
n+

∑
a=1

Pa(xb)ψ̂a(τ)−M+
n+

∑
a=1

Pa(xb)µ̂
a(τ)−

−R−
n−

∑
a=1

Ba(xb)ûa(τ)+A−
n−

∑
a=1

Pa(xb)ψ̂a(τ)+M−
n−

∑
a=1

Pa(xb)µ̂
a(τ)

]
= 0, (32)
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where n+ and n− are the numbers of nodes lying in the support domain in medium
+ and medium -, respectively. The normal vector components in N(xd) and N1(xd)
are taken in the sense of outward normal to the medium +.

The local boundary-domain integral equations (24)-(26) together with the collo-
cation equations (27)-(29) on the global boundary for the essential conditions and
tailoring conditions (30)-(32) on the interface are recast into a complete system of
ordinary differential equations (ODE)

Rẍ+Fx = Y, (33)

where the column-vector x is formed by the nodal unknowns
{

ûa
1(τ), ûa

3(τ), ψ̂a(τ), µ̂a(τ)
}

.

The Houbolt method (Houbolt, 1950) is applied for the second order ODE (33), in
which the “acceleration” is expressed as

ẍτ+∆τ =
2xτ+∆τ −5xτ +4xτ−∆τ −xτ−2∆τ

∆τ2 , (34)

where ∆τ is the time-step.

Substituting eq. (34) into eq. (33), we get the following system of linear algebraic
equations for the unknowns xτ+∆τ[

2
∆τ2 R+F

]
xτ+∆τ =

1
∆τ2 5Rxτ +R

1
∆τ2 {−4xτ−∆τ +xτ−2∆τ}+Y . (35)

4 Numerical results

The following geometrical values for the two-layered composite are considered
in the numerical analysis: length Lx = 16mm, and thickness of layers he = hm =
1mm. For the upper layer with piezoelectric properties we have considered PZT-5A
material, where

c11 = 99.2 ·109Nm−2 , c13 = 50.778 ·109Nm−2 ,

c33 = 86.856 ·109Nm−2 , c44 = 21.1 ·109Nm−2 ,

e15 = 12.332Cm−2 , e31 =−7.209Cm−2 , e33 = 15.118Cm−2 ,

h11 = 1.53 ·10−8C(V m)−1 , h33 = 1.5 ·10−8C(V m)−1 , ρ = 7500kg/m3 .

The bottom layer corresponds to the piezomagnetic CoFe2O4 material with

c11 = 286 ·109Nm−2 , c13 = 170.5 ·109Nm−2 ,

c33 = 269.5 ·109Nm−2 , c44 = 45.3 ·109Nm−2 ,
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d15 = 550N(Am)−1 , d31 = 580.3N(Am)−1 , d33 = 699.7N(Am)−1 ,

γ11 = 590 ·10−6Wb(Am)−1 , γ33 = 157 ·10−6Wb(Am)−1 , ρ = 5500kg/m3 .

 

Figure 3: Node distribution and boundary conditions

On the lateral sides vanishing magnetic inductions and electrical displacements are
prescribed. The top surface of the piezoelectric layer has vanishing electric dis-
placements and magnetic potential. On the bottom surface of the piezomagnetic
layer the magnetic potential -0.1A and a vanishing electric potential are prescribed.
The top surface of the piezomagnetic layer and the bottom surface of the piezo-
electric layer are perfectly bonded and both magnetic and electric potentials, mag-
netic flux and electrical displacements are unknown there. The electric potential
on the top surface is unknown. We have used 574 (2x41x7) nodes equidistantly
distributed for the MLS approximation of the physical quantities (Fig. 3). The
local subdomains are considered to be circular with a radius rloc = 0.0001m. If
the magnetic permeability of the piezoelectric layer is significantly larger than the
value of the joined piezomagnetic layer (γ11 = 590 · 10−6Wb(Am)−1 ∗ 1000 and
γ33 = 157 · 10−6Wb(Am)−1 ∗ 1000), the magnetic potential along the thickness of
the piezoelectric layer is vanishing as the prescribed value on the top surface. Sim-
ilarly, if the electric permittivity in the piezomagnetic layer is significantly larger
than the value in the piezoelectric layer (h11 = 1.53 · 10−8C(V m)−1 ∗ 1000 and
h33 = 1.5 ·10−8C(V m)−1 ∗1000), the electric potential along the whole piezomag-
netic layer is vanishing, like the prescribe quantity on the bottom surface. In the
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first numerical analysis the bottom surface of the piezomagnetic layer is clamped,
i.e., u1 = u3 = 0 at x3 = 0. All other composite surfaces are free of tractions.

