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A Multiple-Precision Study on the Modified Collocation
Trefftz Method

Chia-Cheng Tsai1 and Po-Ho Lin2

Abstract: Recently, Liu (CMES 21(2007), 53) developed the modified colloca-
tion Trefftz method (MCTM) by setting a characteristic length slightly larger than
the maximum radius of the computational domain. In this study, we find that the
range of admissible characteristic length can be significantly enlarged if the LU de-
composition is applied for solving the resulted dense unsymmetric matrix. Further-
more, we discover a range formula for admissible characteristic length, in which
the number of the T-complete functions, the shape of the computation domain, and
the exponent bits of the involved floating-point arithmetic have been taken into con-
sideration. In order to validate the prescribed formula for different exponent bits,
the multiple precision floating-point reliable (MPFR) library is used. In addition,
we find that the MCTM is a numerical method of exponential convergence. In other
words, increasing the numbers of the T-complete functions can reduce the logarith-
mic error proportionally till the precision limit, which can be set up for the MPFR
library. Numerical experiments are carried out to demonstrate that the proposed
MCTM with the LU decomposition can solve the Laplace equation stably and ac-
curately, even for a Cauchy problem. A multiple-precision comparison between the
MCTM and the method of fundamental solution is also preformed.

Keywords: exponential convergence, modified collocation Trefftz method, mul-
tiple precision floating-point reliable library, Laplace equation

1 Introduction

In recent years, the meshless numerical methods have considered as alternative nu-
merical schemes to the classical mesh-dependent numerical methods, such as the
finite difference method (FDM), the finite element method (FEM), and the bound-
ary element method (BEM). In general, the meshless numerical methods can be
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divided loosely into two categories: the domain-type and the boundary-type. Ex-
amples of the domain-type numerical methods include the Kansa’s method [Kansa
(1990b); Kansa (1990a); Huang, Lee and Cheng (2007); Huang, Yen and Cheng
(2010)] and the meshless local Petrov-Galerkin method (MLPG) [Atluri and Zhu
(1998); Atluri and Shen (2002); Atluri (2004)]. On the other hand, a popularly
utilized method in the boundary-type category is the method of fundamental solu-
tions (MFS) [Bogomolny (1985); Fairweather and Karageorghis (1998); Golberg
and Chen (1999)]. In this paper, we study the Trefftz method [Liu (2007a); Liu
(2007b); Liu (2008b); Liu (2008c); Liu (2008d); Liu (2008a); Yeih, Liu, Kuo and
Atluri (2010); Fan and Chan (2011)], which is another boundary-type meshless
numerical method.

The Trefftz method was first proposed by Trefftz in a conference [Trefftz (1926)].
The basic idea of the Trefftz method is to find a set of the so-called T-complete func-
tions which satisfy the governing equation identically, and then use these functions
to approximate the boundary condition. Since then, the Trefftz method was exten-
sively studied and applied to many problems in science and engineering. Examples
include the harmonic equation [Cheung, Jin and Zienkiewicz (1989)], the plane
elasticity problems [Jin, Cheung and Zienkiewicz (1990)], the Helmholtz equation
[Cheung, Jin and Zienkiewicz (1991); Kamiya and Wu (1994); Chang, Liu, Yeih
and Kuo (2002); Chang, Liu, Kuo and Yeih (2003)], the biharmonic problems [Jin,
Cheung and Zienkiewicz (1993)], the piezoelectric problems [Sheng, Sze and Che-
ung (2006); Dziatkiewicz and Fedeliǹski (2011)] and others. For a useful survey of
literature, one can refer to the article [Kita and Kamiya (1995)].

In addition, it is noticeable that a significant superiority of the Trefftz method is
its capability of dealing with singular problems, such as the Motz problem [Lu,
Hu and Li (2004)], the singular biharmonic [Li, Lu and Hu (2004)] and Helmholz
problems [Li, Lu, Tsai and Cheng (2006)]. An excellent review is this direction
can be referred to the article [Li, Lu, Hu and Cheng (2008)].

The early applications of the Trefftz method are limited and less popular due to its
ill-posed nature even for a well-posed boundary value problem [Kita and Kamiya
(1995); Yeih, Liu, Chang and Kuo (2006); Li, Lu, Hu and Cheng (2008)]. In
order to circumvent the ill-posed behavior of the Trefftz method, the traditional
consideration is either to combine the Trefftz method with the domain decomposi-
tion method [Leitão (1997); Kita, Kamiya and Iio (1999)] or to use the Tikhonov’s
regularization method [Yeih, Liu, Chang and Kuo (2006)].

