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Chemical Stresses Induced by Boundary Layer Diffusion
in a Cylindrical Sandwich Composite

Sun-Chien Ko1,2, Chen-Ti Hu1, Sanboh Lee1, Y.T. Chou3

Abstract: The chemical stresses developed in a cylindrical sandwich composite
during radial boundary layer diffusion have been investigated. The system consists
of a thin layer A of circular cross section sandwiched between two semi-infinite
outer layers B, with the diffusivity of diffusant in A (DA) being much greater than
that in B (DB). Two boundary conditions, the constant surface concentration and the
instantaneous surface concentration, were considered. The concentration distribu-
tions were obtained by the Bessel-Laplace transform method. The stress functions
were solved analytically based on the linear elasticity. Numerical computations
were performed to illustrate the effects of the diffusivity ratio (DA/DB) and of the
thickness of the central layer A on stress distributions. The results show that the in-
duced stress in layer A increases as the diffusivity ratio, or its thickness, increases,
in consistency with the general findings for composites of rectangular geometry.

Keywords: Chemical stress; Boundary layer diffusion; Cylindrical sandwich com-
posite

1 Introduction

Chemical stresses can be developed in an elastic medium during diffusion [Prussin
(1961); Li (1978)]. These induced stresses may affect many material properties
for their applications. For example, they may improve the mechanical property of
steels [Read-Hill and Abbaschian (1994)], but on the other hand degrade the elec-
trical property of semiconductor devices [Schwuttke and Queisser (1962); Miller,
Moore and Morre (1962)]. Recently, Christensen and Newman (2006) reported
that the premature structural failure of the electrode of Li-ion batteries was caused
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by the chemical stress. The interest in research on this subject was renewed. Yang
(2010) considered that, in addition to solid diffusion, the solid reaction would sig-
nificantly enhance the stress on the plate surface. Deshpande, Cheng, Verbrugge
and Timmons (2011) investigated the diffusion-induced stresses in phase trans-
forming electrode using a core-shell structural model. The same authors [Desh-
pande, Cheng and Verbrugge (2010)] also modeled the diffusion-induced stress in
nanowire electrode structure where the surface strain energy was comparable with
the bulk strain energy. More recently, Bhandakkar and Gao (2011) proposed the
cohesive model of crack nucleation in a cylindrical electrode under axisymmetric
diffusion-induced stresses. On the other hand, the analysis of chemical stress has
been extended to the grain boundary region during grain boundary diffusion [Wang,
Chou and Lee (1998); Wang, Chou and Lee (2001)], and to the layered compos-
ite during boundary-layer diffusion [Lin, Ko and Lee (2004); Ko, Lee and Chou
(2005)]. It has been pointed out that both grain boundary diffusion and boundary
layer diffusion can be analyzed based on the same mathematical model, in which
the material system is a layered composite of the BAB type. The central layer
A is extremely thin, and has a much greater diffusivity of the diffusant than the
two semi-infinite B layers. The only difference between the two models is that
in grain boundary diffusion, layer A has the same chemical composition as layer
B; in boundary layer diffusion, the two layers have different compositions but no
interdiffusion.

