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On the Feedforward Control of Hysteresis for a
Piezoelectric Plate
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Abstract: This paper discusses the modeling and feedforward control of hystere-
sis in a Cantor-like piezoelectric plate. The generalized play operator is analyzed in
connection with the plate equations. Results show that hysteresis can be reduced to
less than 40% when applying the feedforward control. The subject of the paper be-
longs to the field of dynamics, characterization and control at the micro/nanoscale.
The choose of the Cantor-like piezoelectric plate is motivated by its special prop-
erty to generate the subharmonic waves due to the anharmonic coupling between
the extended-vibration (phonon) and the localized-mode (fracton) regimes. This
behavior is a benefit for several applications to the mechanics of grippers and ma-
nipulators at the micro/nano scale. In spite of this, the nonlinearities make the
piezoelectric plates lose their accuracy if not controlled. For that, the generalized
play operator is connected in this paper to the plate equations and the control is fo-
cused on feedforward or compensation technique with no sensor requirement. Such
advantage is appreciated in the micro/nano-scale because existing sensors that have
the required performances are hardly embeddable. The results have confirmed that
feedforward control can give general performances such as accuracy and speed re-
quired for this particular application. Such control is of great interest because the
costs, sizes, and performances of existing sensors limit their use in this domain.

Keywords: Cantor-like plate, feedforward control, hysteresis operator, subhar-
monic generation of waves.

1 Introduction

Hysteresis is typically viewed as an undesirable effect in that it complicates the
control of the relationship between input and output data in engineering systems.
In the 1970s, Krasnoselskii and Pokrovskii studied the concept of hysteresis oper-
ator acting in spaces of time dependent functions [Ewing (1885); Kranoselskii and
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Pokrovskii (1983)]. Further researches were developed in a series of works dedi-
cated to hysteresis in connection with PDEs and applicative problems [Brokate and
Sprekels (1996); Krec̀í, (1997); Visintin (1995)]. A useful survey can be found in
[Visintin (2002)]. Nonlinear semigroup theory in a Hilbert space was developed
by Komura (1967) and extended to Banach spaces by Crandal and Liggett (1871)
and Barbu (1976). A survey of basic relevant results from a nonlinear semigroup
theory, formulated generally in a Banach space is presented in [Kopfová (2007);
Visintin (1993)]. Several models of hysteresis may be represented via rheologi-
cal models in mechanics by arranging elementary components in series and/or in
parallel [Bertotti and Mayergoyz (2006), Mayergoyz, (2003); Bertotti (1998)].

A new approach for inverse control of piezoelectric actuators is presented by Qiu,
Jiang and Hu (2011). This new method utilize a modified Prandtl-Ishlinskii model
which is based on a combination of two asymmetric hysteresis operators, and
the two operators can independently model ascending branches and descending
branches of hysteresis loops.

Composite materials such as the fibre-reinforced plates and shells are finding an in-
creasing interest in engineering applications [Cazzani et al. (2005)]. Consequently,
efficient and robust computational tools are required for the analysis of such struc-
tural models.

Such structures are not linear, so the specific nonlinearities can be modeled by the
Bouc-Wen or Duhem models or the Preisach models, and so on. But, the unrealistic
behavior aspects were found by using the Bouc-Wen model or Duhem models or
the Preisach models, with respect to short input signals. The hysteretic loops at the
micro/nano scales exhibit the displacement drift, force relaxation and non-closure
behavior. The generalized play operator is just one of the models of hysteresis
which allows describing of such hysteretic nonlinearities. This model can be easily
extended to a generalized discontinuous Prandtl-Ishlinskii operator of play type.

