
Copyright © 2012 Tech Science Press CMC, vol.28, no.1, pp.81-95, 2012

Surface Electric Gibbs Free Energy and Its Effect on the
Electromechanical Behavior of Nano-Dielectrics

Ying Xu1 and Shengping Shen1,2

Abstract: This paper considers the surface effect through the surface and bulk
electric Gibbs free energy. The analytical expressions are derived for the effective
elastic, dielectric and piezoelectric modulus for nano-structural elements in elec-
tromechanical coupling problems. Numerical examples for PZT are given to illus-
trate the size effects on the electromechanical properties of nano-particles, nano-
wires and nano-films quantitatively. The solution shows that the electromechanical
properties of piezoelectric nano-material are size-dependent but the size effects on
the elastic property and dielectric property are different.
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1 Introduction

When the size of the structure element reduces, even to nanometer scale, the prop-
erties of the material will be different from the ones in macroscopic scale, which is
called size effect. For the elastic material, the size effect on the elastic properties
of nano-sized structure element has been studied by many researchers. Zhou and
Huang (2004) employed molecular dynamic simulations to demonstrate that the ef-
fective elastic modulus of a thin free-standing film can either increase or decrease
as the film thickness decreases depending upon the crystallographic orientations.
Sharma et al. (2003) investigated the deformation around a spherical nanoinho-
mogeneity. Yang (2004) derived the effective modulus of elastic materials with
nano-voids. Dingreville et al. (2005) developed a framework to incorporate the
surface free energy into the continuum theory of mechanics, and then they demon-
strated that the overall elastic behavior of structural elements (such as particles,
wires, films) is size-dependent.
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For dielectrics, the surface effect includes both surface stress and surface polariza-
tion which is induced due to the dangling bonds on the surface. The rearrangement
of the bonding at surfaces causes a charge displacement that may greatly affect the
polarization properties of the surface with respect to the bulk (Brandino and Cicero,
2007). In Slavchov et al. (2006), the effect of the surface polarization was studied
with the help of a definition of surface dielectric constants for surface. The effect of
the surface polarization in polar perovskites was investigated by means of the first
principles in Fechner et al. (2008). Camacho and Nossa (2009) showed that the in-
fluences of surface polarization on the dielectric properties of quantum dots arrays
are significant. The electric Gibbs free energy variational principle has been estab-
lished with the strain/electric field gradient effects, as well as the effects of surface
and electrostatic force (Hu and Shen, 2009). The flexoelectric effect has also been
investigated with the surface effects and the electrostatic force (Shen and Hu, 2010;
Hu and Shen, 2010). The electromechanical behavior of dielectrics is characterized
by its elastic, dielectric and piezoelectric modulus. For nano-sized dielectrics, the
ratio of surface area to volume becomes high, so the surface polarization and stress
turn out to be significant when considering the overall electromechanical behav-
ior of nano-sized structural elements. Consequently, the effective elastic, dielectric
and piezoelectric modulus of nano-sized structural elements should be considered,
and become size-dependent. It is necessary to develop a theoretical framework to
investigate the effects of surface electric Gibbs free energy on the effective elec-
tromechanical modulus of nano-sized dielectrics, which can be considered as the
extension of the elastic framework in Dingreville et al. (2005) to piezoelectric ma-
terials .

In this paper, the surface effect is taken into account, through the surface and bulk
electric Gibbs free energy. The analytical expressions are derived for the effec-
tive elastic, dielectric and piezoelectric modulus for nano-structural elements in
electromechanical coupling problems such as nano-particles, nano-wires and nano-
films. The size dependency of the overall elastic, dielectric and piezoelectric mod-
ulus of such nano-sized structural elements is investigated.

2 Electric Gibbs free energy

The local environment of the atoms on the free surface is different from that of the
ones in the bulk, so does the energy of them. The excess energy of the surface
atoms is called the surface free energy (Dingreville et al., 2005). In this paper, we
consider the electric Gibbs free energy by choosing the strain and the electric field
as the independent variables. The surface electric Gibbs free energy density can
be defined as the reversible work involved in creating a unit area of new surface
obtained from an isothermal, isobaric thermodynamic system. Consider a repre-
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sentative volume near the free surface of a bulk dielectric crystal, and assume the
surface is flat and homogeneous. Similar to Dingreville et al. (2005), in an area A0
in the undeformed configuration, the Lagrange description of the surface electric
Gibbs free energy density can be defined as

Γ =
1

A0

N

∑
n=1

wn, (1)

where N is the amount of atoms underneath the area A0. wn is the surface electric
Gibbs free (excess) energy of near-surface atom n defined by the difference between
its total electric Gibbs free energy and that of an atom deep in the interior of a large
bulk crystal, which depends on the location of the atom.