In recent years, the layered composites, especially the nano-layered composites,
were increasingly used in the semiconductor devices. One of the applications is the
vertical cavity surface emitting laser (VCSEL), which is favored as a transmitter for
optical data links. The wet oxidization of Al-containing semiconductor produces
a mechanically robust and a low refractive index Al-oxide [Dallesasse, Holonyak ,
Sugg, Richard and El-Zein (1990); Guha, Agahi, Pezeshki, Kash, Kisker and Bojar-
czuk (1996)]. This oxide layer provides the current and optical apertures in the VC-
SEL fabrication [Huffaker, Deppe, Kumar and Rogers (1994); Hayashi, Mukaihara,
Hatori, OhnoKi, Matsutani, Koyama and Iga (1995)], resulting in a remarkable low
threshold current and a high efficient performance [Larson, Coldren, Spruytte, Pe-
tersen and Harris (2000); Deppe, Huffaker, Oh, Deng and Deng (1997)]. The oxide
layer confines the current to inject into the quantum wells accurately, and its low
refractive index induces index-guide optical confinement for single mode evolu-
tion [Weigl, Grabherr, Michalzik, Reiner and Ebeling (1996); Nishiyama, Arai,
Shinada, Suzuki, Koyama and Iga (2000)]. However, the porosity was observed
occasionally due to the high stress developed during the application of wet oxida-
tion to VCSEL [Christensen and Newman (2006)]. In the design of the VCSEL
and other nano semiconductor device, the cylindrical composites are used as often
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as the rectangular units [Choquette, Geib, Ashby, Twesten, Blum, Hou, Follstaedt,
Hammons, Mathes and Hull (1997)]. Recently the boundary layer diffusion in a
cylindrical composite with the surface concentration source was analyzed [Ko, Lee
and Chou (2009)]. This prompted us to investigate the chemical stresses for the
same geometrical system. The details of the concentration distribution and stress
analysis are given in the next two sections.
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Figure 1: Schematic diagram showing a thin circular layer A sandwiched between
two outer layers B in a cylindrical coordinate system.

2 Concentration distribution

Consider a cylindrical sandwich composite of circular cross section with a thin cen-
tral layer A of radius r0 and thickness 2a, sandwiched between two semi-infinite
outer layers B, as shown in Fig.1. Layer A and layer B have different chemical
compositions, but no significant interdiffusion. In the cylindrical coordinate sys-
tem, layer A and layer B are located in the regions r≤ r0, |z| ≤ a and r≤ r0,a≤ |z|,
respectively, with the origin at the center of layer A. The diffusant, which has a
chemical composition different from those of A and B, is placed on the lateral sur-
face at r = ro. The diffusivity of the diffusant is much greater in layer A than in layer
B, (DA >> DB). Both layers are assumed to be isotropic materials. The diffusant
follows the Fickian law in each layer as:

DA

(
∂ 2CA

∂ r2 +
1
r

∂CA

∂ r
+

∂ 2CA

∂ z2

)
=

∂CA

∂ t
|z| ≤ a (1a)
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in layer A, and

DB

(
∂ 2CB

∂ r2 +
1
r

∂CB

∂ r
+

∂ 2CB

∂ z2

)
=

∂CB

∂ t
a≤ |z| (1b)

in layer B, where DA and DB are diffusion constants of the diffusant in layers A and
B, respectively. DA is also assumed to be much greater than DB. The concentration
and flux at interfaces z =±a satisfy the continuity, i.e. ,

CA(r,z =±a, t) = CB(r,z =±a, t) (2a)

and

DA
∂CA (r,z =±a, t)

∂ z
= DB

∂CB (r,z =±a, t)
∂ z

(2b)

According to Whipple (1954), the boundary equations Eq. (2) can be modified.

Because of geometric symmetry, CA is an even function of z. If r >> a, CA can be
approximated as

CA(r,z, t) = CA0(r, t)+
z2

2
CA2(r, t) (3a)

Then Eq. (1a) gives the zeroth order of z as (neglecting the terms of order z2),

DA

(
∂ 2CA0

∂ r2 +
1
r

∂CA0

∂ r
+CA2

)
=

∂CA0

∂ t
(3b)

Neglecting the terms of order a2, the boundary conditions Eqs. (2a) and (2b) at
z =±a are

CA0 = CB (4a)

DB
∂CB

∂ z
=±DAaCA2 (4b)

Eliminating CA0 and CA2, we obtain

DA

(
∂ 2CB

∂ r2 +
1
a

∂CB

∂ r

)
± DB

a
∂CB

∂ z
=

∂CB

∂ t
at z =±a (5a)

Equation (5a) is a single homogeneous boundary condition at z = a. Using Eq.
(1b), an alternative equation of Eq. (5a) is

DA
∂ 2CB

∂ z2 ∓
DB

a
∂CB

∂ z
=
(

DA

DB
−1
)

∂CB

∂ t
at z =±a (5b)

The problem becomes to solve Eq. (1b) with the constraint, Eq. (5b). In practice,
the diffusion flow proceeds under two different source conditions, either with a
constant or an instantaneous surface source.
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2.1 Instantaneous surface concentration source