In this paper, the generalized play operator is analyzed in connection with the gov-
erning equations of a piezoelectric plate with Cantor-like structure. This structure
can be used as actuator or as sensor in several applications in the micro/nano-scale.
It is a fact the experimentally evidence of extremely low thresholds for subhar-
monic generation of waves in 1D artificial piezoelectric plates with Cantor-like
structure, as compared to the corresponding homogeneous and periodical plates
[Craciun et al. (1992); Alippi et al. (1992); Alippi, Craciun and Molinari (1988);
Alippi (1982)]. An anharmonic coupling between the extended-vibration (phonon)
and the localized-mode (fracton) regimes explained this phenomenon, and also
the large enhancement of nonlinear interaction which results from the more fa-
vorable frequency and spatial matching of fractons and phonons coupled modes
[Chiroiu et al. (2001); Chiroiu, Munteanu and Beldiman (2008)]. When hysteresis
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is present along with this dynamics, the overall behavior of the piezoelectric plate
with Cantor-like structure can be very complex. In order to control this effect, the
modeling of the hysteresis has to be as precise as possible [Rakotondrabe (2011)].

The scope of this paper is to model and control the hysteresis phenomenon in piezo-
electric plates with Cantor-like structure. The control aspect is focused on feedfor-
ward or compensation technique. The main advantage of this control scheme is
that no sensor is required. Such advantage is appreciated in the micro/nano-scale
because existing sensors that have the required performances are hardly embed-
dable. The control problem is reduced to a system of differential inclusions and
solved. This work is placed in the framework of the Visintin researches on models
of hysteresis phenomena and on related PDEs [Visintin (1995, 2002); Mosnegutu
and Chiroiu (2010); Teodorescu et al. (2010); Preda et al. (2010); Gliozzi et al.
(2010)].

A rate-dependent hysteresis is a hysteresis that has its shape changed when the
frequency of the input is changed. Such hysteresis is called dynamic hysteresis.
Contrary to a rate-dependent hysteresis, the shape of a rate-independent hysteresis
does not change whatever the frequency of the input is. Such hysteresis is called
static hysteresis. Usually, it is admitted the separation principle of dynamic hys-
teresis which states that the dynamic hysteresis can be approximated by a static
hysteresis followed by a linear dynamic part [Visintin (2006)]. In this paper, we as-
sume this separation principle. Thus, the modeling and compensation are focused
on static hysteresis.

2 Hysteresis Operators

In order to simplify the meaning of the hysteresis, let us consider a system charac-
terized by two scalar variables, the input function u(t) and the output function w(t),
confined to a set L ⊂ R2. ∀t ∈ [0,T ]. The function w(t) depends on the previous
evolution of u(t) and on the initial state w0, such as

w(t) = A(u,w0)(t), ∀t ∈ [0,T ], (u(0),w0) ∈ L,

A(u,w0)(0) = w0, (2.1)

where A(u,w0) is a memory operator defined in a Banach space of time-dependent
functions for any fixed w0. The memory operator is causal: for ∀(u1,w0),(u2,w0)
with u1 = u2 in [0,T ], then A(u1,w0)(t) = A(u2,w0)(t).
In the following we present the generalized play operator w := A(u,w0) : R+→ R
defined in the sense of Visintin (Fig.1). Let u(t) be any continuous, piecewise linear
function on R+, linear on [ti−1, ti], i = 1,2, ... We define w(t) = A(u,w0)(t) by

w(t) = min{γl(u(0)),max{γr(u(0)),w0}} , for t = 0 and w0 ∈ R,
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w(t) = min{γl(u(ti)),max{γr(u(ti)),w(ti−1)}} , for t ∈ (ti−1, ti), i = 1,2, ..., (2.2)

where γl,γr : R→ R are maximal monotone, possible multivalued functions with

infγr(u)≤ supγl(u), ∀u ∈ R. (2.3)

Note that w(0) = w0 only if γr(u(0))≤ w0 ≤ γl(u(0)). The classical play operator
can be obtained from the general play operator by choosing

γl(u) = u+ r, γr(u) = u− r , (2.4)

with r ≥ 0 a parameter, u(t) a continuous input function on [0,T ] and wr0 ∈ [−r,r]
an initial state. Fig. 2 presents the play operator with threshold r. The hysteresis
relationship with the PDEs can be written as [Kopfová (2007)]

w(x, t) = [A(u(x, ...),w0(x))] (t) in Q = Ω× [0,T ], (2.5)

where Ω is a bounded subset of Rn. The generalized play operator is dissipative, in
the sense that ||(λ I−A)x|| ≥ λ ||x|| for ∀λ > 0, where I is the identity mapping.