On the other hand, Liu modified the Trefftz method for dealing with the ill-posed
behavior, in which a characteristic length was introduced to scale the basis func-
tions [Liu (2007a); Liu (2007b)]. Later, the modified collocation Trefftz method
(MCTM) was extended to deal with the potential problems in two-dimensional



A Multiple-Precision Study on the Modified Collocation Trefftz Method 233

doubly [Liu (2008a)] or multiply [Yeih, Liu, Kuo and Atluri (2010)] connected
domains and Cauchy problems [Liu (2008c); Liu (2008d)]. The MCTM was also
applied for solving Cauchy problems of the biharmonic equation [Liu (2008b)] and
the nonlinear geometry boundary identification problem of heat conduction [Fan
and Chan (2011)]. Basically, their results have demonstrated that the MCTM does
not require any regularization technique.

However, the improvement of the characteristic length seems to be overestimated
after performing a study by using a direct matrix solver instead of an iterative one
for solving the resulted dense unsymmetric matrix of the MCTM. We find that
there is a wide range of admissible characteristic length in which the solution are
equally accurate if the LU decomposition [William and Teukolsky (1988)] is used
for solving the resulted matrix. Furthermore, we discover a range formula to predict
the admissible characteristic length, in which the number of the T-complete func-
tions, the shape of the computation domain, and the exponent bits of the involved
floating-point arithmetic have been taken into consideration.

All of the prescribed studies were performed upon the ANSI/IEEE 754-1985 stan-
dard of floating-point arithmetic [IEEE (1985)]. Although the IEEE 64-bit floating-
point arithmetic is sufficient for most of the scientific applications, there are still
certain scientific computing applications require a higher level of numeric pre-
cision. Therefore, the multiple precision floating-point reliable (MPFR) library
[Hanrot, Lefevre, Pelissier and Zimmermann (2005)] was innovated. The MPFR
provides correct rounding for all the operations and mathematical functions it im-
plements. Therefore, the MPFR library is a multiple-precision extension of the
IEEE 754 standard of floating-point arithmetic. For a comprehensive review of the
MPFR, one can refer to the article [Fousse, Hanrot, Lefevre, Pelissier and Zimmer-
mann (2007)].

The only multiple-precision study of the Trefftz method, to the best knowledge
of the authors, was performed by the symbolic software Mathematica for solving
the Motz problem [Li and Lu (2000)]. However, this implementation cannot be
easily communicated with other existing scientific programs written in high-level
programming languages. In this paper, in order to understand the behavior of the
MCTM beyond the limit of IEEE 754 standard, the MPFR is used for its imple-
mentation. We find that the MCTM is a highly accurate numerical method of ex-
ponential convergence. In other words, increasing the numbers of the T-complete
functions can reduce the logarithmic error proportionally till the machine epsilon
of the working floating-point arithmetic, which can be set up for the MPFR library.
On the other hand, we also validate our range formula of admissible characteristic
length for different bit numbers of exponent via the MPFR library.

The organization of the paper is given as follows: the MCTM is reviewed in Section
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2. Then, the range formula of admissible characteristic length is derived in Section
3. Some numerical results are presented in Section 4 and conclusions are drawn in
Section 5.
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Figure 1: Schematic diagram of the problem of heat conduction.

2 The MCTM formulation

In Fig. 1, we consider the following heat conduction problem
∆u = urr + ur

r + uθθ

r2 = 0 in Ω

u = f (x) on Γ1
∂u
∂n = g(x) on Γ2

(1)

where ∆ is the Laplace operator, u = u(x) is the desired temperature field with
x = (r,θ) being the polar coordinate, Ω is the domain occupied by the medium
being conducted and Γ = Γ1 +Γ2 is the boundary of Ω which is described by

r = ρ (θ) (2)

In addition, f is a given temperature on Γ1, and ∂u
∂n is the outward normal derivative

with g being a given heat flux on Γ2. Here, the outward normal derivative is defined
as