Assume no diffusant inside the sample. On the outer surface deposites a very thin
layer of diffusant of M per unit area at room temperature, and then allow the sys-
tem to diffuse at an elevated temperature. The initial condition is CB (r,z, t = 0) =
MδD (r = a,z) and the boundary condition is ∂CB (r = a,z, t)/∂ r = 0, where δD

is the Dirac delta function. This problem can be solved using the Bessel-Laplace
transform. The concentration after the transform is

Φn =
−(DA

DB
−1) µ2

n
r0

J0(µn)M

[DA( µn
r0

)2 + DB
a

√
( µn

r0
)2 + λ

DB
+λ ][( µn

r0
)2 + λ

DB
]

× exp[−

√
(

µn

r0
)2 +

λ

DB
(z−a)]+

r0J0(µn)M
DB[µ2

n + λ

DB
]

(6a)

and the inverse transform of Eq. (6a) is

CB(r,z, t)
2M/r0

= 1+
∞

∑
n=1

J0(µn
r
r0

)

J0(µn)
exp[−(

µn

β
)2]

−
∞

∑
n=1

J0(µn
r
r0

)

J0(µn)
(

µn

β
)
∫

∆

1
exp[−(

µn

β
)2

σ ]er f c

[
1
2

√
σ −1
σ −∆

(ξ +
σ −1

δ
)

]
dσ (6b)

where

β = r0/
√

DBt (7a)

∆ = DA/DB (7b)

δ = a(∆−1)/
√

DBt (7c)

ξ = (z−a)/
√

DBt (7d)

and µn is the positive nth root of the first kind of Bessel function of first order,
J1 (r) = 0. J0 is the first kind of Bessel function of the zeroth order. The zeroth
order concentration CA can be obtained from the concentration CB at z = a. That is

CA(r, t)
2M/r0

= 1+
∞

∑
n=1

J0(µn
r
r0

)

J0(µn)
exp
[
[δ (

µn

β
)2]2− (

µn

β
)2
]

er f c[δ (
µn

β
)2] (8)

The concentration CA of order z2 is neglected.
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2.2 Constant surface concentration source

The concentration at the outer surface r = r0 is maintained constant C0 at all times.
Initially no diffusant is inside the circular sandwich composite. The boundary sur-
face condition and the initial condition are CB (r = r0,z, t)=C0 and CB (r,z, t = 0)=
0, respectively. Again this problem can be solved using Bessel-Laplace transforma-
tion. The zeroth order concentration CA was obtained by Ko, Lee and Chou (2009)
as

CA(r, t)
C0

= 1−2
∞

∑
n=1

J0(αn
r
r0

)

αnJ1(αn)
exp
[
[δ (

αn

β0
)2]2− (

αn

β
)2
]

er f c[δ (
αn

β
)2] (9)

where αn is the positive nth root of first kind of Bessel function of the zeroth
order,J0(r). Note that the concentration in layer A is an approximate solution in
which the terms of z2 are neglected.

It is noted that for a cylindrical sandwich composite, the concentration functions
CA, given by Eq. (8) and Eq. (9), are dependent on the inner dimension of the
sample. They are functions of the parameter,δ , which in turn is a function of the
half-thickness a of the central layer. Such a feature is unique in boundary layer
diffusion, and is different from the boundary effect in mass (or heat) flow in hollow
and coaxial composite cylinders [Carslaw and Jaeger (1959); Crank (1975)].

3 Analysis of stress distributions

From the concentration distributions given above we proceed to determine the
chemical stresses developed in the system, which for simplicity is assumed to be
elastically isotropic. Because the concentration in the outer layer B is negligibly
small and the dimension of B is sufficiently large, the stresses in layer B are as-
sumed to be zero. Also, since the thickness of layer A is very small, the stresses
in the axial direction in layer A can be set to be zero. Similar to the derivation
of thermal stresses [Timoshenko and Goodier (1970)], the stresses developed in
layer A during the radial boundary layer diffusion can be determined in terms of
concentration functions by the chemical stress-strain ( σ - ε) relations in cylindrical
coordinates:

σr =
E

1− v2

[
εr +νεθ − (1+ν)

V̄ C
3

]
(10a)

σθ =
E

1− v2

[
εθ +νεr− (1+ν)

V̄C
3

]
(10b)

where C is the concentration. E, ν and V̄ are the Young’s modulus, Poisson’s ratio
and the partial molal volume, respectively. Note that V̄ is positive if the diffusant
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is an interstitial atom, or if it is a substitutional atom with an atomic radius greater
than that of the host atom. On the other hand, V̄ is negative if the diffusant is a
substitutional atom with an atomic radius smaller than that of the host atoms. The
shear stress σrθ is zero because of the symmetry. (The concentration function C is
independent ofθ .). The force equilibrium then gives

∂σr

∂ r
+

σr−σθ

r
= 0 (11)

After a further substitution of εr = ∂u/∂ r and εθ = u/r where u is the radial dis-
placement, Eq. (11) becomes a second order differential equation,

d2u
dr2 +

1
r

du
dr
− u

r2 = (1+ν)
V̄
3

∂C
∂ r

(12)

For a gaseous diffusion source, Eq. (12) can be solved with boundary conditions
u(r = 0) = 0, and σr (r = r0) = 0. The solution is

u(r) = (1+ν)
V̄
3r

∫ r

0
rCdr +

(1−ν)V̄ r
3r2

0

∫ r0

0
Crdr (13)

From the radial displacement, the radial and tangential stresses are found to be

σr =
V̄ E
3

(
1
r2

0

∫ r0

0
Crdr− 1

r2

∫ r

0
Crdr

)
(14a)

σθ =
V̄ E
3

(
−C +

1
r2

0

∫ r0

0
Crdr +

1
r2

∫ r

0
Crdr

)
(14b)

Eqs. (14a) and (14b) indicate that both σr and σθ are zero at a constant C. This is
the case when the diffusion time approaches infinity.

Since there is no shear stress in the cylindrical sandwich composite, σr and σθ are
the principal stresses. Also, under the condition of plane stress, σz = 0, and the
principal shear stresses are given by

(σr−σθ )/2 =
V̄ E
6

(
C− 2

r2

∫ r

0
Crdr

)
(15a)

(σθ −σz)/2 = σθ /2 (15b)

(σr−σz)/2 = σr/2 (15c)

Note that the plastic yielding is determined either by the largest principal shear
stress (Tresca criterion) or by the root mean square of these principal shear stresses
(von Mises criterion). We now consider two separate cases based on the surface
source used:
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3.1 Instantaneous surface concentration source

Substituting Eq. (8) into Eqs. (14a) and (14b), we obtain the radial and tangential
stresses for the case of instantaneous surface concentration source to be

σr =−2V EM
3

∞

∑
n=1

J1(µn
r
r0

)

µnrJ0(µn)
exp
[
[δ (

µn

β
)2]2− (

µn

β
)2
]

er f c[δ (
µn

β
)2] (16a)

σθ =
2V EM

3

∞

∑
n=1

1
µnJ0(µn)

[
1
r

J1(µn
r
r0

)− (
µn

r0
)J0(µn

r
r0

)]exp
[
[δ (

µn

β
)2]2− (

µn

β
)2
]

erfc[δ (
µn

β
)2] (16b)

Using Eq. (16), we plot in Figs. 2(a)− (c) the stress components developed
in the cylindrical sandwich composite with the instantaneous surface concentra-
tion source. The radial stress at any given radial distance decreases with increas-
ing time (See Fig.2(a).). It can be seen from Fig. 2(b) that the tangential stress
near the outer surface decreases from a very large value (approaching infinity)
to zero with increasing time. The tangential stress at the center is equal to the
radial stress due to the equalities, lim

r→0
{J1(µnr/r0)/µnr} = 1/2ro in Eq.(16a) and

lim
r→0
{J1(µnr/r0)/µnr− J0(µnr/r0)/r0} = −1/2r0 in Eq.(16b). It is noted that the

tangential stress is infinite at the outer surface at t = 0.The mathematical singular-
ity is due to the use of Dirac delta function as the surface source. However, such
a singularity and its neighborhood can be excluded from the elastic solutions for
physical reality. Now, if V̄ is negative, and the tangential stress is tensile at the
outer surface and is greater than the critical value for crack generation, then frac-
ture may occur near the outer surface in a short time. The principal shear stress
(σθ −σr)/2 near the outer surface decreases monotonically with increasing time
for the case of instantaneous surface concentration source (See Fig. 2(c)). Since
the principal shear stress at the outer surface is very large at the initial time, plastic
deformation may happen. The shear stress is always zero at the center.