 
Figure 1: The generalized play operator.

The PDEs with hysteresis can be transformed into systems of differential inclu-
sions. Therefore, the generalized play operator can be defined as a solution in the
Sobolev space W 1,1(0,T ), w ∈W 1,1(0,T ) of a variational inclusion of the type

w,t ∈ φ(u,w) in (0,T ), w(0) = w0, (2.6)
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where comma represents the differentiation with respect to the specified variable.
The norm in W 1,1(0,T ) is defined as

|| f ||k,p =

(
k

∑
i=0
|| f (i)||pp

)1/p

=

(
k

∑
i=0

∫
f (i)|pdt

)1/p

.

 
Figure 2: The play operator with threshold r.

The rate-independent differential inclusion is given by

w,t ∈ φ(u,w) =



{∞} if w < infγr(u),
[0,+∞] if w ∈ γr(u)\γl(u),
{0} if supγr(u) < w < infγl(u),
[−∞,0] if w ∈ γl(u)\γr(u),
{−∞} if w > supγr(u),
[−∞,+∞] if w ∈ γl(u)∩ γr(u).

(2.7)

If γr and γl are Lipschitz-continuous, then the generalized play operator transforms
(u,v) ∈W 1,1(0,T )×R into the unique function w ∈W 1,1(0,T ) such that w(0) is
the projection of v into [γr(u(0),γl(u(0)] and (2.7) is satisfied. The operator can
be extended to C0([0,T ])×R, and it is equivalent to a variational inequality. We
present here one example of PDE with hysteresis [Kopfová (2007)]

(u+w),t −∆u = f in Q, (2.8)

related to a generalized play operator (2.2). Eq,(2.8) is formally equivalent to

u,t +ξ −∆u = f , w,t −ξ = 0, ξ ∈ φ(u,w) in Q (2.9)
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Figure 3: Arrangement in parallel of the hysteresis operators.

where φ is defined by (2.7).

The Cauchy problem for (2.9) coupled with homogeneous Dirichlet boundary con-
ditions becomes

F ∈U,t +A1U in Q, U(0) = U0 in Ω, (2.10)

where

U = (u,w)T , F = ( f ,0)T ,

A1U = (ξ −∆u,−ξ )T , ξ ∈ φ(U)∩R. (2.11)

It is well known that a combination in parallel of the hysteresis operators w :=
A(u,w0) : R+ → R given by (2.2) is used in the practical problems. The block
diagram of this combination is presented in Fig. 3.

The model is the sum of the hysteresis operators with weightingspi, i = 1,2, ...,n

w(t) =
n

∑
i=1

pi min{γl(u(0)),max{γr(u(0)),w0}} (2.12)

for t = 0 and w0 ∈ R,

w(t) =
n

∑
i=1

pi min{γl(u(ti)),max{γr(u(ti)),w(ti−1)}}
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Figure 4: The scheme of the feedforward control.

 
Figure 5: The scheme of compensation of the hysteresis.

for t ∈ (ti−1, ti), i = 1,2, ...

Direct hysteresis can be compensated by another hysteresis put in cascade with it.
Such scheme is called feedforward control of the hysteresis and it is presented in
Fig.4. In the figure, wr is the reference input to be tracked. Direct hysteresis and its
compensator are symmetric relative to the linear curve (wr,w), as shown in Fig.5.
To obtain a linear input-output (wr,w) with a unit gain, the real system curve (u,w)
and the compensator curve (wr,u) should be symmetric.

