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3D Analysis of the Forced Vibration of a Prestressed
Rectangular Composite Plate With Two Neighboring

Cylindrical Cavities

S.D. Akbarov1,2, N. Yahnioglu3 and U. Babuscu Yesil3

Abstract: This paper presents an analysis of the forced vibration of an initially
stressed rectangular composite plate containing two neighboring cylindrical cavi-
ties. The initial stresses are caused by stretching or compressing of the plate with
uniformly distributed normal static forces acting on the two opposite end-planes
which are parallel to the central axes of the aforementioned cylindrical cavities.
The influence of the initial stresses on the stress concentration around the cavi-
ties caused by the additional uniformly distributed time harmonic forces acting on
the upper face plane of the plate are given. The considered problem is formu-
lated within the framework of the Three-Dimensional Linearized Theory of Elastic
Waves in Initially Stressed Bodies. For the solution to this problem 3D FEM is em-
ployed. The numerical results on the influence of the initial stresses on the stress
concentration around the cavities, as well as on the fundamental frequencies of the
plate are presented and discussed.

Keywords: Initial stress, forced vibration, cylindrical cavity, 3D FEM, rectangu-
lar plate, composite.

1 Introduction

In many engineering applications, such as the aerospace, underwater and automo-
tive industries, frequent mechanical problems due to cutouts in the form of cavities
are inevitable. The presence of cavities in structural elements leads to undesired
stress or strain concentrations around these cavities. Hence, the cavities may re-
duce the working ability of the structural elements contained around these cavi-
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ties. Therefore, knowledge of the stress concentration is of particular interest and
has been a subject of many investigations such as Chaudhuri (2007), Chernopiskii
(2009), Savin (1961), Toubal, Karama and Lorrai (2005), Zhen and Wanji (2009),
Zheng, Chang-Boo, Chongdu and Hyeon (2008) and many others listed in these
references. Moreover, the existence of such cavities in the structural elements may
significantly change their dynamical characteristics, such as their natural frequen-
cies (Kwaka and Han (2007), Sivakumar and Iyengar (1999) and Zamanov (1999)).
Therefore investigations of the forced vibration of the plates with cavities have sig-
nificance not only in relation to knowledge of the stress concentration, but also in
relation to the study of these cavities on the natural frequencies of the structural
elements. Moreover, another significant fact which has been investigated by Ak-
barov, Yahnioglu and Babuscu Yesil (2008, 2010), Akbarov, Yahnioglu and Yucel
(2004), Babuscu Yesil (2010), Khoma and Kondratenko (2008), Yahnioglu (2007)
and Yahnioglu and Babuscu Yesil (2009),is the influence of the initial stresses on
the abovementioned stress concentration and natural frequencies. Initial stresses
in elements of construction may arise as a result of the change in environmental
conditions such as changing temperature or in the welding process etc. Moreover,
the stresses arising with working forces can also be taken as the initial stresses with
respect to the additional stresses caused by earthquakes or other similar forces.
Consequently, investigations of the forced vibration of initially stressed structural
elements containing holes (2D problems) and cavities (3D problems) have theoret-
ical and practical significance. However, up to now there has only been one investi-
gation (Akbarov, Yahnioglu and Babuscu Yesil (2010)) in this field and this investi-
gation relates to the forced vibration of the composite rectangular plate containing a
cylindrical cavity with rectangular cross section with rounded corners. The present
paper extends this investigation for the case where the rectangular plate contains
two parallel neighboring cylindrical cavities with the same rectangular cross sec-
tions with rounded corners. It is assumed that this plate is loaded initially by uni-
formly distributed normal static forces acting on two opposite end-planes which are
parallel to the cavities’ central axes and that time-harmonic normal forces act on
the upper face plane of the plate. The initial stresses caused by the initial loading
noted above are determined within the scope of the classical linear theory of elas-
ticity. Investigation of these initial stresses on the stress concentration and natural
frequencies of the plate is carried out by the use of the Three-Dimensional Lin-
earized Theory of Elastic Waves in Initially Stressed Bodies (TDLTEWISB) (Guz
(2004)). The corresponding boundary-value problem is solved by employing 3D
FEM. The numerical results on the influence of the initial stresses and on the influ-
ence of the interaction between the cavities on the stress concentration caused by
the additional time-harmonic loading are presented and discussed.
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Figure 1: The geometry of the considered rectangular plate