∂u
∂n

(x) = ∇u ·n (3)

with

∇u =
∂u
∂ r

r+
1
r

∂u
∂θ

θθθ (4)
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and n is the unit outward normal vector of Γ which can be obtained from Eq. (2) as

n =
ρ (θ)r+ρ ′ (θ)θθθ√

ρ (θ)2 +ρ ′ (θ)2
(5)

In Cartesian coordinate, the unit vectors r and θ are given as

r = (cosθ ,sinθ) (6)

θθθ = (−sinθ ,cosθ) (7)

In the MCTM, the solution u is approximated by ũ(x;c,d) as follows:

u(x)∼= ũ(x;c,d) = c0 +
N

∑
i=1

[
ci

(
r

R0

)n

cosnθ +di

(
r

R0

)n

sinnθ

]
(8)

where R0 is a characteristic length for scaling T-complete functions [Liu (2007b)],
2N + 1 is the number of the T-complete functions, c = (c0,c1, ...,cN) and d =
(d1,d2, ...,dN) are the unknown coefficients to be determined. Here, we have as-
sumed that the Trefftz origin is inside the computational domain Ω. When the
number of the T-complete functions is sufficient large, the prescribed formula (8)
can approximate a harmonic function arbitrarily well. However the resulted system
of linear equations is highly ill-conditioned.

In order to apply the MCTM, the unknown coefficients c and d should be deter-
mined so that the boundary conditions are satisfied at 2N + 1 boundary points,
(x1,x2, ...,x2N+1), which result in

f (x j) = c0 +
N
∑

i=1

[
ci

(
r

R0

)n
cosnθ +di

(
r

R0

)n
sinnθ

]∣∣∣
x=x j

for x j on Γ1

g(x j) =
N
∑

i=0
ci

∂

((
r

R0

)n
cosnθ

)
∂n(x)

∣∣∣∣∣
x=x j

+
N
∑

i=1
di

∂

((
r

R0

)n
sinnθ

)
∂n(x)

∣∣∣∣∣
x=x j

for x j on Γ2

(9)

Eq. (9) is a system of 2N +1 linear equations with 2N +1 unknowns c and d which
can also be rewritten in matrix form as

A
{

cT

dT

}
=
{

f
g

}
(10)

where f and g are the column vector constructed from the left-hand side of the
equation and A is an unsymmetric matrix formed from the kernel functions in Eq.
(9).
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In the original development of the MCTM, Eq. (10) was solved by the conjugate
gradient method (CGM) [Liu (2007b)] through the following symmetric form:

AT A
{

cT

dT

}
= AT

{
f
g

}
(11)

Alternatively, one can apply the bi-conjugate gradient method (CGM) or the LU
decomposition [William and Teukolsky (1988)] to solve the unsymmetric matrix
in Eq. (10). We will demonstrate that the LU decomposition is much more stable
compared to the iterative matrix solvers.

After c and d are solved, the temperature field u can be determined by Eq. (8). This
has finished the MCTM formulation.

3 Floating-point arithmetic and admissible characteristic length

In order to study the range of the admissible characteristic length, it is required to
understand the behavior of implemented floating-point arithmetic. The ANSI/IEEE
754-1985 standard for floating-point arithmetic [IEEE (1985)] is the common stan-
dard for most of the programming languages, including C++, Fortran and Java.
Therefore, every program using the formats and operations specified by IEEE 754
standard has exactly the same behavior on every configuration. Considering the
64-bits double precision of IEEE 754, it consists of three fields: one bit for sign, 11
bits of exponent and 52 bits of mantissa. Therefore, it has precision or machine ep-
silon equal to 2−53 ∼= 10−16, which is defined as the minimum difference between
two successive mantissa representations and gives a lower bound on the relative
error due to rounding in a floating-point computing.

Then, we should introduce the range of the 64-bits double precision. First, the
furthest positive and negative numbers from zero are

±

(
1−
(

1
2

)53
)

21024 (12)

And, the positive and negative normalized numbers closest to zero are

±2−1022 (13)

In the above equation, the normalized number means that the implicit leading bi-
nary digit is one. To reduce the loss of precision when an underflow occurs, the
IEEE 754 standard includes the ability to represent a number smaller than the pos-
sible normalized representation, by making the implicit leading digit being zero.
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Such numbers are called denormal. They don’t include as many significant digits
as a normalized number, but they enable a gradual loss of precision when the result
of an arithmetic operation is not exactly zero but is too close to zero to be repre-
sented by a normalized number. For more details, one can refer to the article [IEEE
(2008)].