This compensator is characterized by thresholds r′k and the weightings p′k. The
calculation of these parameters follows the principle of Fig.5. The thresholds r′k,
k = 1,2, ...,n, are computed as follow

r′k =
k

∑
j=1

p j(rk− r j), k = 1,2, ...,n, (2.13)
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and

p′1 =
1
p1

, p′k =
−pk(

p1 +
k
∑
j=2

p j

)(
p1 +

k−1
∑
j=2

p j

) , k = 2, ...,n. (2.14)

The following approach is based on the inverse multiplicative structure scheme
and gives the compensator without any additional calculation. The compensator is
defined by

w(t) =
n

∑
i=1

pi min{γl(u(0)),max{γr(u(0)),w0}} ,

for t = 0 and w0 ∈ R,

w(t) =
n

∑
i=1

pi min{γl(u(ti−1)),max{γr(u(ti−1)),w(ti−2)}}−wr(t), (2.15)

for t ∈ (ti−2, ti−1), i = 2,3, ...

3 The Piezoceramic Plate

The structure is consisting from a composite plate with alternating elements of
piezoelectric ceramics (PZ) and an epoxy resin (ER), following a triadic Cantor
sequence up to the fourth generation (31 elements (Fig 6) inspired from the papers
of Craciun et al. (1992); Alippi et al. (1992)]. A rectangular coordinate system
Ox1x2x3 is employed. The origin of the coordinate system Ox1x2x3 is located at the
left end, in the middle plane of the sample, with the axis Ox1 in-plane and normal
to the layers and Ox3 out-plane, normal to the plate. The length of the plate is l, the
width of the smallest layer is l/81 and the thickness of the plate ish.

The width of the plate is d. Let the regions occupied by the plate be V = V p∪V e

where V p and V e are the regions occupied by PZ and ER layers. The boundary
surface of V be S partitioned in the following way

S = Sp
1 ∪Se

1∪S2, Sp
1 ∩Se

1∩S2 = 0,

where

Sp
1 = {x3 =±h/2, 0 < x1 < l} is the boundary surface of V p,

Se
1 = {x3 =±h/2, 0 < x1 < l} is the boundary surface of V e,

and
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S2 = {x1 = 0, x1 = l, −h/2≤ x3 < h/2}.

 
Figure 6: The plate with Cantor-like structure.

Let the unit outward normal of S be ni the interfaces between constituents be Ipe.
The existence of multiple fracton and multiple phonon-mode regimes in the dis-
placement field for the structure is proved by Chiroiu et al. (2001). We have con-
sidered the piezoelectric material to be nonlinear and isotropic, characterized by
two second-order elastic constants, three third-order elastic constants, two (linear
and nonlinear) dielectric constants and two (linear and nonlinear) coefficients of
piezoelectricity. A quantitative knowledge of the second-order material constants
is essential for the analysis of the fracton and phonon mode regimes for a piezo-
electric plate. The basic equations of interest are given in the following [Zhu et
al. (2010); Gliozzi et al. (2010); Rogacheva (1994); Landau and Lifshitz (1968,
1982); Apte and Ganguli (2009)].

1. The quasistatic motion equations

ρ
püi = ti j, j in V p, (3.1)
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Di,i = 0, Ei +ϕ,i = 0 in V p, (3.2)

where ρ p is the density, ui is the displacement vector,ti j is the stress tensor, Di is
the electric induction vector, Ei is the electric field and ϕ is the electric potential.