Assuming the surface electric Gibbs free energy density Γ is a smooth function of
the surface strain and the surface electric-field, then it can be expanded as follow,
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where εS
αβ

is the Lagrange surface strain relative to the undeformed crystal lattice,
and ES

α is the Lagrange surface electric field. In the later, we will denote the bulk
Lagrange strain and electric field as εi j and Ei respectively. In this paper, Roman
indices range from 1 to 3 and Greek indices range from 1 to 2, unless otherwise
indicated. Γ0, Γ

(1)
αβ

, Λ
(1)
ξ

, Γ
(2)
αβκλ

, · · · are material and surface dependent, which
can be either measured experimentally or computed using atomistic simulations
for a given material surface. Higher order items are neglected here.

By using differential relation between surface stress, surface electric displacement
and surface electric Gibbs free energy density, the expressions of surface stress and
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surface electric displacement can also be obtained,
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In these expressions, Γ
(1)
αβ

and Λ
(1)
ξ

give, respectively, the residual stress and the
residual electric displacement on the free surface respectively, and they present the
surface stress and the surface electric displacement when the surface strain and the
surface electric-field do not exist. The two-dimensional fourth-order tensor Γ

(2)
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presents the surface elasticity tensor, Λ
(2)
ξ ψ

presents the surface dielectric tensor, and
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presents the surface piezoelectric tensor. The two-dimensional sixth-order
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can be viewed as the tensor of the third-order elastic constants of
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and Ξ
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can be viewed as the tensor of the third-order
piezoelectric constants of the surface.

Since the surface stress and surface electric displacement are obtained, the surface
electric Gibbs free energy can be derived by
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Substituting Eq. (3) into Eq. (4), we have
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(5)

Consider a particle in a spherical coordinate, by using the coordinate transformation
the relationship between the surface tensors and the bulk tensors can be written as
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£¨Dingreville et al., 2005)

ε
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where the ti j is the transformation matrix which is given by
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where a, b and c are the semi-axes of the ellipsoid while a≤ b≤ c, and
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Then the surface electric Gibbs free energy stored on the whole surface of the par-
ticle is
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where the tensors in Eq.(8) are defined as
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The total electric Gibbs free energy is made up by the surface electric Gibbs free
energy and the electric Gibbs free energy in the bulk of the material as

U = Usur f ace +Ubulk, (9)

where the Ubulk can be obtained by
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where Φ is the electric Gibbs potential in the bulk. After expanding it into a series
of bulk strain and bulk electric field, we got
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where ci jkl and c(3)
i jkl pq are, respectively, the second- and third-order elastic constants

of the material, and anm and a(3)
nmr are, respectively, the second- and third-order di-

electric constants, di jn is the second-order piezoelectric coefficient, s(3)
i jnm and d(3)

i jkln
are third-order piezoelectric coefficients.
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Substituting Eq. (11) into Eq. (10) with neglecting the higher order terms, one has
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Then the total electric Gibbs free energy of the particle is derived as
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3 Size effect on effective modulus

Because of the existence of the surface, strictly speaking, the total energy can be
no longer obtained only through content in the bulk. When the size of the structure
unit is in macroscopic level or even in microscopic level, the effect brought by the
surface free energy on the performance of the material is so small that it can be
neglected. But when the characteristic dimension of the structure decreases to the
nano-size, the size effect exists.

For the composite material, the effective modulus is often used to characterize its
properties due to its inhomogeneity. Analogously, when the characteristic dimen-
sion of the particle is in nano scale, since the ratio of the surface to volume is
large enough, the particle can be treated as heterogeneous body, and the effective
modulus should be introduced to characterize the properties of the particle.

Due to surface stresses and surface electric field, the self-equilibrium state of the
particle is different from the perfect bulk crystal lattice. The strain ε̂i j and electric
field Êi that describe the electromechanical deformation from the perfect crystal
lattice to the self-equilibrium state of the particle can be found by minimizing the
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total electric Gibbs free energy. Thus, one has
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This constitutes a set of nine quadratic equations which needs to be solved numeri-
cally for the six components of self-equilibrium strain tensor and three components
of self-equilibrium electric field vector.

When the self-equilibrium strain and self-equilibrium electric-field are small, the
quadratic terms in Eqs. (14) and (15) can be neglected. Thus, the self-equilibrium
strain and self-equilibrium electric-field can be obtained as
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Then, the effective elastic, dielectric and piezoelectric modulus tensors of the par-
ticle can be obtained as
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(20)

It can be found that the contribution of the surface electric Gibbs free energy to
the effective elastic, dielectric and piezoelectric modulus tensors of the dielectric
particle is inversely proportional to the particle size. It will be shown numerically in
the next section that the surface electric Gibbs free energy contribution is negligible
unless the particle size reaches the nanoscale.