While a multiple-precision computation is required, one can consider the MPFR
library which is an extension of the IEEE 754 standard. In its application, the
bit numbers of the exponent and mantissa can be set up. Therefore, the machine
epsilon becomes

2−(p+1) (14)

with p being the mantissa bits. And the furthest positive and negative numbers
from zero are given as

±

(
1−
(

1
2

)p+1
)

22e−1
(15)

with e being the exponent bits. And, the positive and negative normalized numbers
closest to zero are

±2−2e−1+2 (16)

To derive the admissible range of characteristic length when applying the MCTM
for a Dirichlet problem, we assume that the maximum radius of the boundary Γ is
Rmax = 2rmax and the minimum radius is equal to Rmin = 2rmin . By observing Eq.
(9), it is clear that one can prevent the overflow by considering(

Rmax

R0

)N

≤

(
1−
(

1
2

)p+1
)

22e−1
(17)

or equivalently

N (rmax− r0)≤ log2

(
1−
(

1
2

)p+1
)

+2e−1 (18)

where r0 = log2 R0. On the other hand, avoiding the underflow of normalized num-
bers requires

2−2e−1+2 ≤
(

Rmin

R0

)N

(19)



238 Copyright © 2012 Tech Science Press CMC, vol.28, no.3, pp.231-259, 2012

or equivalently

−2e−1 +2≤ N (rmin− r0) (20)

Eqs. (18) and (20) can be combined to give the admissible range as

rmax−
log2

(
1−
(1

2

)p+1
)

+2e−1

N
≤ r0 ≤ rmin +

2e−1−2
N

(21)

In applying Eq. (21), it should be noticed that the overflow will make the MCTM
immediately crashed when r0 is smaller than the lower bound. On the other hand,
the underflow only results in a denormalized number when r0 is larger than the
upper bound. In other words, the characteristic length can still get a little larger
beyond the upper bound.

4 Numerical results

Now, we are in a position to study the stability and accuracy of the MCTM. In the
following studies, the absolute maximum errors are adopted and the IEEE results
are obtained upon the IEEE double precision of 64 bits.

4.1 Review case one

First, we consider an epitrochoid boundary shape defined by

ρ (θ) =
√

26−10cos(4θ) (22)

Dirichlet boundary condition is set up according to the following analytical solution

u(x) = expxcosy (23)

where{
x = r cosθ

y = r sinθ
(24)

This problem has been solved by the MCTM with the CGM [Liu (2007b)]. In the
numerical computations, we have set R0 = Rmax = 6 and N = 25. The numerical
errors along a circle with radius equal to 3 for the solutions obtained by the MCTM
with the CGM, the BiCGM and the LU decomposition are plotted in Fig. 3(a). In
the figure, we have exactly reproduced the result of the CGM [Liu (2007b)] and
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Figure 2: Definition of Rmax and Rmin.

their accuracy are similar. Then we solve the same problem by setting R0 = 2,
which is a circle smaller than the computational domain. In Fig. 3(b), the solutions
obtained by iterative solvers are not accurate as mentioned by Liu. However, the
solutions obtained by the LU decomposition are still highly accurate.

To further investigate the topic, we perform computations by different R0 and plot
the maximum errors against r0 = log2 R0 as depicted in Fig. 4. The results have
clearly indicated that the solution obtained by the LU decomposition is much more
stable with respect to the characteristic length compared with those by iterative
solvers. Then, we plot the maximum errors against r0 for different numbers of T-
complete functions. Figs. 5(a) and 5(b) give the plots for the solutions obtained
by the CGM and the LU decomposition, respectively. The superiority of the LU
decomposition over the iterative methods for solving the resulted linear equation
system of the MCTM is also clear in these figures. Also, it can be found that the
optimal accuracy in Fig. 5 is around 10−14, which is very close to the machine
epsilon of IEEE 754 double precision. The gap between the computed optimal
accuracy and the machine epsilon is produced by the accumulated round-off errors.

4.2 Review case two

Then we consider a circular domain with a radius equal to 2. To illustrate the
accuracy and stability of the MCTM with the LU decomposition, we consider the
following analytical solution [Jin (2004); Liu (2007b)]:

u(x) = cosxcoshy+ sinxsinhy (25)
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Figure 3: Numerical errors for the review case one solved by the MCTM with (a)
R0 = 6 and (b) R0 = 2.
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Figure 4: Maximum error against r0 for the review case one solved by the MCTM
with CGM, BiCGM and LU decomposition.