2 Formulation of the problem

This study considers a rectangular plate containing two neighboring parallel cylin-
drical holes whose cross sections are rectangular with rounded-off corners. Its ge-
ometry is shown in Fig 1. The Cartesian coordinate system Ox1x2x3 is associated
with the plate so as to give Lagrange coordinates in the initial state. Assume that
the plate occupies the region:

Ω
′ = (Ω−ΩI−ΩII) (1)

where,

Ω = {0≤ x1 ≤ `1; 0≤ x2 ≤ h; 0≤ x3 ≤ `3} ,

ΩI = {x01 ≤ x1 ≤ (x01 +b−2R) ; y01−R≤ x2 ≤ y01 +R; 0≤ x3 ≤ `3}∪
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(x1,x2,x3)

∣∣∣∣∣∣∣∣
(x1− x01)

2 +(x2− y01)
2 ≤ R2,

(x01−R)≤ x1 ≤ x01;
y01−R≤ x2 ≤ y01 +R;
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 ∪(x1,x2,x3)

∣∣∣∣∣∣
(x1− x02)

2 +(x2− y02)
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x02 ≤ x1 ≤ x02 +R;
y01−R≤ x2 ≤ y01 +R


ΩII =

{
x′01 ≤ x1 ≤

(
x′01 +b−2R

)
; y′01−R≤ x2 ≤ y′01 +R; 0≤ x3 ≤ `3

}
∪

(x1,x2,x3)| (x1− x′01)
2 +(x2− y′01)

2 ≤ R2,
(x′01−R)≤ x1 ≤ x′01;
y′01−R≤ x2 ≤ y′01 +R;
0≤ x3 ≤ `3

∪(x1,x2,x3)

∣∣∣∣∣∣∣∣
(x1− x′02)

2 +(x2− y′02)
2 ≤ R2,

x′02 ≤ x1 ≤ (x′02 +R) ;
y′01−R≤ x2 ≤ y′01 +R;
0≤ x3 ≤ `3

 (2)

In (2) (x01,y01) ((x02,y02)) is the center of the left (right) half circular arc of the
first hole near the left side of the plate and (x′01,y

′
01) ((x′02,y

′
02)) is the center of the

left (right) half circular arc of the second hole near the right side of the plate in the
plane where x3=const. It is assumed that the plate material is an orthotropic one
with elastic symmetry axes Ox1,Ox2 andOx3.

The solution procedure of the considered problem has two stages. In the first
stage (initial state), the initial stress-state of the rectangular plate subjected to
the uniformly distributed normal static forces q acting on two opposite end-planes
which are parallel to the cavities’ central axes is determined. In the second stage
(perturbed state), the influence of the initial stresses on the stress concentrations
around the cavities of the plate under the corresponding forced vibration of the ini-
tial stressed plate which is subjected to additional uniformly distributed dynamic
(time-harmonic) normal forces with amplitude p(< q) is determined. Henceforth
all quantities referring to the initial state will be labeled by the superscript (0) and
the repeated indices in equations are summed over their ranges.

According to the above, the initial stress-state can be determined by solving the
boundary-value problem:

∂σ
(0)
i j

∂x j
= 0; σσσ

(0) = Dε
(0); ε

(0)
i j =

1
2

(
∂u(0)

i
∂x j

+
∂u(0)

j

∂xi

)
(3)
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(4)

In equation (3) σσσ (0), ε(0) and matrix D are determined as follows:

(
σσσ

(0)
)T

=
(

σ
(0)
11 σ

(0)
22 σ

(0)
33 σ

(0)
23 σ

(0)
13 σ

(0)
12

)
,
(

ε
(0)
)T

=
(

ε
(0)
11 ε

(0)
22 ε

(0)
33 ε

(0)
23 ε

(0)
13 ε

(0)
12

)

D =



A11 A12 A13 0 0 0
A12 A22 A23 0 0 0
A13 A23 A33 0 0 0
0 0 0 2A44 0 0
0 0 0 0 2A55 0
0 0 0 0 0 2A66


. (5)

Moreover, in (4) SI (SII) shows the surface of the first (the second) cylindrical cavity
and n(I)

j (n(II)
j ) are the components of the unit’s outward normal vector to the surface

SI (SII).