2. The constitutive equations

ti j =λ
p
εkkδi j +2µ

p
εi j +Ap

εilε jl +3Bp
εkkεi j +Cp

ε
2
kkδi j−

− ep
k Ekδi j− ēp

k Ekεllδi j− ¯̄ep
k Ekεllδi j− ¯̄ep

k Ekεi j in V p,
(3.3)

Di = ε̄
pEi−

1
2

ε̄
p
i E2− ep

i εkk−
1
2

ēp
i ε

2
kk−

1
2

¯̄ep
i ε

2
kk in V p, (3.4)

εi j =
1
2
(ui, j +u j,i +ul.iul. j) in V, (3.5)

where εi j is the strain tensor, λ p,µ p are the Lamé constants, Ap,Bp,Cp are the
Landau constants, ε̄ p, ε̄

p
1 = ε̄

p
2 = ε̄

p
3 are the linear and nonlinear dielectric constants,

ep
1 = ep

2 = ep
3 , ēp

1 = ēp
2 = ēp

3 and ¯̄ep
1 = ¯̄ep

2 = ¯̄ep
3 are the linear and nonlinear coefficients

of piezoelectricity and E2 = E2
1 +E2

2 +E2
3 .

3. The boundary conditions

ti jn j = T̄i jn j = T̄i on Sp
1 , (3.6)

Dini = d̄, ϕ = ϕ̄ on Sp
1 , (3.7)

where T̄i, d̄, ϕ̄ are quantities prescribed on the boundary and T̄i j is the Maxwell
stress tensor. Let us consider that a periodical electric field Ēi = Ē0

i exp(iωt) is
applied to the both surfaces of the plate to excite the Lamb waves, over a wide
frequency range. The action of this field is described by Maxwell stress tensor T̄i j

T̄i j =
1

4π
(ĒiĒ j−

1
2

Ē2
δi j) on Sp

1 . (3.8)

The boundary conditions (3.6)-(3.7) on Sp
1 are rewritten as

t13 =
1

4π
Ē1Ē3, t33 =

1
8π

(Ē2
3 − Ē2

1 ) on Sp
1 , (3.9)

D3 = Ē3, E1 = Ē1 on Sp
1 . (3.10)

For the non-piezoelectric material the governing equations are given by

4. The motion equations

ρ
eüi = ti j, j in V e. (3.11)
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5. The constitutive equations

ti j = λ
e
εkkδi j +2µ

e
εi j +Ae

εilε jl +3Be
εkkεi j +Ce

ε
2
kkδi j in V e. (3.12)

6. The boundary conditions

ti jn j = 0 on Se
1, (3.13)

or

t13 = 0, t33 = 0 on Sp
1 . (3.14)

7. The boundary conditions on S2

−u1 =−u3 = 0. (3.15)

8. The conditions on interfaces between constituentsIpe
.At the interfaces between

constituents the displacement and the traction vectors are continuous

[u1] = [u3] = 0, [t11] = [t13] = 0 on Ipe, (3.16)

where the bracket indicates a jump across the interface and k = 1,3. The equations
with hysteresis result by coupling Eqs. (3.1)-(3.16) with the parallel arrangement
of generalized play operators presented in Fig.3

ρ
pu,itt +ξi = ti j, j, w,itt −ξi = 0,

ξi ∈ φ(u,w) in V p (3.17)

ρ
eu,itt +ξi = ti j, j, witt −ξi = 0,

ξi ∈ φ(u,w) in V e, (3.18)

where φ is defined by (2.7).

In order to present the results of applying the hysteresis compensator (2.15), we
start with the resonant vibration modes excited by applying an external electric
field Ē1 = Ē3 = Ē0 exp(iω0t) on both sides of the plate withω = ωn. If Ē0 is
increased above a threshold value Ē0

th =5.77V the ω/2 subharmonic generation
is observed. Note that Alippi et. al. (1992) obtain in the Cantor-like sample
typical values of the lowest threshold voltages of 3-5V. The amplitude of waves
is calculated at the surface of the plate as a function of Ē0. Figs.7 and 8 show
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the displacements of the normal modes ω/2π=0.332MHz, 0.550MHz and respec-
tively of the subharmonic modes ω/4π=166MHz, 0.275MHz. Two kinds of vibra-
tion regimes are found: a localised-mode (fracton) regime represented in Fig.9 for
ω/2π=1.223MHz, 1.964MHz and 2.340MHz, and an extended-vibration (phonon)
regime represented in Fig.10 for ω/2π= 3.109MHz and 3.422MHz. A sketch of the
plate geometry is given on the abscissa (dashed, piezoelectric ceramic and white,
epoxy resin.