The exact boundary data are derived by inserting x = 2cosθ and y = 2sinθ into
the above equation. In the numerical computations, we have set N = 50. The
numerical errors along a circle with radius r = 1 for the solutions obtained by the
CGM, the BiCGM and the LU decomposition are plotted in Fig. 6(a) and 6(b) for
R0 = 2.5 and R0 = 1.55, respectively. In the figure, it can be observed that the
modification by setting the characteristic length slightly larger than the maximum
radius of the computational domain is significant for the MCTM with the iterative
solvers as mentioned in the literature [Liu (2007b)]. However, a further observation
has shown that the solution obtained by the LU decomposition is much more stable
with respect to the characteristic length as shown in Fig. 7.

4.3 The admissible characteristic length

After revisiting the two cases in the literature, we should study the derived range
formula for admissible characteristic length. We consider Dirichlet problems in a
circular domain with radius of 2 and a 2-by-16 ellipse. In the computations, the
analytical solutions are set up according to Eq. (23).

Fig. 8 gives the maximum errors against r0 for the solutions in the prescribed two
domains. For all of the cases, it can be observed that the solutions are very accurate
and stable in certain wide admissible ranges. And the optimal accuracy is around
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Figure 5: Maximum error against r0 for different numbers of T-complete functions
for the review case one solved by the MCTM with (a) LU decomposition and (b)
CGM.
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Figure 6: Numerical errors for the review case two solved by the MCTM with (a)
R0 = 2.5 and (b) R0 = 1.55
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Figure 7: Maximum error against r0 for the review case two solved by the MCTM
with CGM, BiCGM and LU decomposition.

10−14 and 10−8 respectively for the circular and elliptic problems. The differences
between the computed optimal accuracy and the machine epsilon are caused by
the round-off errors. In addition, the round-off errors are more significant for the
problem in the more slender computational domain.

Table 1: Admissible range of r0 for the circular problem by the IEEE double preci-
sion.

2N+1 computed predicted computed predicted
lower bound lower bound upper bound upper bound

21 -101 -101.4 104 103.2
31 -67 -67.3 70 69.1
41 -49 -50.2 54 52.1
61 -33 -33.1 36 35.1
81 -24 -24.6 27 26.6
101 -19 -19.5 22 21.4

Then, the computed lower and upper bounds of r0 and the corresponding predicted
values by Eq. (21) are tabulated in Tables 1 and 2 for the circular and elliptic
problems, respectively. In the tables, it is clear that the predicted lower bound of
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Table 2: Admissible range of r0 for the 2-by-16 elliptic problem by the IEEE double
precision.

2N+1 computed predicted computed predicted
lower bound lower bound upper bound upper bound

41 -47 -47.2 54 52.1
51 -36 -37.0 44 41.9
61 -30 -30.1 37 35.1
71 -25 -25.3 33 30.2
81 -21 -21.6 29 26.6
101 -16 -16.5 24 21.4

r0 is exact since the overflow has immediately made the program crashed. On the
other hand, the computed upper bound of r0 are slightly larger than the predicted
value which is caused by the denormal mechanism of the underflow in the IEEE
754 floating-point standard. In the computation, the values of r0 are limited to
integers for simplicity.

To further validate the range formula of admissible characteristic length, we solve
the 2-by-16 elliptic problem by the MPFR library with two different configurations

(
{

e = 12
p = 100

and
{

e = 13
p = 150

). Fig. 9 gives the maximum errors against r0 for

the solutions. In the figure, it can also be observed that the solutions are very ac-
curate and stable in the wide admissible ranges, and the optimal accuracy is about
2−100 ∼= 8×10−31 and 2−150 ∼= 7×10−46 for the two configurations, respectively.
Furthermore, Table 3 and 4 give the computed and predicted ranges of the charac-
teristic length. An excellent agreement can also be observed.

Table 3: Admissible range of r0 for the 2-by-16 elliptic problem by the MPFR
library (e = 12 and p = 100).