4 Numerical examples and discussions

To illustrate size effect on the piezoelectric material when the electromechanical
coupling is taken into consideration, three typical structure elements, nano-sized
particles, wires and films are discussed in this section.

All the structure units are made by the same transversely isotropic piezoelectric
material, and the bulk constants of the material are given in the appendix, which
are taken from Dunn and Taya (1993). The surface material properties can be cal-
culated via molecular dynamics. However, for piezoelectric materials, such work is
still needed. Here, we choose approximations for the surface constants according
to Huang and Yu (2006), and the surface property tensor Γ

(2)
αβκλ

, Λ
(2)
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and Π
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αβξ

for PZT are assumed that Γ
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residual stresses and electric displacements on the free surface are assumed that
Γ

(1)
11 = Γ

(1)
22 = 1N/m and Λ

(1)
1 = Λ

(1)
2 = 1×10−8C/m. The characteristic dimension

is the radius for the spherical particles, the side length of the square section for the
wires, and the half thickness for the films.
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Figure 1: Variation of self-equilibrium strain for wires and films
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Figure 2: Self-equilibrium strain for wires and films in purely elastic state
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The self-equilibrium strain for nano-wires and nano-films are plotted in Fig.1.
From this figure, one can found that, when the size is less than 50 nm, all the com-
ponents of the self-equilibrium strain change significantly, and they all approach to
the corresponding value of the bulk with the increase of the characteristic dimen-
sion. Size effect becomes very week and even can be neglected when it is larger
than 100nm. As a comparison, the corresponding results for purely elastic state are
plotted in Fig. 2. Fig. 2 shows that, when the size approaches to 10 nm, the self-
equilibrium strains already fairly approach to the bulk value. It can be concluded
that the electromechanical coupling makes the size effect more obvious.

The self-equilibrium electric field is plotted in Fig. 3, the size effects on the self-
equilibrium electric field in x3 direction are almost the same for the wire and film
and are significant in the region from 2 nm to 80 nm. However, for the film the size
effect on the self-equilibrium electric field in x2 direction occurs only when the size
is less than 5 nm.

All the effective elastic, dielectric and piezoelectric modulus for the particle, wires
and films are calculated. Because of the similarity among the variation behavior
of particle, wires and film, only the effective modulus of the particle are taken as
an example to elucidate the regularity of the size effect, as shown in Fig. 4 to
Fig. 6 which are, respectively, the effective elastic, dielectric, and piezoelectric
modulus. The effective elastic modulus increases with decreasing the radius, while
the effective dielectric modulus and effective piezoelectric modulus decrease with
decreasing the radius. The effective elastic modulus increases significantly when
the size is under 2 nm, while the effective dielectric modulus decreases significantly
when the size is less than 5 nm.

Regarding to the effective piezoelectric modulus, it is obvious that the size effects
on different components of the piezoelectric modulus tensors are different. When
the radius is 1 nm, d̄333 is ten times larger than the bulk value of d333, but d̄232 and
d̄131 is, respectively, only twice of bulk values of d232 and d131.

5 Summary

In this study, the surface effect is taken into account, through the surface and bulk
electric Gibbs free energy. The analytical expressions are derived for the effec-
tive elastic, dielectric and piezoelectric modulus for nano-structural elements in
electromechanical coupling problems. Furthermore, the solution shows that the
electromechanical properties of piezoelectric nano-material are size-dependent but
the size effects on the elastic property and dielectric property are different. Finally,
numerical examples for PZT are given to illustrate the size effects on the electrome-
chanical properties of nano-particle, nano-wires and nano-films quantitatively.
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Figure 3: Variation of self-equilibrium electric-field for wires and films
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Figure 4: Variation of effective elastic modulus for spherical particle
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Figure 5: Variation of effective dielectric modulus for spherical particle
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Figure 6: Variation of effective piezoelectric modulus for spherical particle
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Appendix

PZT (Dunn and Taya, 1993)

cE =



148 76.2 74.2 0 0 0
148 74.2 0 0 0

131 0 0 0
25.4 0 0

25.4 0
36.9

GPa,

a =

4.071 0 0
4.071 0

2.08

×10−9C2/Nm2,

d =



0 0 −2.1
0 0 −2.1
0 0 9.5
0 9.2 0

9.2 0 0
0 0 0

C/m2.
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