The effect of the diffusivity ratio, DA/DB, on the principal stress components σr,
σθ and the principal shear stress (σθ −σr)/2 is shown in Figs. 3(a), (b) and (c),
respectively for β = 50. At a given time, the magnitude of the radial stress at the
center of layer A under the instantaneous surface source decreases monotonically
with increasing δ /β or DA/DB (see Fig. 3(a)). The magnitudes of tangential stress
at both the outer surface and the center decrease with increasing δ /β . Also as
δ /β (or DA/DB) increases, the tangential component becomes smaller and more
uniformly distributed (Fig. 3(b)). As shown in Fig. 3(c), the principal shear stress
(σθ −σr)/2 decreases with increasing δ/β .
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Figure 2: Stresses developed in layer A for different times at δ/β = 10 under the
instantaneous source diffusion: (a)σr, (b)σθ and (c)(σθ −σr)/2. The curve termed
envelope is composed of the extreme values of the stress at the given position during
diffusion.
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Figure 3: Stresses developed in layer A for different δ/β at β = 50 under the in-
stantaneous source diffusion: (a)σr, (b)σθ and (c)(σθ −σr)/2.

3.2 Constant surface concentration source

Substituting Eq. (9) into Eq. (14a) and Eq.(14b), we obtain the principal stresses
for the constant surface concentration source. They are
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Figure 4: Stresses developed in layer A for different times at δ/β = 10 under
the constant source diffusion: (a)σr, (b)σθ and (c)(σθ −σr)/2. The curve termed
envelope is composed of the extreme values of the stress at the given position during
diffusion.
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Figure 5: Stresses developed in layer A for different δ/β at β = 50 under the con-
stant source diffusion: (a)σr, (b)σθ and (c)(σθ −σr)/2.
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n J1(αn)

[
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(
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[
[δ (
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)2]2− (
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β
)2] (17a)
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σr =−2V EC0

3

∞

∑
n=1

1
α2

n J1(αn)

[
αnJ0

(
αn

r
r0

)
− r0

r
J1(αn

r
r0

)− J1(αn)
]

× exp
[
[δ (

αn

β
)2]2− (

αn

β
)2
]

er f c[δ (
αn

β
)2] (17b)

The stresses developed in the cylindrical sandwich composite under the constant
surface concentration source are shown in Figs. 4(a)-(c) at δ/β = 10. It is seen
from Fig. 4(a) that at a given time, the radial stress is always maximum at the center
r = 0 and is minimum and equal to zero at the outer surface r = ro. The magnitude
of the radial stress at the center increases to a maximum with increasing time and
then decreases to zero. The evolution of radial stresses for this case, as shown in
Fig. 4(a), is quite different from the case of the instantaneous concentration source
(Fig. 2(a)). Note that the radial stress at the outer surface is always zero because
the outer surface is traction-free. As shown in Fig. 4(b), the tangential stress at
the outer surface and the center decreases with increasing time. It is found that
the maximum tangential stress is equal to −V̄ EC0/3 at r = r0 and t = 0 (Note that

∞

∑
n=1

1/α2
n = 0.25.), and is greater than the maximum radial stress. If the partial

molal volume is negative and the maximum tensile tangential stress is greater than
the critical value for the generation of crack nucleus, the composite would fracture.
The principal shear stress (σθ −σr)/2 is shown in Fig. 4(c) at δ/β = 10. Again the
maximum value is located at r = r0 and t = 0 with a magnitude of −V̄ EC0/6. The
other two principal shear stresses (σr−σz)/2 = σr/2 and (σθ −σz)/2 = σθ /2 can
also be observed from Figs. 4(a) and 4(b), respectively. It can be seen from Fig. 4
that the two maximum principal shear stresses are equal to −V̄ EC0/6 at r = r0 and
t = 0. If the maximum principal shear stress is greater than the critical value for
dislocation generation, the sandwich composite would be plastically deformed.