2N+1 computed predicted computed predicted
lower bound lower bound upper bound upper bound

61 -64 -64.3 71 69.2
81 -47 -47.2 54 52.2
101 -36 -37.0 44 41.9
121 -30 -30.1 39 35.1
141 -25 -25.3 31 30.2

For a very slender ellipse, reasonable solutions cannot be obtained by the IEEE
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Figure 8: Maximum error against r0 for different numbers of T-complete functions
solved by the IEEE double precision for (a) circular and (2) 2-by-16 elliptic prob-
lems.
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Figure 9: Maximum error against r0 for different numbers of T-complete functions
of the 2-by-16 elliptic problem solved by the MPFR library with (a)e = 12&p = 100
and (b)e = 13&p = 150.
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Figure 10: Maximum error against r0 for different numbers of T-complete functions
of the 2-by-256 elliptic problem solved by the MPFR library with e = 15 and p =
600.

Table 4: Admissible range of r0 for the 2-by-16 elliptic problem by the MPFR
library (e = 13 and p = 150).

2N+1 computed predicted computed predicted
lower bound lower bound upper bound upper bound

61 -132 -132.5 139 137.5
81 -98 -98.4 105 103.4
101 -77 -77.9 84 82.9
121 -64 -64.3 71 69.2
141 -54 -54.5 61 59.5
161 -47 -47.2 53 52.2
201 -36 -37.0 43 41.9

754 arithmetic. Therefore, we use the MPFR library with e = 15 and p = 600 for
solving a problem in a 2-by-256 ellipse. Fig. 10 and Table 5 gives the maximum
errors against r0 and the range of admissible characteristic length, which behave
reasonably and similarly as in the previous study.
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Table 5: Admissible range of r0 for the 2-by-256 elliptic problem by the MPFR
library (e = 15 and p = 600).

2N+1 computed predicted computed predicted
lower bound lower bound upper bound upper bound

601 -46 -46.6 61 55.6
631 -44 -44.0 59 53.0
661 -41 -41.6 56 50.6
691 -39 -39.5 54 48.5

Table 6: Admissible range of r0 for the Amoeba problem by the MPFR library
(e = 13 and p = 300).

2N+1 computed predicted computed predicted
lower bound lower bound upper bound upper bound

81 -98 -98.4 104 103.4
101 -77 -77.9 84 82.9
121 -64 -64.3 70 69.2
141 -54 -54.5 60 59.5
161 -47 -47.2 53 52.2
181 -41 -41.5 47 46.5
201 -36 -37.0 43 41.9
221 -33 -33.2 38 38.2

4.4 The exponential convergence

It is well-known that the MCTM is a numerical method of exponential convergence
[Schaback (2008)]. In other words, increasing the numbers of the T-complete func-
tions can reduce the logarithmic error proportionally till the precision limit, which
can be set up by the MPFR library. To demonstrate this numerical phenomenon,
the previous Laplace problems are reconsidered. The logarithmic errors against the
numbers of T-complete functions are plotted in Figs. 11, 12 and 13 respectively for
the solutions of the Laplace problems in a circular domain of radius 2 as well as
2-by-16 and 2-by-256 ellipses. In the figures, the exponential convergence is sig-
nificant and the improvement on the optimal accuracy by increasing the precisions
via the MPFR library is also clear, especially for the problem in a 2-by-256 ellipse
which cannot be solved by an IEEE computing. Furthermore, the gaps between the
optimal accuracy and the machine epsilon of a given precision are more relevant for
the problems in more sender domains. In addition, the optimal accuracy obtained
by the MPFR library for the problem in the 2-by-256 ellipse is 3.69×10−69, which



250 Copyright © 2012 Tech Science Press CMC, vol.28, no.3, pp.231-259, 2012

 

1.E-44

1.E-40

1.E-36

1.E-32

1.E-28

1.E-24

1.E-20

1.E-16

1.E-12

1.E-08

1.E-04

1.E+00

20 40 60 80 100

Er
ro

r

No. of T-complete functions

IEEE

precision 75

precision 100

precision 125

precision 150

 
Figure 11: The exponential convergence for the circular problem.
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Figure 12: The exponential convergence for the 2-by-16 elliptic problem.
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Figure 13: The exponential convergence for the 2-by-256 elliptic problem.

is obtained in 462 seconds by a CPU of Intel(R) core i7 2.67GHz.