To determine the stress-state caused by additional dynamic loading, the following
boundary-value problem must be solved.

According to the TDLTEWISB (see Guz, (2004)), the following field equations:

∂

∂x j

(
σ ji +σ

(0)
in

∂ui

∂xn

)
= ρ

∂ 2ui

∂ t2 , (6)

σσσ = Dεεε; εi j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
(7)

and boundary conditions:
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are satisfied. In (6)-(8) conventional notation is used and in equation (6) t is the
time and ρ is the density of the plate material. Note that the equations and relations
given in (6)-(8) coincide with the corresponding ones of the TDLTEWISB (Guz
(2004)).

For the solution to the boundary value problem (6)-(8) the sought quantities are
presented as follows:{

σi j,εi j,ui
}

=
{

σ̄i j, ε̄i j, ūi
}

exp(iωt) (9)

where σ̄i j, ε̄i j and ūi are the amplitude of the corresponding quantities. Using Eq.
(9) in Eq. (6) and with some manipulations, the following equation in terms of the
amplitude of the corresponding quantities is obtained:

∂

∂x j

(
σ̄ ji +σ

(0)
in

∂ ūi

∂xn

)
+ρω

2ūi = 0. (10)

Relation (7) and the boundary conditions in (8), except for the condition at x2 = h
given in Eq. (8), are identically satisfied for the corresponding amplitudes. How-
ever, the conditions at x2 = h are replaced with the following one:(

σ̄ jk +σ
(0)
kn

∂ ūk

∂xn

)
n j

∣∣∣∣
x2=h

= pδ
k
2 . (11)
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In (11), δ
j

i is the Kronecker symbol.

Finally, investigation of the second boundary value problem is reduced to the solu-
tion of the boundary value problem given in Eqs. (10), (7), (8) and (11). As noted
above, if the right side of the boundary condition in (11) is taken as zero, the bound-
ary value problem (10), (7), (8) and (11) represents the mathematical formulation
of the natural vibration problem of the considered plate.

This completes the mathematical formulation of the considered problem.

3 FEM modeling

For the FEM modeling of the boundary value problem in (3)-(5), the functional

Π
(0) =

1
2

∫ ∫ ∫
Ω′

σ
(0)
i j ε

(0)
i j dΩ

′+
h∫

0

`3∫
0

qu(0)
1

∣∣∣
x1=0

dx2dx3−
h∫

0

`3∫
0

qu(0)
1

∣∣∣
x1=`1

dx2dx3

(12)

is used, where Ω′ is the solution domain determined by expressions (1) and (2). For
the FEM modeling of (10), (7), (8) and (11) the functional

Π =
1
2

∫ ∫ ∫
Ω‘

(
Ti j

∂ ū j

∂xi
+ρω

2ūiū j

)
dΩ−

∫ ∫
Sp

Ti jn jūidSp (13)

is employed, where

Ti j = σ̄i j +σ
(0)
i j

∂ ūi

∂xn
(14)

In Eq. (14) σ
(0)
i j are the component of the initial stresses determined from the solu-

tion to the boundary value problem (3)-(5). Employing the well known Ritz tech-
nique, we obtain a FEM modeling for each problem from the equations δ ∏

(0) = 0
and δ ∏ = 0. In these cases, the region Ω′ is divided into a certain number of tri-
angular prism finite elements having six corner nodes (for the surroundings of the
cylindrical holes) and rectangular prism (brick) elements having eight corner nodes
(for the remaining parts of the region not covered by the triangular prism elements)
(Fig. 2). The selection of the number degrees of freedom (NDOF) is determined
from the requirements that the boundary conditions should be satisfied with very
high accuracy and the numerical results obtained for various NDOFs must con-
verge. As is necessary for the finite elements method, the solution domain Ω′ is
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covered by the finite elements as follows:

Ω
′ =

M⋃
k=1

Ω
′
k (15)

where Ω′k is the region of the k-th finite element (Fig. 2). For the solution pro-
cedure, we assume that the unknown values at each node of a finite element are
selected displacements only. In other words, we use the displacement-based finite
elements for the FEM modeling. (Zienkiewicz and Taylor (1989)).

 
(a) 

 
(b) 

 
Figure 2: a) The finite elements mesh around the cylindrical cavity; b) The geome-
try of the brick and the triangular prism finite elements.

After lengthy mathematical manipulation, the following system of algebraic equa-
tions for the first boundary value problem ((3)-(5)) finally yields:

K(0)a(0) = r(0) (16)
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and for the second boundary value problem ((10), (7), (8) and (11))(
K−ω

2M
)

a = r (17)

In Eq. (16) and Eq. (17) K(0) and K are the stiffness matrices, M is the mass matrix,
a(0) and a are the vectors (the components of which are the unknown displacements
at the nodes), and r(0) and r are the force vectors.

The solutions to Eqs. (16) and (17) give the values of the displacements at each
node. However, equation (17) includes the values of the stresses obtained from
the solution to the first boundary value problem. So, before finding the solution to
Eq. (17) the distribution of stresses for the first boundary value problem should be
found. Using the solution to Eq. (16) and Hooke’s Law (given in Eq. (3)) they are
obtained. The fundamental frequency of the considered plate can be determined
from equation:

det
∣∣K−ω

2M
∣∣= 0 (18)

Note that in obtaining the numerical solutions to both of the considered problems,
the same number of finite elements is taken and the same arrangements are used
for the FEM modeling. The normalized coordinates for the brick finite elements
(volume coordinate for the triangular prism finite elements) and Gauss quadra-
ture method are used for the calculation of the numerical integrals with ten sample
points in each finite element. We should also note that all computer programs used
in the numerical investigations carried out have been composed by the authors in
the package FTN77.

4 Numerical results

Assume that the material of the plate is composite consisting of a large number of
two different alternating layers. Suppose that the material of each layer is isotropic
and that these layers are located on the planes x2 = const. The values related to the
matrix and to the reinforcing material will be indicated by the subscripts (1) and (2)
respectively; λk and µk are Lamé constants; Ek is Young’s module, νk is Poisson’s
ratio and ηk is the volumetric concentration of the plate’s components. Hence, the
plate material is transversally isotropic with symmetry axis Ox2 and the effective
mechanical constants Ai j in (6) are determined by the expressions given in many
references such as Christensen (1979) and Akbarov and Guz (2000).

A23 = A12 = λ1η1 +λ2η2−η1η2

(
λ1−λ2

(λ1 +2µ1)− (λ2 +2µ2)
(λ1 +2µ1)η2 +(λ2 +2µ2)η1

)
,
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1
2

(A11 +A12) = (λ1 +2µ1)η1 +(λ2 +2µ2)η2−
(λ1−λ2)

2

(λ1 +2µ1)η2 +(λ2 +2µ2)η1
,

1
2

(A11−A13) = η1µ1 +η2µ2, A66 = A44 =
µ1µ2

µ1η2 + µ2η1
,A55 = η1µ1 +η2µ2,

A11 = A33,

A22 = (λ1 +2µ1)η1 +(λ2 +2µ2)η2−η1η2
((λ1 +2µ1)− (λ1 +2µ2))

2

(λ1 +2µ1)η2 +(λ2 +2µ2)η1
(19)