 
Figure 7: Amplitudes of the surface displacement of the normal mode ω/2π=
0.332MHz and the subharmonic mode ω/4π=0.166MHz

The fracton vibrations are mostly localised on a few elements, while the phonon
vibrations essentially extend to the whole plate. In the case of a periodical plate the
dispersion prevents good frequency matching between the fundamental and appro-
priate subharmonic modes. For the homogeneous plate the mismatch ωn−ω/2 is
due to the symmetry of fundamental modes with respect to x. Only symmetric odd
n can induce a subharmonic, but never ω/2 coincides with a plate vibration mode.

For a Cantor-like plate, we have obtained qualitatively the same result as Craciun
et al. (1992): given a normal mode ωn, for excitation at ω = ωn, the value of
the expected threshold i. e. the ability of generating the ω/2 subharmonic, is
determined by the existence of a normal mode with: (i) small frequency mismatch
ωn−ω/2, and, (ii) large spatial overlap between the fundamental and subharmonic
displacement field.

The behavior of the Cantor-like plate is accompanied by the hysteresis phenomenon
which may leads to degradation of the motion by driving it to limit-cycle instability.
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Figure 8: Amplitudes of the surface displacement of the normal mode ω/2π=
0.550MHz and the subharmonic mode ω/4π=0.275MHz.

 
Figure 9: The normal amplitudes for three localised vibration modes
(ω/2π=1.223MHz, 1.964MHz and 2.340MHz).
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Figure 10: The normal amplitudes for two extended vibration modes
(ω/2π=3.109MHz and 3.422MHz.

 
Figure 11: Hysteresis loop for the Cantor like plate.

Fig.11 represents the hysteresis behavior of the plate. The loop is independent of
frequency. The control problem is applied next by using the hysteresis compensator
(2.15). The aim is to clearly show the contribution of this compensator.

The energy dissipation, i.e. the damping capacity ∆W per unit mass, in one cycle,
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Figure 12: Output w versus the reference input, when the hysteresis compensator
is used.

is given by the net work done by the damping force fd , i.e.

∆W =
∫

fd(x, t)dx =

(2π−ϕ)ω∫
−ϕ/ω

fd ẋdt, (3.19)

where ϕ is the response phase, x = DV is the displacement, V is the voltage, and
D is a dimensional constant done by the relationship between the bending moment
and the applied voltage. The damping force is calculated as follows [Donescu,
Chiroiu and Munteanu (2009)]

fd(x, t) =
∫
V

t∫
−∞

C(x,ξ , t− τ)
∂w(ξ ,τ)

∂ t
dτdξ , (3.20)

with

C(x,ξ , t− τ) = H(x)
α

2
exp
(
−α

1+ ν̃

Ẽ
|x−ξ |

)
δ (t− τ), (3.21)

where H(x) is the Heaviside function, δ is the delta function, α is a constant, Ẽ is
the Young elasticity modulus of the Cantor like material, computed as

Ẽ =
ρ̃ c̃2

2(3c̃2
1−4c̃2

2)
c̃2

1− c̃2
2

, (3.22)
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with c̃1 and c̃2, the longitudinal and shear wave speeds, respectively. The Poisson’s
ratio of the Cantor like material is given by

ν̃ =
c̃2

1−2c̃2
2

2(c̃2
1− c̃2

2)
. (3.23)

Expression (3.20) represents the general form of nonlocal damping model. The
Heaviside function H(x) denotes the presence of nonlocal damping.

The output w versus the reference input u is illustrated in Fig.12. By using (3.19)-
(3.23) with α =0.255, it results that ∆Wcontrol

∆W = 0.40019. This results show that
hysteresis can be reduced to less than 40% when applying the feedforward control.
Such control can improve the performance of the Cantor-like plate dedicated to the
micromanipulation tasks.