4.5 Amoeba-like domain

The application of the proposed MCTM to an irregular domain is straightforward.
In this example, the computer domain is defined as{

x = aρ (θ)cosθ

y = bρ (θ)sinθ
(26)

with

ρ (θ) = exp(sinθ)sin2 2θ + exp(cosθ)sin2 2θ (27)

and a and b are constants to stretching the computational domain. A typical amoeba-
like domain is shown in Fig. 2. In order to make Rmax = 24 and Rmin = 2, a = 5.333
and b = 7.831 are typically set up. The Dirichlet boundary condition is set up ac-
cording to the analytical solution in Eq. (23). Then, the computation is performed
by using the MPFR library with e = 13 and p = 300, the maximum errors against
r0 for different node numbers are given in Fig. 14(a), in which stable and accuracy
solutions can be found in a wide range of admissible characteristic length. In addi-
tion, the computed and predicted ranges of the characteristic length are tabulated in
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Figure 14: Maximum error against (a) r0 and (b) numbers of T-complete functions
for the problem in amoeba-like domain.
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Figure 15: The exponential convergence of the MCTM and the MFS and their
comparison.

Table 6. A good agreement between the computed and predicted values can also be
found. Then, the exponential convergence of the present problem is demonstrated
in Fig. 14(b), which behaves similarly as in the previous cases.

4.6 Comparison with the method of fundamental solutions

Then, we also compare the exponential convergence of the MCTM and the MFS
for the solutions of the Laplace equation in a 2-by-16 ellipse and an amoeba-like
domain. The Dirichlet boundary conditions are set up according to the analytical
solution in Eq. (23). For the amoeba-like domain, its boundary is described by Eq.
(26) with a = b = 1. The numerical results are obtained by the MPFR library with
infinite precision. And the sources of the MFS are located as far as possible.

Fig. 15 gives the logarithmic errors against the numbers of the T-complete functions
or the fundamental solutions. In the figure, it can be observed that the numerical so-
lutions obtained by the MCTM and the MFS are equally accurate. In the literature,
it has been indicated that the MFS for far–away source points is asymptotically
nothing else than a fit of the boundary data by specific harmonic polynomials [Sch-
aback (2008)] or alternatively the MCTM and the MFS are equivalent [Chen, Wu,
Lee and Chen (2007)]. Our numerical solutions seem to support their comments.

4.7 Cauchy problem

The application of the proposed MCTM with the LU decomposition for a Cauchy
problem is also of ease. In this example, we consider a Cauchy problem in a 2-by-
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Figure 16: Maximum error against (a) r0 and (b) numbers of T-complete functions
for the Cauchy problem.
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16 ellipse. Both Dirichlet and Neumann boundary conditions are set up according
to the analytical solution in Eq. (23) on the right boundary of the ellipse while no
boundary conditions are set up on the left boundary of the ellipse. Fig. 16(a) and
16(b) gives the maximum errors against r0 for different numbers of the T-complete
functions and the logarithmic errors against the numbers of the T-complete func-
tions, respectively. The results behave similarly as those of the Dirichlet problems.

5 Conclusion

In this study, the numerical solution of the modified collocation Trefftz method
(MCTM) was reviewed. The LU decomposition was used for solving the resulted
unsymmetric dense matrix. A range formula for admissible characteristic lengths
was derived by considering the number of the T-complete functions, the shape of
the computation domain, and the exponent bits of the involved floating-point arith-
metic. In order to change the exponent bits, the multiple precision floating-point
reliable (MPFR) library was used. Numerical solutions were in general very ac-
curacy and stable in the predicted range of admissible characteristic length. These
results have suggested that iterative matrix solvers should be replaced by the LU
decomposition or other direct matrix solvers in the application of the MCTM.

Furthermore, the exponential convergence of the MCTM was demonstrated. Nu-
merical results have indicated that increasing the numbers of the T-complete func-
tions can reduce the logarithmic error proportionally till the precision limit, which
can be set up for the MPFR library. For a Dirichlet problem in a 2-by-256 ellipse,
the optimal accuracy of the obtained solution was 3.69× 10−69 in 462 seconds of
computing time by Intel(R) core i7 2.67GHz. And the applicability of the proposed
MCTM with the LU decomposition was also demonstrated for a Cauchy problem.
Furthermore, numerical solutions also demonstrated that using the MCTM and the
MFS for approximating harmonic boundary were about equally accurate.

Acknowledgement: The National Science Council of Taiwan under NSC 100-
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