The effect of diffusivity on the stresses developed in the sandwich composite at a
constant surface concentration source is shown in Figs. 5(a)-(c) for β = 50. As
shown in Fig. 5(a), the radial stress in the central region increases to a maximum
with increasing δ/β and then decreases to zero. This trend is different from that
under an instantaneous surface source, where the radial stress decreases monoton-
ically with increasing δ/β (Fig. 3(a)). Since δ/β is equal to a(DA/DB− 1)/ro

and a/ro is constant, the effect of DA/DB on the radial stress at the center is most
pronounced at a certain value of the ratio (more likely near δ/β=5 as shown in Fig.
5(a)). Fig. 5(b) illustrates that the tangential stress near the outer surface decreases
monotonically with increasing δ/β , but the tangential stress in the central region
has a similar trend as the radial stress. It can be seen from Fig. 5(c) that the prin-
cipal shear stress (σθ −σr)/2 near the outer surface decreases monotonically with
increasing δ/β , similar to the case of instantaneous surface source (see Fig.3(c)).
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Because DA/DB is coupled to a, the role of thickness a in the stress distributions is
similar to that of the DA/DB. In summary, the tangential stress and the principal
shear stress (σθ −σr)/2 near the outer surface decreases with increasing DA/DB.

In addition to its local variation due to the concentration distribution, the chemical
stress is also uniformly affected by the parameter V , the partial molal volume. It
is defined as the volume change, when one mole of solvent is replaced by an equal
amount of sustitutional solute or is sharing the lattice with one mole of interstitial
solute. Its value can be experimentally determined. In the case of wet oxidation of
AlAs in the GaAs/AlAs/GaAs sandwich composite, the rate controlling process is
the diffusion of H2O in the reaction product Al2O3. The value of V for this system,
however, has not been measured. For the purpose of illustration, an estimation of
V is given below, based on the relation, V = M/ NAρ , where V is the volume of
a single molecule (cm3), M is the molecular weight (gm), NA is the Avogadro’s
number, and ρ is the density (gm/cm3). At room temperature, the density of H2O
is 0.997 gm/cm3 and that of Al 2O3is 3.95 gm/cm3. The corresponding values of V
are 18.1/NA and 25.8/NA cm3. On the basis that the water molecule is substitutional,
we obtain the value of V to be –7.7 cm3/mole. Such a volume decrement is likely
to be a source of defect formation in the system.

4 Concluding Remarks

Since the chemical stress often causes the detrimental effect to a device, it would be
very useful to have the information on its distribution and magnitude in the system.
In this report, we present a detailed analysis of chemical stress induced by the
boundary layer diffusion in a cylindrical sandwich composite of the BAB type. As
usual, we considered two common diffusion processes, the constant surface source
diffusion and the instantaneous surface source diffusion. The stress analysis was
based on the linear elasticity.

The analysis shows that for a given time, all induced stresses, radial, tangential
and the principal shear stresses, tend to be more uniformly distributed at a high
diffusivity ratio in both diffusion processes. Also, at the source surface, both the
tangential and the principal shear stresses decrease as the diffusivity ratio increases.
In computing the stress distributions, some limiting values were determined. In
the case of the constant surface source, the maximum tangential stress and the
maximum principal shear stress are respectively −V̄ EC0/3 and −V̄ EC0/6, acting
on the outer surface at the initial time. The corresponding maximum stresses in the
case of the instantaneous source are infinite due to the use of Dirac delta function
as the source concentration.

The general characteristics of the stress distributions induced in a cylindrical com-
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posite during the boundary layer diffusion are similar to those in a rectangular com-
posite. Irrespective of the geometry of the composites, the chemical stress increases
as the diffusivity ratio, or the thickness of the central boundary layer, increases.
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