4 Micromanipulator Using the Cantor Plate

In order to prove that proposed method really improve the performances, let us
simulate the behavior of a micromanipulator having the task of insertion of peg-
in hole for micro assembly operations [Jain, Patkar and Majumdar (2009)]. The
micromanipulator has three fingers consisted from thin cantilever Cantor strips
(40mm×10mm×0.2mm) for holding various objects and a top lifting thick link
(40mm×10mm×2mm) (see Fig. 13).

The manipulator has f degrees of freedom, f = fr + fe, with fr = 6 the rigid body

degrees of freedom due to the wrist motion, and fe =
3
∑

i=1
fei, the elastic degrees of

freedom depending on the modeling accuracy. Let introduce the vector of general-
ized coordinates q = [qT

r ,qT
e ]T , where qr = [β0,s]T , β0the rotation about the vertical

axis and s the local joint displacement of the wrist

The flexible finger is modeled as a Euler-Bernoulli beam with a moment applied at
the free end (Fig. 14) (Hiller and Schneider (1997)].. The relationship between the
bending moment M and the curvature of the beam κ is expressed as M = κdh3Ẽ

12 ,
where d and h are the width and the thickness of the beam, respectively. The
relationship between κ and the voltage V is κ = kV , with ka constant. The wave
speeds c̃1 and c̃2 have the values 6.298mm/µs, and 3.249mm/µs. The density ρ̃ has
the value 7.369 g/ml.

The introducing peg-in-hole operation needs to suppose that the axis of the peg
coincides with the axis of the hole (lateral alignment) or if the axis of the peg does
not coincide with the hole axis, both axis have to be parallel to each other.

The generalized coordinates for each elastic finger i = 1,2,3 is qei = [qu2i,qu3i,qαi]T .
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Figure 13: Micromanipulator with Cantor-like structure.

The displacement and angles vectors which measure the lateral and angular mis-
alignment are denoted by U = [u1,u2,u3]T and ϕ = [α,β ,γ]T , respectively.

Let K0 be the initial reference frame of the system, K the input reference frame and
K′ the output frame (Fig 15a) [Hiller and Schneider (1997)]. The elastic transmis-
sion mechanism of the position (R,r), velocityV̄ , acceleration ˙̄V and the force F
fields, from K to K′, are described next [Lascu et al. (2004); Hiller and Schneider
(1997); Lee et al. (2008)]

R′ = R ·∆R, ∆R = I +ϕ, (4.1)

r′ = ∆RT r +∆r, ∆r = ∆RT (x+U), (4.2)

V̄ =
[

ω ′

v′

]
=
[

∆RT 0 ∆RT ΦR

−∆r∆RT 0 ∆RT ΦT

]ω

v
q̇e

 , (4.3)

˙̄V =
[

ω̇ ′

a′

]
=
[

∆RT 0 ∆RT ΦR

−∆r∆RT 0 ∆RT ΦT

]ω̇

a
q̈e

+
[

εω

εa

]
, (4.4)
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F =

 τ

f
Qe

=

 ∆R ∆R∆r
0 ∆R

ΦT
R∆R ΦT

T ∆R

[τ ′

f ′

]
, (4.5)

where εω = ω ′× θ̇ and εa = ∆RT ω× (sω ′×U +2ṡU), and

U = ΦT qe, ϕ = ΦRqe, (4.6)

ΦTi(x) = ATix+BTix2 +CTix3, i = 1,2..., (4.7)

ΦRi(x) = ARix+BRix2 +CRix3, i = 1,2..., (4.8)

whereAi,Bi,Ci are unknown constants. Fig.15b shows the evolution of the motion
from K to K′. For simplicity, let us suppose that the axis of K, K′ coincide with the
axis U .