Assume that ν1 = ν2 = 0.3,η1 = η2 = 0.5,h/` = 0.10,ρ31 = `3/`1 = 1. The ge-
ometry of the plate and the considered problem have symmetry with respect to the
x1 = `1/2 and x3 = `3/2 planes. So FEM solutions are obtained in a quarter region.
This domain is divided into 30, 12 and 30 brick elements in the direction of the
axes Ox1, Ox2 and Ox3 respectively, but 32 triangular prism elements surround the
cylindrical hole in a layer. For the FEM modeling 10,200 brick elements, 960 tri-
angular prism finite elements, 13,082 nodes and 37,596 NDOFs were used in total.
We introduce the dimensionless parameter ω̄2 = ω2ρ`1/A22 through which we es-
timate the frequency of the additional external forces. First, we calculate the values
of the fundamental natural frequency (denoted by ω̄cr) for the problem parameters
considered. Moreover, we characterize the magnitude of the initial stretching or
compressing force through the parameter q/E1 and analyze the concentration of
the stress in the cylindrical coordinate system O′rθx3 (Fig.1).

Note that, before analyzing the numerical results obtained, the algorithm and pro-
gram coded by the authors and used in the numerical investigations carried out
should validate the published results. For this purpose in Table 1 the critical funda-
mental frequencies are given for various values of the parameter `3/`1. It is estab-
lished that the values ω̄2

cr decrease with `3/`1 and approximate the corresponding
values given in Akbarov and Guz (2000) obtained from the plane strain-state.

The values given in Table 2 show the effect of the volume of the cylindrical holes
and the initial stretching force on ω̄2

cr. These numerical results show that the values
of ω̄2

cr approximate a certain asymptote with a decrease in the volume of the hole i.e.
with a decreasing ratio in Vh/V . The value of this asymptote is the value of ω̄2

cr for
the corresponding plate without a hole (Akbarov and Guz, (2000)). Based on these
observations, the reliability and validation of the programs and coded algorithms
are verified.

In Table 3 the values of ω̄2
cr of the considered plate for various q/E1 and E2/E1 for

which h/`1 = 0.10; c/R = 11; Vh/V = 4.8854∗10−2 and R/`1 = 8.3333∗10−3 are
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Table 1: The effect of `3/`1 on ω̄2
cr for the rectangular plate without cylindrical

cavities (h/l1 = 0.1).

E2/E1
`3/`1 Akbarov and Guz (2000)1 2 3 4

1 0.23 0.09 0.08 0.07 0.06
10 0.56 0.24 0.21 0.19 -
20 0.93 0.41 0.35 0.33 0.31
50 1.92 0.80 0.70 0.67 0.62

Table 2: The values of ω̄2
cr for various Vh/V (Total volume of two cavities/Volume

of the plate without cavities) in the case whereh/l1 = 0.1, l3/l1 = 1,hA = hU =
5R,R = H/12 and c/R = 11.

q
E1

E2
E1

102 ∗Vh/V
6.1770 4.8854 3.5937 1.6562 0

0
1 0.271 0.259 0.249 0.239 0.238

10 0.634 0.607 0.586 0.567 0.566

0.001
1 0.285 0.274 0.263 0.250 0.245

10 0.643 0.617 0.594 0.572 0.570

0.005
1 0.339 0.334 0.317 0.297 0.274

10 0.680 0.654 0.628 0.598 0.586

Table 3: The values of ω̄2
cr of the considered plate for various q/E1 and E2/E1 for

which h/l1 = 0.10; c/R = 11; Vh/V = 4.8854×10−2 and R/l1 = 8.3333×10−3.

q/E1
E2/E1

1 5 10
-0.01 0.096 0.299 0.510
-0.005 0.179 0.351 0.559
-0.001 0.243 0.392 0.597

0 0.259 0.403 0.607
0.001 0.274 0.413 0.617
0.005 0.334 0.453 0.654
0.01 0.407 0.503 0.701

given. The numerical results given in Table 3 show that the values of ω̄2
cr increase

with E2/E1. It is concluded that an increase in the absolute values of q/E1 causes
an increase (a decrease) in the values of ω̄2

cr under initial stretching (under initial
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compressing).