The computed electric potential on the top surface of the PE layer is presented
in Fig. 4. One can observe a quite good agreement between the FEM and the
MLPG results. The COMSOL computer code is used for the FEM analyses with
1400 (100x14) linear elements. In the next step, we change the thickness of the
piezoelectric layer, while the thickness of the piezomagnetic layer is unchanged.
Therefore, we introduce the volumetric ratio of the PE layer as Vf = he/(he +hm).
One can observe the influence of the volumetric ratio of the PE/PM layers on the
electric potential on the top surface of the PE layer in Fig. 5. With increasing PE
layer thickness the electric potential on the top surface increases.

 

Figure 4: Variation of the electric potential along x1 on the top surface of PE layer
if the bottom of the piezomagnetic layer is clamped

The average intensity of the electric field Ē3 is defined for the composite plate as

Ē3 =
1
S

∫
S

E3(x1,x3)dS, (36)

where S is the surface of the two-layered composite in the x1− x3 plane. The av-
erage magnetic intensity vector is defined similarly. In the considered sample with
h� Lx, the average magnetic intensity can be assessed as H̄3 = 0.1A/0.001m =



MLPG Analysis of Layered Composites 91

 

Figure 5: Variation of the electric potential along x1 on the top surface for various
thicknesses of the PE layer

100A/m if he = hm = 0.001m. Thus, the ME coefficient under vanishing deforma-
tions and polarization can be obtained as α33 = h33α ′33, where α ′33 = −Ē3/H̄3 is
the ME voltage coefficient (Bichurin et al, 2003). Since both the applied magnetic
field and the unknown electric field are oriented along the vertical x3-direction, it
is sometimes reffered to as the out-of-plane longitudinal ME effect (Bichurin et al,
2003) for layered composites.

Pan and Wang (2009) computed the average intensity of the electric field Ē3 =
ψ̄/(he + hm), where ψ̄ is the average electric potential on the top surface of the
plate. Based on the definition we get the coefficient α ′33 = −Ē3/H̄3, where the
magnetic intensity H̄3 = µ/hm and µ = −0.1A on the bottom surface of the PM
layer. The variation of the magnetoelectric coefficient versus the volumetric ratio
is presented in Fig. 6. One can again observe a very good agreement of the FEM
and MLPG results.

In the next example we consider a fixed displacement component u3 = 0 on the
bottom surface of the piezomagnetic layer. The variation of the electric potential
on the top surface of the PE layer for the volumetric ratio Vf = 0.5 is presented in
Fig. 7. If we compare the results for clamped and fixed boundary conditions in
Figs. 4 and 7, we can see significantly larger electrical potential for fixed boundary
conditions. The variations of the electric potentials along x1 on the top surface of
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Figure 6: Variation of the magnetoelectric coefficient versus the volumetric ratio
for clamped PM layer

the PE layer for various volumetric ratios are given in Fig. 8. The magnetoelectric
coefficient for the two-layered PM/PE composite with a fixed displacement u3 = 0
is presented in Fig. 9. One can observe a very good agreement between the present
MLPG and the FEM results.

In functionally graded materials (FGMs) the volume fraction of the constituents is
varying in a predominant direction. In this paper, we consider an FG piezoelectric
layer and a homogeneous piezomagnetic layer. Along the thickness of the PE layer
the material properties are continuously varying. An exponential variation of the
elastic, piezoelectric and dielectric coefficients is assumed generally as

fi j(x) = fi j0 exp [m(x3−0.001)] , (37)

where the symbol fi j is commonly used for particular material coefficients with
fi j0 corresponding to the material coefficients for PZT-5A. In the numerical anal-
yses, we will use various values of the exponent parameter in order to study the
dependence of the ME coefficient on the material gradation along the x3 direction.
Also in this case the displacement u3 = 0 is fixed on the bottom surface of the PM
layer. The variation of the electric potential along the x1 direction on the top sur-
face of the functionally graded PE layer for a fixed homogeneous piezomagnetic
layer is presented in Fig. 10. The largest electric potential and the corresponding
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Figure 7: Variation of the electric potential along x1 on the top surface of PE layer
if the bottom of the piezomagnetic layer is fixed u3 = 0 and Vf = 0.5

electromagnetic coefficient are observed for a negative exponent m =-1. In such a
case all material coefficients of the PE layer have smaller values on the top surface
than on the bottom surface. The electric potential is only a little bit larger than
that corresponding to the homogeneous layer as presented in Fig. 7. The smallest
electric potential corresponds to a positive exponent m =1, valid for all material pa-
rameters. If functionally graded properties are considered only for the elastic or the
electric material parameters, the electric potential is slightly reduced with respect
to the case with both FG elastic and electric parameters. The variation of the ME
coefficient with the gradation exponent is presented in Fig. 11.