Eqs. (4.1)-(4.5) become [Hiller and Schneider (1997)]

R′ = R ·∆R, ∆R = I +U sinθ +(1− cosθ)U2, (4.9)

r′ = ∆RT r +Us, (4.10)

V̄ =
[

ω ′

v′

]
=
[

∆RT 0 U 0
−∆r∆RT ∆RT 0 U

]
ω

v
θ̇

ṡ

 , (4.11)

˙̄V =
[

ω̇ ′

a′

]
=
[

∆RT 0 U 0
−∆r∆RT ∆RT 0 U

]
ω

v
θ̇

ṡ

+
[

εω

εa

]
, (4.12)



On the Feedforward Control of Hysteresis for a Piezoelectric Plate 75

 
Figure 14: Euler-Bernoulli flexible finger.

F =

 τ

f
Qe

=

 ∆R ∆R∆r
0 ∆R

ΦT
R∆R ΦT

T ∆R

[τ ′

f ′

]
. (4.13)

Finally, the motion equations are given by [Hiller and Schneider (1997)]

M(q)(q̈+ ξ̇ )+g(q, q̇+ξ ) = h(q, q̇+ξ )+G(q)ϑ = 0, (4.14)

where ẇ− ξ = 0, M is the symmetric, positive-definite inertia matrix, g is the
vector of the generalized centrifugal forces, h the vector of the generalized applied
voltage, and ϑ the vector of driving forces and torques

ϑ = FR = [τ0,Fvol]T , (4.15)

whereτ0 is the driving torque at the wrist, and Fvolthe resulting driving force due to
the applied voltage.

The matrix G describes the mapping of ϑ to generalized forces

Gϑ = [FT
R , 0T ]T . (4.16)

Starting from an initial configuration without any deflections we can calculate both
fields U = [u1,u2,u3]T and ϕ = [α,β ,γ]T with respect to time, respectively.

Numerical simulation was carried out for the material constants shown in Table
1. We have paid attention on the accurate numerical model to avoid erroneous
parameter estimates.
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Figure 15: References frames.

Table 1: The material constants for piezoelectric ceramics and epoxy resin [Chiroiu
et al. 2001].

piezoelectric ceramics epoxy resin
71.6 GPa 42.31 GPa
35.8 GPa 3.76 GPa
−2000GPa 2.8 GPa
−1134GPa 9.7 GPa
−900GPa −5.7GPa

4.065 nF/m -
2.079 nF/m -
−0.218nm/V -

= −0.435nm/V -
7650 kg/m 1170kg/m
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Performance of the insertion depth of micromanipulator with respect to the voltage
is displayed in Fig.16 for without and with the hysteresis compensator.

The energy dissipation, i.e. the damping capacity ∆W per unit mass, in one cycle,
is given by (3.19). By using (3.19)-(3.23) with α =0.255, and D = κdh3Ẽ

12
1

Ftot cosβ
,

we obtain ∆Wcontrol
∆W = 0.39919. This results show that hysteresis can be reduced to

less than 40% when applying the feedforward control.

 
Figure 16: Output depth versus the voltage, without and with the hysteresis com-
pensator.

5 Results and Conclusion

The paper’s objective originates in the difficulty to integrate sensors in the control
issues of micro / nano world. This means that in this world the open-loop control
should solve the problems solved normally by the closed-loop control. In this con-
text, the accuracy of the mathematical model is decisive to synthesize the consistent
and effective open loop control procedures (with no feedback so).
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The Cantor like piezoelectric structure exhibits large bending or stretching with
electrical stimuli, due to the property to generate the subharmonic waves by the
anharmonic coupling between the extended-vibration (phonon) and the localized-
mode (fracton) regimes. The generalized play operator is connected in this paper
to the motion equations of the micromanipulator having the task of insertion of
peg-in hole for micro assembly operations. The control is focused on feedforward
or compensation technique with no sensor requirement. The Cantor like material
facilitates the insertion of peg-in-hole for micro assembly operations. The results
have confirmed that feedforward control can give interesting performances such
as accuracy and speed required for this particular application. Results show that
hysteresis can be reduced to less than 40% when applying the feedforward control.
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