Table 4: The values of ω̄2
cr of the considered plate for various q/E1, E2/E1 and c/R

for which h/l1 = 0.10; c/R = 11; Vh/V = 4.8854×10−2 and R/l1 = 8.3333×10−3.

q/E1 E2/E1
c/R

6.5 11 15.5 20 42.5

0
1 0.255 0.259 0.263 0.267 0.308
5 0.397 0.403 0.409 0.416 0.482

10 0.600 0.607 0.616 0.626 0.717

0.005
1 0.319 0.334 0.334 0.342 0.383
5 0.441 0.453 0.458 0.468 0.534

10 0.642 0.654 0.662 0.675 0.768

In Table 4 the values of ω̄2
cr of the considered plate for various q/E1, E2/E1and

c/R for which h/`1 = 0.10; Vh/V = 4.8854 ∗ 10−2 and R/`1 = 8.3333 ∗ 10−3 are
given. The numerical results given in this table show that the values of ω̄2

cr increase
with c/R. This means that if the distance between the two neighboring cylindrical
cavities decreases, i.e. the two cavities are close to each other, the fundamental
frequency ω̄2

crdecreases. Table 4 also shows that the initial stretching forces cause
an increase in the values of ω̄2

cr.

Table 5: The values of ω̄2
cr of the considered plate for various q/E1, E2/E1 and

hU/R for which h/l1 = 0.10; c/R = 11; Vh/V = 4.8854×10−2 and R/l1 = 8.3333×
10−3.

q/E1 E2/E1
hU/R

5 4 3 2

0
1 0.259 0.258 0.255 0.249
5 0.403 0.401 0.395 0.385
10 0.607 0.604 0.595 0.579

0.005
1 0.334 0.298 0.253 0.188
5 0.453 0.434 0.409 0.371
10 0.654 0.640 0.617 0.580

In Table 5 the values of ω̄2
cr of the considered plate for various q/E1, E2/E1and

HU/R for which h/`1 = 0.10, Vh/V = 4.8854∗10−2 and R/`1 = 8.3333∗10−3 are
given. The numerical results given in Table 5 show that the values of hU/R, i.e.
the distance between the cavity and the upper free face plane of the rectangular
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plate, significantly affect the values of ω̄2
cr. Hence, the values of ω̄2

cr decrease with
a decrease in the values of hU/R.
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Figure 3: The influence of the distance
between two cavities (c/R) on the val-
ues of σθθ /p with respect to θ for the
case where E2/E1 and ω̄2 = 0.16.
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Figure 4: The influence of γ31 =
l3/l1 on the values of σθθ /p for the
case where E2/E1 = 10, ω̄2 = 0.16 and
c/R = 11.
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Figure 5: The influence of ω̄2 on the values of σθθ /p for the case where c/R = 11
a) For E2/E1 = 1, b) For E2/E1 = 10
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Figure 6: The influence of hU on the values of σθθ /p for the case where ω̄2 and
c/R = 11 a) For E2/E1 = 1, b) For E2/E1 = 10

Figure 3 shows the influence of the distance between the cavities (c/R) on the values
of σθθ /p with respect to θ around the left cylindrical cavity at the mid-point of each
element on the cross section x3/`3 = 0.5 for ω̄2 = 0.16, h/`1 = 0.10; hU/R = 5;
E2/E1 = 10; VH/V = 4.8854 ∗ 10−2 and R/`1 = 8.3333 ∗ 10−3. It follows from
the graphs that the absolute local maximal values of σθθ /p increase monotonically
with increasing c/R for the cases where q/E1 6= 0 and q/E1 = 0.

Figure 4 shows the influence of γ31 = `3/`1on the values of σθθ /pfor the case
where E2/E1 = 10,ω̄2 = 0.16 and c/R = 11. γ31 = `3/`1represents the ratio of the
lengths along the two perpendicular directions, i.e. the length of the plate along the
Ox3 axis (denoted by `3) and along the Ox1 axis (denoted by `1). It follows from
the graphs that the absolute values of σθθ /p increase monotonically with increasing
γ31 = `3/`1 for the cases where q/E1 6= 0 and q/E1 = 0, and approach a certain limit
value, i.e. the value which is determined from the corresponding boundary-value
problem related to the corresponding plane-strain state. These results also confirm
the reliability of the algorithm and the PC programs composed by the authors and
used for determination of the numerical solution.