In previous numerical examples we considered a pure magnetic load on the FG mul-
tiferroic laminated composite. In the next example a combined magneto-mechanical
load is applied. A uniform mechanical load σ0 is applied on the top surface of the
PE layer. The bottom surface is fixed in the normal direction (u3=0) but free in the
tangential direction. Simultaneously the two-layered plate is subjected a magnetic
load with the prescribed magnetic potential µ = −0.1A on its bottom surface and
the vanishing magnetic potential on the top surface. The mechanical load is deter-
mined by the non-dimensional parameter χm = σ0/(d33H3) at a uniform magnetic
loadH3 = 100Am. One can observe in Fig. 12 that the ME coefficient significantly
grows with increasing mechanical load at the constant magnetic load. This phe-
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Figure 8: Variation of the electric potential along x1 on the top surface for various
thicknesses of the PE layer if the bottom of the piezomagnetic layer is fixed u3 = 0

 

Figure 9: Variation of the magnetoelectric coefficient versus the volumetric ratio if
the bottom of the piezomagnetic layer is fixed u3 = 0
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Figure 10: Variation of the electric potential along x1 on the top surface of func-
tionally graded PE layer if the bottom of the piezomagnetic layer is fixed u3 = 0
and Vf = 0.5

 
Figure 11: Variation of the ME coefficient with the gradation exponent
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Figure 12: Variation of the magnetoelectric coefficient with the combined load
parameter χm for two-layered composite with the fixed bottom u3 = 0 and Vf = 0.5

nomena can be utilized to enlarge the ME coefficient.

In the next numerical example we analyze the two-layered composite under a com-
bined magneto-mechanical load with an impact mechanical and a constant mag-
netic load. A uniform mechanical load σ33 = 7000Pa on the top surface with a
Heaviside time variation is considered. It corresponds to χm = 0.1. Simultaneously
the two-layered composite is subjected to a magnetic load with a prescribed mag-
netic potential µ =−0.1A on its bottom surface and a vanishing magnetic potential
on the top surface. The bottom surface is fixed in the normal direction (u3=0) but
free in the tangential direction. The geometry and material properties of the plate
are the same as in previous examples with static loading conditions. Numerical
calculations are carried out for a time-step ∆τ = 0.5× 10−7s. The time variation
of the magnetoelectric coefficient is presented in Fig. 13. One can observe a very
good agreement of the MLPG and the FEM results for shorter time instants. The
magnetoelectric coefficient corresponding to the static loading case, αstat

33 = 0,674,
is exceeded significantly in the dynamic loading case.

If the magnetic potential with a Heaviside time variation is applied on the bot-
tom surface of the composite (without mechanical loading) and a finite veloc-
ity of elastic waves is considered, the magnetoelectric coefficient is given in Fig.
14. The magnetoelectric coefficient corresponding to the static loading is equal to
αstat

33 = 0,189. One can see that the magnetoelectric coefficient is oscillating around
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the zero value in the dynamic loading case.

 
Figure 13: Time variation of the magnetoelectric coefficient for the load parameter
χm = 0.1

5 Conclusions

After more than a century of theoretical and experimental researches on the ME
interaction phenomena the ME effect is now at the cusp of exploitation for device
applications. In composite samples the geometrical degrees of freedom have more
influences on the ME response than in the case of single-phase compounds. The
directions of the applied fields and of the induced ME signal are all perpendicular
to the interface of PE and PM layers. The ME voltage coefficient increases with
increasing thickness ratio hm/he, between the magnetostrictive and the piezoelec-
tric units because the compressive stress is higher in thinner piezoelectric layers.
On the other hand the output voltage, which is the relevant parameter for sensor
applications, decreases when hm/he increases.

A meshless local Petrov-Galerkin method (MLPG) is applied to investigate magne-
toelectric coefficients for two-layered composite consisting of two dissimilar piezo-
electric and piezomagnetic materials. Both static and dynamic loading conditions
are considered here. The electric potential in the PE layer is induced by the mag-
netic potential in the PM layer. The induced electric field is not uniform on the
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Figure 14: Time variation of the magnetoelectric coefficient for a pure magnetic
impact load

top surface of the PE layer. Therefore, the magnetoelectric coefficient is not uni-
form too. The presented coefficients correspond to the average value of the induced
electric potential at the top of the PE layer.

The influences of the exponential variation of the elastic, piezoelectric and dielec-
tric coefficients in the PE layer on the ME coefficient is analyzed in details. The
largest electric potential and the corresponding electromagnetic coefficient are ob-
served for a negative exponent m =-1. In this case, all material coefficients of the
PE layer have smaller values on the top surface than on the bottom surface.
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