Figure 5 shows the influence of the dimensionless frequency ω̄2 on the values of
σθθ /p where h/`1 = 0.10, hU/R = 5, Vh/V = 4.8854∗10−2, R/`1 = 8.3333∗10−3

for E2/E1 = 1 (Fig. 5a) and E2/E1 = 10 (Fig. 5b). It follows from the graphs that
the absolute values of σθθ /p increase monotonically with ω̄2.

Figure 6 shows the influence of the upwards replacement of the position of the



3D Analysis of the Forced Vibration 161

cavities (i.e. the influence of the parameter hU/R) on the values of σθθ /p for the
case where h/` = 0.10, Vh/V = 4.8854 ∗ 10−2, hA/R = h/R− hU/R and R/`1 =
8.3333∗10−3. It follows from the graphs that the absolute values of σθθ /p increase
monotonically with decreasing hU/R for the cases where q/E1 6= 0 and q/E1 = 0 .
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Figure 7: The influence of q/E1 on
the values of σθθ /p for the case where
E2/E1 = 10, ω̄2 = 0.16 and c/R = 11.
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11c / R =  Figure 8: The influence of E2/E1 on
the values of σθθ /p for the case where
E2/E1 = 10, ω̄2 = 0.16 and c/R = 11.

Figure 7 shows the influence of the initial force, i.e. of q/E1, on the values of σθθ /p
calculated for the case where h/`1 = 0.10, hU/R = 5, E2/E1 = 10, Vh/V = 4,8854∗
10−2 and R/`1 = 8.3333∗10−3. In obtaining these results, the case where q/E1 > 0
(q/E1 < 0) is taken as the case where the initial forces are stretching (compressing)
ones. It follows from the graphs that the distributions of σθθ /p obtained under the
initial stretching (compressing) are completely shifted compared with the graph
obtained for the case where the initial force is absent i.e. q/E1 = 0. However, an
increase in the absolute values of q/E1 under initial tension (compression) causes a
decrease (an increase) in the local absolute maximums values of the stress σθθ /p.

Figure 8 shows the influence of E2/E1 on the values of σθθ /p for h/`1 = 0.10,
hU/R = hA/R = 5 and R/`1 = 8.3333 ∗ 10−3. It follows from the graphs that the
absolute values of σθθ /p decrease monotonically withE2/E1.

5 5 Conclusion

Based on the discussions in this paper, the following conclusions can be drawn:

• The values of the fundamental frequency ω̄2
cr approximate a certain asymp-
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tote with a decrease in the total volume of the cavities i.e. with a decrease in
the ratio of Vh/V.

• The value of this asymptote is the value of ω̄2
cr for the corresponding plate

without cavities.

• The values of the fundamental frequency ω̄2
cr increase (decrease) with the

initial stretching (compressing) force i.e. with absolute values of q/E1.

• The values of the fundamental frequency ω̄2
cr increase with the distance be-

tween the cavities.

• The values of the fundamental frequency ω̄2
crdecrease as these cavities ap-

proach the upper free face plane of the plate i.e. with a decrease in the values
of hU/R.

• The stress concentration of |σθθ |/p around the cavities increases monotoni-
cally with the distance between the cavities.

• An increase in the values of the frequency of the external forces causes an
increase in the values of |σθθ |/p.

• The influence of the initial stresses in the plate on the dynamic (time-harmonic)
stress concentration |σθθ |/p becomes more significant with a decrease in the
value of hU/R.

• The stress concentration of |σθθ |/p around the cavities decreases (increases)
with the stretching (compressing) forces i.e. with q/E1.

• The stress concentration of |σθθ |/p which appears around the holes increases
monotonically with γ31 = `3/`1 and approaches a certain limit value, i.e. the
value is determined from the corresponding boundary-value problem in the
plane-strain state. At the same time, this concentration decreases with E2/E1.
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